Pierre Nugues

EDA095

Processes and Threads

Pierre Nugues

Lund University
http://cs.lth.se/pierre_nugues/

April 10, 2013

EDAO095 Processes and Threads

http://cs.lth.se/pierre_nugues/

Time-Sharing Operating Systems

Processes are programs in execution
Most operating systems can run multiple processes in parallel
OSes allocate a small quantum of CPU time to each process

A

P2

P1

Kernel

Y

t4 T

Task switching is very fast and gives the impression of simulta

processing

EDAO095 Processes and Threads

Pierre Nugues

Process Creation

On Unix, a command interpreter — a shell — launches the user processes.
A process can then launch other processes
The creating process is the “parent” and the created processes are the

“children”

An initial process started at boot time is the ancestor of all the
system processes and user processes

Pierre Nugues EDAO095 Processes and Threads

The Content of a Process

Running processes are located in the computer memory.
They contain the program code — resulting from the compiling
A data area that stores the dynamic data is allocated by the program at

run-time using new
When the program calls functions or methods, a stack stores their

parameters

Execution Stack

Y
A

Data

EDAO095 Processes and Threads

Pierre Nugues

The Process States

The model of process execution is a finite-state machine

Processes waiting for the CPU are “ready”

The scheduler “elects” one process and runs it.

On an 1/0, the elected process is moved to a “blocked” state until the 1/0O
is completed.

Blocked

Pierre Nugues EDAO095 Processes and Threads

The Unix states are slightly more complex

Running
User mode

Defunct Exit System cill

Runnlng

lnturupr
Kernel mode

Blocked in
memory

Pierre Nugues EDAO095 Processes and Threads

The Scheduler

The scheduler selects one process from the queue of ready processes.
A scheduler runs every 10 ms or so and chooses a new process

>
Waiting Waiting Waiting

Running

There are many scheduling algorithms available.

Scheduling must be very fast and use relatively simple algorithms:
first-come, first-served, round robin, priority.

Pierre Nugues

EDAO095 Processes and Threads

The Process Control Block

The operating system uses additional data to run a process: the process
context or process control block. It contains the process state, program

counter, CPU registers, etc.

P2

P1

Kernel

When switching tasks, the OS saves the current
context of the process that it will execute.

t2

t4

t3
t1

Pierre Nugues EDAO095 Processes and Threads

The Operating System Operations on Processes

The operating system creates, schedules, and terminates the processes.
Processes must sometimes cooperate and share data.

The operating system offers communication means between processes:
IPC and naming facilities:

@ Pipes
@ Shared memory

@ Messages

The operating system also offers means to coordinate and synchronize
processes: semaphores on Unix

Pierre Nugues EDAO095 Processes and Threads

Traditional processes are sequential: They have one execution path—one
thread of control

Concurrent processes have multiple threads of control i.e. processes within
a process.

Imagine a word processor application. The process must read the
keystrokes, display the text, check spelling, and so on, at the same time
Difficult to manage with a single thread

The idea is to allocate one thread to each task.

Pierre Nugues EDAO095 Processes and Threads

Easier to implement parallelism within the application

Input/output does not block the process, only one thread

More responsive programs using high-priority threads to manage user
interaction.

Threads are more economical: creating a process is 10 to 100 longer than
creating a thread.

But:

Threads are more difficult to coordinate and prone to nasty bugs.

EDAO095 Processes and Threads

Pierre Nugues

Java Threads

Threads are a feature of Java: a Java program and virtual machine can
run multiple threads.

Java provides constructs to create, manage, synchronize, and terminate
threads through:

@ the Thread class
http://download.oracle.com/javase/7/docs/api/java/lang/
Thread.html or

@ the Runnable interface
http://download.oracle.com/javase/7/docs/api/java/lang/
Runnable.html.

Threads can communicate using shared objects, pipes, or through
messages (sockets)

Pierre Nugues EDAO095 Processes and Threads

http://download.oracle.com/javase/7/docs/api/java/lang/Thread.html
http://download.oracle.com/javase/7/docs/api/java/lang/Thread.html
http://download.oracle.com/javase/7/docs/api/java/lang/Runnable.html
http://download.oracle.com/javase/7/docs/api/java/lang/Runnable.html

Java Threads

Creating Threads: The Thread Class
Threads can be created using the Thread class in two steps.
@ Create a new class:

e Derive a new class from Thread using extends
e Override the run() method

@ Create and run a thread object:

o Create a thread object using new.
e Start it using the start() method

Pierre Nugues EDAO095 Processes and Threads

A First Program using the Thread Class

public class MyThread extends Thread {

MyThread() {}

public void run() {
System.out.println("My first thread");

}

public static void main(String args[]) {
MyThread firstThread = new MyThread();
firstThread.start();

Pierre Nugues EDAO095 Processes and Threads

Creating Threads: The Runnable Interface

The Runnable interface is another option to create threads.

© Add the Runnable properties to a class:
o Implement the Runnable interface using implements
e Add a run() method

@ Create and run a thread object:
o Create a Runnable object using new.
o Create a thread that takes the runnable object as an argument
e Start the thread using the start () method

Pierre Nugues EDAO095 Processes and Threads

A First Program using the Runnable Interface

public class MyRunnable implements Runnable {

MyRunnable() {}

public void run() {
System.out.println("My second thread");

}

public static void main(String args[]) {
MyRunnable firstRunnable = new MyRunnable();
Thread myThread = new Thread(firstRunnable);
myThread.start();

Pierre Nugues EDAO095 Processes and Threads

Threading Applets

Using this method you can add threads to existing classes for instance to

applets.

public class MyApplet extends Applet implements Runnable {

Thread thr;
public void run() {
while (thr != null) {

repaint();

}
public void start() {
thr = new Thread(this);

thr.start();

EDAO095 Processes and Threads

Pierre Nugues

Passing Data to a Thread

You can pass data at creation time. Thread(String name) is a useful
constructor

public class MyThread2 extends Thread {
private int myInt;
MyThread2(String name, int myInt) {
super (name) ;
this.myInt = myInt;
}
public void run() {
for (int i = 0; i < myInt; i++) {
System.out.println(getName() + ": " + i);
}

Pierre Nugues EDAO095 Processes and Threads

Passing Data to a Thread, Continued

public static void main(String args[]) {
MyThread2 secondThread = new MyThread2("Thread#2", 123);
secondThread.start () ;

Pierre Nugues EDAO095 Processes and Threads

Working with Multiple Threads

The Java Virtual Machine manages the scheduling.

public static void main(String args[]) {
int loopCount;
loopCount = Integer.parselnt(args[0]);
MyThread2 thirdThread = new MyThread2("Thread3", loopCount);
MyThread2 fourthThread = new MyThread2("Thread4", loopCount);
thirdThread.start();
fourthThread.start();

Pierre Nugues EDAO095 Processes and Threads

The Thread API

The thread API consists of 8 constructors and “"40 methods, some of them
deprecated.
Constructors
Thread ()
Thread (Runnable target)
Thread (Runnable target, String name)
Thread (String name)
Thread(ThreadGroup group, Runnable target)
Thread (ThreadGroup group, Runnable target, String name)
Thread(ThreadGroup group, Runnable target, String name, long stackSize)
Thread(ThreadGroup group, String name)

Pierre Nugues EDAO095 Processes and Threads

Thread Methods

static int activeCount ()

void checkAccess()

static Thread currentThread()

static void dumpStack()

static int enumerate(Thread[] tarray)
ClassLoader getContextClassLoader ()
String getName()

int getPriority()

ThreadGroup getThreadGroup ()

static boolean holdsLock(Object obj)
void interrupt()

static boolean interrupted()

boolean isAlive()

boolean isDaemon()

boolean isInterrupted()

Pierre Nugues

void
void
void
void
void
void
void

void

join()

join(long millis)

join(long millis, int nanos)

run()

setContextClassLoader (ClassLoader cl)
setDaemon (boolean on)

setName (String name)

setPriority(int newPriority)

static void sleep(long millis)

static void sleep(long millis, int nanos)

void

start ()

String toString()

static
public

public

void yield()
long getId()
Thread.State getState

EDAO095 Processes and Threads

Deprecated Methods

int countStackFrames() void stop()

void resume() void stop(Throwable obj)
void destroy() void suspend()

A frequent question is: Why can’t | stop a thread?

Read:

http://download.oracle.com/javase/7/docs/technotes/guides/
concurrency/threadPrimitiveDeprecation.html

Pierre Nugues EDAO095 Processes and Threads

http://download.oracle.com/javase/7/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html
http://download.oracle.com/javase/7/docs/technotes/guides/concurrency/threadPrimitiveDeprecation.html

The Thread States

Trying a
Synchronized
block
sleep (
t .
waitl Terminated
notify ()
st rt() notifyAll ()

Ready
yield(
\\Runnable /

From Java 1.5.0: Thread.State enables to know the state.
http://download.oracle.com/javase/7/docs/api/java/]
Thread.State.html

Pierre Nugues EDAO095 Processes and Threads

http://download.oracle.com/javase/7/docs/api/java/lang/Thread.State.html
http://download.oracle.com/javase/7/docs/api/java/lang/Thread.State.html

Java Threads Scheduling

The JVM schedules threads using priorities.
Priorities are adjustable and range from 1 to 10:

@ Thread. MAX_PRIORITY = 10
@ Thread.NORM_PRIORITY =5
@ Thread.MIN_PRIORITY =1

The Java specifications do not describe the scheduling algorithm. They
are left to the implementer.

Pierre Nugues EDAO095 Processes and Threads

Scheduling Algorithms

Scheduling can be preemptive or cooperative:

@ A cooperative scheduler selects the highest priority thread and runs it
until it is completed unless the thread carries out an /O or yields
control using yield()

@ A preemptive scheduler allocates time quanta to threads so that they
all can run. High priority tasks should have more time than lower
priority ones.

Be aware of the implementation differences that are not documented.
On older Java implementations, a thread cannot be taken away from the
processor if it does not complete an 1/0O operation

Pierre Nugues EDAO095 Processes and Threads

Adjusting Priorities

public static void main(String args[]) {
int firstPriority, secondPriority;
int loopCount;
firstPriority = Integer.parselnt(args[0]);
secondPriority = Integer.parselnt(args[1]);
loopCount = Integer.parselnt(args[2]);
MyThread3 fifthThread = new MyThread3("Thread#5", loopCount);
MyThread3 sixthThread = new MyThread3("Thread#6", loopCount);
fifthThread.setPriority(firstPriority);
sixthThread.setPriority(secondPriority);
fifthThread.start();
sixthThread.start();

Pierre Nugues EDAO095 Processes and Threads

Thread Implementation

The Java Virtual Machines do not implement threads the same way.
Result of a program execution depends on the Java version,
implementation, and OS variant.

Compare the execution of:

$ java Launcher5 1 10 1000000

on your Linux machines and on a Mac

Pierre Nugues EDAO095 Processes and Threads

Thread Communication Using a Shared Object

Let's try this: One thread writes or produces data: a number for instance.

A second thread reads or consumes data
The threads access data using a shared object with get and set methods.

class SharedInt {
private int myInt;
public void setInt(int myInt) {
this.myInt = myInt;
}
public int getInt() {
return myInt;

}

Pierre Nugues EDAO095 Processes and Threads

Thread Communication (Continued)

We create and start the reader and writer:

public class Launcher6 {
public static void main (String args[]) {
SharedInt mySharedInt = new SharedInt();
int loopCount = Integer.parselnt(args[0]);
Writerl writer = new Writerl("Writer", mySharedInt, loopCount);
Readerl reader = new Readerl("Reader", mySharedInt, loopCount);

writer.start();
reader.start();

EDAO095 Processes and Threads

Pierre Nugues

Thread Communication (Continued)

The writer is a thread:

class Writerl extends Thread {
private SharedInt writeInput;
private int loopCount;
public Writer1(String str, SharedInt writeInput, int loopCount)
super (str) ;
this.writeInput = writelnput;
this.loopCount = loopCount;
3
public void run() {
for (int i = 0; i < loopCount; i++) {
writeInput.setInt(i);
X
System.out.println(getName() + " Terminated");

Pierre Nugues EDAO095 Processes and Threads

Thread Communication (Continued)

The Reader is also a thread:

class Readerl extends Thread {
private SharedInt readOutput;
private int loopCount;
public Readerl(String str, SharedInt readOutput, int loopCount)
super (str) ;
this.readOutput = readOutput;
this.loopCount = loopCount;
X
public void run() {
int myInt;
myInt = readOutput.getInt();
while (myInt < loopCount - 1) {
System.out.println(myInt);
myInt = readOutput.getInt();

}

System.out.println(getName() + " Terminated");

Pierre Nugues EDAO095 Processes and Threads

Running the Threads

Does it work?
No! The code prints random numbers. ..
The reader and writer threads read and write continuously. There is no

coordination.
The result depends on the race conditions.

EDAO095 Processes and Threads

Pierre Nugues

Thread Communications Using Pipes

Java has pipes similar to those of Unix

A Java pipe consists of two pipe ends derived from the classes
PipedInputStream and PipedOutputStream

Pipe objects are connected using the connect () method.

Writing threads write in PipedOutputStream the object and reading
threads read from the PipedInputStream

Ancther thread reads from
PipedInputStreanm

A thread writes in
PipedCutputStream

The pipe

EDAO095 Processes and Threads

Pierre Nugues

Thread Communication Using Pipes

In this example, threads write and read characters using a pipe

import java.io.x*;
class Launcher7 {
public static void main (String args[]) {
int loopCount;
PipedInputStream readOutput = new PipedInputStream();
PipedOutputStream writeInput = new PipedOutputStream();
try {
readQutput.connect (writeInput) ;
} catch (IOException EOut) {
System.err.println(EQut) ;
}
loopCount = Integer.parseInt(args[0]);
Writer2 writer = new Writer2("Writer", writelInput, loopCount);
Reader2 reader= new Reader2("Reader", readOutput, loopCount);
writer.start();
reader.start();

Pierre Nugues EDAO095 Processes and Threads

Thread Communication Using Pipes (Continued)

class Writer2 extends Thread {
private PipedQutputStream writelnput;
private int loopCount;
public Writer2(String str, PipedOutputStream writeInput, int loopCount)
super (str) ;
this.writelnput = writeInput;
this.loopCount = loopCount;
}
public void run() {
try {
for (int i = 0; i < loopCount; i++) {
writeInput.write(i);
}
writeInput.close();
} catch (IOException EOut) {
System.err.println(EQut) ;

}

System.out.println(getName() + " Terminated");

Pierre Nugues EDAO095 Processes and Threads

Thread Communication Using Pipes (Continued)

class Reader2 extends Thread {
private PipedInputStream readOutput;
private int loopCount;
public Reader2(String str, PipedInputStream readOutput, int loopCount)
super (str) ;
this.readOutput = readOutput;
this.loopCount = loopCount;
}
public void run() {
int readInt = 0;
try {
readInt = readOutput.read();
while (readInt !'= -1) {
System.out.println(getName() + " read in pipe\t" + readInt)
readInt = readOutput.read();
3
readOutput.close();
} catch (IOException EOut) {
System.err.println(EQut) ;

}
F7 - Java’

Pierre Nugues EDAO095 Processes and Threads April 10, 2013 37 /1

Sharing the Work

Task pipeline

Task

The task is split into subtasks
and assigned to threads
organized as a pipeline
(Launcher7.java)

Multiple tasks

——1

[N

Tasks

The tasks are marshaled and as-
signed to a pool of threads. See

Pierre Nugues EDAO095 Processes and Threads

A Client-Server Organization

Dispatcher Server

Control
threads

CIiW

Pierre Nugues EDAO095 Processes and Threads

Thread Coordination: A Simple Problem

Let us suppose that we want to reverse a list of numbers (countdown). A
simple and inefficient algorithm would put all the items on a stack and
once it is finished, remove them from the stack.

e e R I e A i

In the real world, we would divide this task into two subtasks: pile the

boxes and then take them from the stack.
Let us try to implement it with two threads.

EDAO095 Processes and Threads

Pierre Nugues

The Stack Class

Stacks are a very common LIFO data structure.
Java has a built-in Stack class.
Stack has two main methods:
@ Object push(Object item) puts one item onto the top of the
stack and
@ Object pop() removes one item at the top of the stack and returns
it.
The empty () method is a Boolean to test the stack state.

Pierre Nugues EDAO095 Processes and Threads

Wrapper Types

The Stack class as List, Vector, and other collections manipulates
Objects

It cannot store primitive types like boolean, int, float, or double that
are not objects

To store an integer variable, the program must associate it to an object —
a wrapper

Each primitive type has an object counterpart: char and Char, int and
Integer, etc.

From Java 1.5, moving an int to an Integer and the reverse are
automatic and are called “boxing” and “autoboxing.”

Pierre Nugues EDAO095 Processes and Threads

A Class to Create and Read a Stack

class MyStack extends Stack<Integer> {
int stackSize;
MyStack(int stackSize) { this.stackSize = stackSize; }
void buildStack() {
for (int count = 0; count < stackSize; count++) {
this.push(count) ;
+
System.out.println("Stack complete");
}
void printStack() {
while (!this.empty()) {
System.out.println(this.pop());
+
System.out.println("Stack printed");

Pierre Nugues EDAO095 Processes and Threads

A Single Threaded Program

public class Launcher9 {
public static void main(String args[]) {
int loopCount = O;

loopCount = Integer.parselnt(args[0]);
MyStack myStack = new MyStack(loopCount);

myStack.buildStack();
myStack.printStack();

Pierre Nugues EDAO095 Processes and Threads

A Multi-Threaded Program Sharing a Stack

Now let us create two threads to share the work:

BuildingThread buildingThread = new BuildingThread(myStack) ;
PrintingThread printingThread = new PrintingThread(myStack);
buildingThread.start();
printingThread.start();

class BuildingThread extends Thread {
MyStack myStack;
BuildingThread (MyStack myStack) {
this.myStack = myStack;
b
public void run() {
myStack.buildStack();

}

Pierre Nugues EDAO095 Processes and Threads

A Multi-Threaded Program (Continued)

class PrintingThread extends Thread {
MyStack myStack;
PrintingThread (MyStack myStack) {
this.myStack = myStack;
+
public void run() {
myStack.printStack();
3
b

(Launcher10.java)
Better design? What do you think?

Pierre Nugues EDAO095 Processes and Threads

The Execution Flow

The scheduler shares the time between the two threads

Printing Thread

Building Thread

Main | _ /

Stack complete

The lack of coordination produces a garbled output

Pierre Nugues EDAO095 Processes and Threads

What Should the Execution be

The scheduler must run the printStack() method after the
buildStack() method is complete

printStack()

buildStack ()

Main |

Stack complete

The code sections where the stack is being accessed — built an
critical sections
Their access must be exclusive: one thread at a time

Pierre Nugues EDAO095 Processes and Threads

Busy Waiting

A first solution is to test continuously a condition before entering the
critical section
The condition is set when the task is complete

class BuildingThread extends Thread {

MyStack myStack;

volatile boolean complete = false;

BuildingThread (MyStack myStack) {
this.myStack = myStack;

b

public void run() {
myStack.buildStack() ;
complete = true;

b

boolean getStatus() {
return complete;

}

Pierre Nugues EDAO095 Processes and Threads

Busy Waiting (Continued)

The condition is tested before starting the 2" thread (Launcherl1.java)
It is called busy waiting

while (buildingThread.getStatus() == false) {

b

¥

Busy waiting requires an atomic access to the condition variable

This is implemented using the volatile keyword

Busy waiting is generally not a good solution

An improved program would test the condition in the 2" thread and use
yield () if it is not met

yield () moves the executing thread to runnable and allows the
scheduler to select and run another thread
It is a poor design too.

Pierre Nugues EDAO095 Processes and Threads

Monitors are constructs that guarantee the mutual exclusion of methods
Per Brinch Hansen developed this concept of monitor in 1973

Any Java object is a potential monitor

The synchronized keyword declares the object methods that are part of
a monitor

class MyClass {
synchronized void m1() {}
void m2() {}
synchronized void m3() {}

Pierre Nugues EDAO095 Processes and Threads

Monitors (Continued)

The methods m1 () and m3() are part of the monitor: myObject.m1()
and myObject.m3() won't run concurrently

The first method started must be finished before another one is started
Similarly, two threads can't run myObject.m1() concurrently

The method myObject.m2() is not part of the monitor. It can be run at
any time

The set of threads competing to acquire a monitor is called the entry set
The Boolean method holdsLock(Object) returns true if the thread holds
the monitor lock

Pierre Nugues EDAO095 Processes and Threads

The Entry Set

The entry set

The monitor

Thread Owning Thread

EDAO095 Processes and Threads

Pierre Nugues

The New Class

class MyStack extends Stack {
int stackSize;
MyStack(int stackSize) { this.stackSize = stackSize; }
synchronized void buildStack() {
for (int count = 0; count < stackSize; count++) {
this.push(count);
}
System.out.println("Stack complete");
}
synchronized void printStack() {
while (!this.empty()) {
System.out.println(this.pop());
}
System.out.println("Stack printed");

3
} //Launcher12.java

Pierre Nugues EDAO095 Processes and Threads

Race Conditions

What happens if threads are started the other way around?

printingThread.start();
buildingThread.start(); // Launcheri13.java

instead of

buildingThread.start();
printingThread.start(); // Launcherl2.java

The result depends on the particular order of the instructions
This is called a race condition
Can we improve the monitor to avoid it?

Pierre Nugues EDAO095 Processes and Threads

Introducing the wait () Method

When a thread runs a synchronized method, it owns the object exclusively.
The others are in the blocked state.

Sometimes the object is not ready as when the stack is empty. The thread
is unable to start or continue.

[t must wait then. ..

The wait () method moves the thread from running to the waiting
state and places it in a waiting list — the wait set.

All objects inherits the wait () method as potential monitors
(this.wait())

Pierre Nugues EDAO095 Processes and Threads

The Wait Set

The entry set

The wait set

Thread

The monitor

Owning Thread

Thread

Pierre Nugues

EDAO095 Processes and Threads

The wait () Method (Continued)

The new code is:

synchronized void printStack() {
while (this.empty()) { // do not use if!
try {
wait();
} catch (InterruptedException e) {3}
}
while (!this.empty()) {
System.out.println(this.pop());
}
System.out.println("Stack printed");
} // Launcherl4. java

The stack is not printed! Why?

Pierre Nugues EDAO095 Processes and Threads

The notify() Method

After a wait () call, the thread is stuck in the wait set

The notify () method selects arbitrarily one thread from the wait set and
moves it to the entry set and the runnable state

The notifyAl1 () method moves all the threads in the wait set to the
entry set and to the runnable state

synchronized void buildStack() {
for (int count = 0; count < stackSize; count++) {
this.push(count) ;
}
System.out.println("Stack complete");
notifyAll();
} // Launcheri15.java

Pierre Nugues EDAO095 Processes and Threads

The notifyAl11() Method

The entry set

The wait set

The monitor

Owning Thread notifyAall{}

Pierre Nugues

EDAO095 Processes and Threads

Exiting the Wait Set

A thread exits the wait set when it is “notified”

It is also possible to set a time limit to wait () using

public final void wait (long milliseconds)

or

public final void wait (long milliseconds, int nanos)

The nanos value is not reliable however

This moves the thread in the timed waiting state, similar to waiting.
Finally, the interrupt () method of the Thread class enables a thread to
exit the wait set

Pierre Nugues EDAO095 Processes and Threads

The interrupt () Method

Under normal running conditions, interrupt () sets the interrupt status
and has not other effects

When the thread is in the waiting state because of wait (), sleep(), or
join(), it receives an InterruptedException

Input/output blocks a running thread until the 1/0O is completed. With the
nio package, interrupt () wakes up a thread in an 1/O method.

The Boolean method isInterrupted()returns the status value and
interrupted() returns and clears it

printingThread.start();
printingThread.interrupt();
buildingThread.start(); //(Launcherl6.java)

Pierre Nugues EDAO095 Processes and Threads

Deadlocks

Threads programming is difficult to master well
Deadlocks are a major source of bugs
A deadlock occurs when these conditions are met:

@ A thread has an exclusive resource that another thread is waiting for
and

@ The other thread has a resource that the first thread is waiting for

It is a hopeless circular wait

Pierre Nugues EDAO095 Processes and Threads

Deadlocks (Continued)

Thread 1 Thread 2
Allocated
«

Request

Pierre Nugues EDAO095 Processes and Threads

A Deadlock Example

In addition to methods, blocks of code can be synchronized as:

synchronized (Object) {

}

Objects can wait and notify using Object.wait() and Object.notify ()
Let us program a deadlock: A first thread acquires two synchronized
objects, 1lockl and lock2 and a second thread acquires the same objects
the other way around

Pierre Nugues EDAO095 Processes and Threads

A Deadlock Example

class Stuckl extends Thread {
Integer lockl, lock2;
Stuckl(String name, Integer lockl, Integer lock2) {
super (name) ;
this.lockl = lockl;
this.lock2 = lock2;
}
public void run() {
synchronized (lockl) {
System.out.println(getName() + " acquired lockl");
synchronized (lock2) {
System.out.println(getName() + " acquired lock2");
}

Pierre Nugues EDAO095 Processes and Threads

A Deadlock Example

class Stuck2 extends Thread {
Integer lockl, lock2;
Stuck2(String name, Integer lockl, Integer lock2) {
super (name) ;
this.lockl = lockl;
this.lock2 = lock2;
}
public void run() {
synchronized (lock2) {
System.out.println(getName() + " acquired lock2");
synchronized (lockl) {
System.out.println(getName() + " acquired lockl");
}

Pierre Nugues EDAO095 Processes and Threads

A Deadlock Example

public class Launcherl7 {
public static void main(String args[]) {
Integer lockl = new Integer(l), lock2 = new Integer(2);
Stuckl stuckl = new Stuckl("Stuckl", lockl, lock2);
Stuck2 stuck2 = new Stuck2("Stuck2", lockl, lock2);
stuckl.start();
stuck2.start();

The deadlock is not systematic. It depends on the completion speed of stuckl

Pierre Nugues EDAO095 Processes and Threads

Reentrance

A single thread can't deadlock itself however because Java monitors are
reentrant

public class Reentrant {
public synchronized void a() {
bO;
System.out.println("Running a()");
}
public synchronized void b() {
System.out.println("Running b()");
}
} // Launcherl18.java

Pierre Nugues EDAO095 Processes and Threads

Thread Death

A thread terminates when it returns from the run() method.

Do not use stop()

Instead of using synchronized methods, we could simply have waited the
end the building thread.

This is possible using join() that waits for a thread to finish.
isAlive () tests if a thread is alive. It returns false if it is dead or not
started.

(Launcher19.java)

Pierre Nugues EDAO095 Processes and Threads

Semaphores are another type of coordination device

They are widely used although more difficult than monitors

They are available on Unix in the IPC library and from version 1.5.0 of
Java in the java.util.concurrent package

A semaphore is a positive integer that is decremented and incremented
atomically using the P and V operations

A mutex is a semaphore initialized to one

It enables to protect a critical section as in

mutex = 1
P(mutex)
criticalSection()
V(mutex)

Pierre Nugues EDAO095 Processes and Threads

