
EDA095
Processes and Threads

Pierre Nugues

Lund University
http://cs.lth.se/pierre_nugues/

April 10, 2013

Pierre Nugues EDA095 Processes and Threads April 10, 2013 1 / 71

Time-Sharing Operating Systems

Processes are programs in execution
Most operating systems can run multiple processes in parallel
OSes allocate a small quantum of CPU time to each process

T

Kernel

P1

P2

t1 t2 t3 t4

Task switching is very fast and gives the impression of simultaneous
processing

Pierre Nugues EDA095 Processes and Threads April 10, 2013 2 / 71

Process Creation

On Unix, a command interpreter – a shell – launches the user processes.
A process can then launch other processes
The creating process is the “parent” and the created processes are the
“children”

P 1

P 2 P 3

P 4 P 6P 5

An initial process started at boot time is the ancestor of all the processes:
system processes and user processes

Pierre Nugues EDA095 Processes and Threads April 10, 2013 3 / 71

The Content of a Process

Running processes are located in the computer memory.
They contain the program code – resulting from the compiling
A data area that stores the dynamic data is allocated by the program at
run-time using new

When the program calls functions or methods, a stack stores their
parameters

!

Execution Stack

Data

Code

Pierre Nugues EDA095 Processes and Threads April 10, 2013 4 / 71

The Process States

The model of process execution is a finite-state machine
Processes waiting for the CPU are “ready”
The scheduler “elects” one process and runs it.
On an I/O, the elected process is moved to a “blocked” state until the I/O
is completed.

Elected Ready

Blocked

Pierre Nugues EDA095 Processes and Threads April 10, 2013 5 / 71

The Unix System

The Unix states are slightly more complex

Running
Kernel mode

Preempted

Defunct

Blocked in
memory

Created

System call

Interrupt

Exit

Running

User mode

Ready in

memory

Blocked not

in memory

Ready not in

memory

Pierre Nugues EDA095 Processes and Threads April 10, 2013 6 / 71

The Scheduler

The scheduler selects one process from the queue of ready processes.
A scheduler runs every 10 ms or so and chooses a new process

Running Waiting Waiting Waiting

There are many scheduling algorithms available.
Scheduling must be very fast and use relatively simple algorithms:
first-come, first-served, round robin, priority.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 7 / 71

The Process Control Block

The operating system uses additional data to run a process: the process
context or process control block. It contains the process state, program
counter, CPU registers, etc.

P2

P1

Kernel
t1

t3

t4

t2

When switching tasks, the OS saves the current context and restores the
context of the process that it will execute.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 8 / 71

The Operating System Operations on Processes

The operating system creates, schedules, and terminates the processes.
Processes must sometimes cooperate and share data.
The operating system o↵ers communication means between processes:
IPC and naming facilities:

Pipes

Shared memory

Messages

The operating system also o↵ers means to coordinate and synchronize
processes: semaphores on Unix

Pierre Nugues EDA095 Processes and Threads April 10, 2013 9 / 71

Threads

Traditional processes are sequential: They have one execution path—one
thread of control
Concurrent processes have multiple threads of control i.e. processes within
a process.
Imagine a word processor application. The process must read the
keystrokes, display the text, check spelling, and so on, at the same time
Di�cult to manage with a single thread
The idea is to allocate one thread to each task.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 10 / 71

Benefits

Easier to implement parallelism within the application
Input/output does not block the process, only one thread
More responsive programs using high-priority threads to manage user
interaction.
Threads are more economical: creating a process is 10 to 100 longer than
creating a thread.
But:
Threads are more di�cult to coordinate and prone to nasty bugs.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 11 / 71

Java Threads

Threads are a feature of Java: a Java program and virtual machine can
run multiple threads.
Java provides constructs to create, manage, synchronize, and terminate
threads through:

the Thread class
http://download.oracle.com/javase/7/docs/api/java/lang/

Thread.html or

the Runnable interface
http://download.oracle.com/javase/7/docs/api/java/lang/

Runnable.html.

Threads can communicate using shared objects, pipes, or through
messages (sockets)

Pierre Nugues EDA095 Processes and Threads April 10, 2013 12 / 71

Java Threads

Creating Threads: The Thread Class
Threads can be created using the Thread class in two steps.

1 Create a new class:
Derive a new class from Thread using extends

Override the run() method

2 Create and run a thread object:
Create a thread object using new.
Start it using the start() method

Pierre Nugues EDA095 Processes and Threads April 10, 2013 13 / 71

A First Program using the Thread Class

public class MyThread extends Thread {

MyThread() {}

public void run() {

System.out.println("My first thread");

}

public static void main(String args[]) {

MyThread firstThread = new MyThread();

firstThread.start();

}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 14 / 71

Creating Threads: The Runnable Interface

The Runnable interface is another option to create threads.
1 Add the Runnable properties to a class:

Implement the Runnable interface using implements

Add a run() method

2 Create and run a thread object:
Create a Runnable object using new.
Create a thread that takes the runnable object as an argument
Start the thread using the start() method

Pierre Nugues EDA095 Processes and Threads April 10, 2013 15 / 71

A First Program using the Runnable Interface

public class MyRunnable implements Runnable {

MyRunnable() {}

public void run() {

System.out.println("My second thread");

}

public static void main(String args[]) {

MyRunnable firstRunnable = new MyRunnable();

Thread myThread = new Thread(firstRunnable);

myThread.start();

}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 16 / 71

Threading Applets

Using this method you can add threads to existing classes for instance to
applets.

public class MyApplet extends Applet implements Runnable {

Thread thr;

public void run() {

while (thr != null) {

...

repaint();

}

}

public void start() {

thr = new Thread(this);

thr.start();

}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 17 / 71

Passing Data to a Thread

You can pass data at creation time. Thread(String name) is a useful
constructor.

public class MyThread2 extends Thread {

private int myInt;

MyThread2(String name, int myInt) {

super(name);

this.myInt = myInt;

}

public void run() {

for (int i = 0; i < myInt; i++) {

System.out.println(getName() + ": " + i);

}

System.out.println(getName() + " terminated");

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 18 / 71

Passing Data to a Thread, Continued

public static void main(String args[]) {
MyThread2 secondThread = new MyThread2("Thread#2", 123);
secondThread.start();

}
}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 19 / 71

Working with Multiple Threads

The Java Virtual Machine manages the scheduling.

public static void main(String args[]) {
int loopCount;
loopCount = Integer.parseInt(args[0]);
MyThread2 thirdThread = new MyThread2("Thread3", loopCount);
MyThread2 fourthThread = new MyThread2("Thread4", loopCount);
thirdThread.start();
fourthThread.start();

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 20 / 71

The Thread API

The thread API consists of 8 constructors and ˜40 methods, some of them
deprecated.
Constructors
Thread()

Thread(Runnable target)

Thread(Runnable target, String name)

Thread(String name)

Thread(ThreadGroup group, Runnable target)

Thread(ThreadGroup group, Runnable target, String name)

Thread(ThreadGroup group, Runnable target, String name, long stackSize)

Thread(ThreadGroup group, String name)

Pierre Nugues EDA095 Processes and Threads April 10, 2013 21 / 71

Thread Methods

static int activeCount() void join()

void checkAccess() void join(long millis)

static Thread currentThread() void join(long millis, int nanos)

static void dumpStack() void run()

static int enumerate(Thread[] tarray) void setContextClassLoader(ClassLoader cl)

ClassLoader getContextClassLoader() void setDaemon(boolean on)

String getName() void setName(String name)

int getPriority() void setPriority(int newPriority)

ThreadGroup getThreadGroup() static void sleep(long millis)

static boolean holdsLock(Object obj) static void sleep(long millis, int nanos)

void interrupt() void start()

static boolean interrupted() String toString()

boolean isAlive() static void yield()

boolean isDaemon() public long getId()

boolean isInterrupted() public Thread.State getState()

Pierre Nugues EDA095 Processes and Threads April 10, 2013 22 / 71

Deprecated Methods

int countStackFrames() void stop()

void resume() void stop(Throwable obj)

void destroy() void suspend()
A frequent question is: Why can’t I stop a thread?

Read:
http://download.oracle.com/javase/7/docs/technotes/guides/

concurrency/threadPrimitiveDeprecation.html

Pierre Nugues EDA095 Processes and Threads April 10, 2013 23 / 71

The Thread States

From Java 1.5.0: Thread.State enables to know the state.
http://download.oracle.com/javase/7/docs/api/java/lang/

Thread.State.html
Pierre Nugues EDA095 Processes and Threads April 10, 2013 24 / 71

Java Threads Scheduling

The JVM schedules threads using priorities.
Priorities are adjustable and range from 1 to 10:

Thread.MAX PRIORITY = 10

Thread.NORM PRIORITY = 5

Thread.MIN PRIORITY = 1

The Java specifications do not describe the scheduling algorithm. They
are left to the implementer.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 25 / 71

Scheduling Algorithms

Scheduling can be preemptive or cooperative:

A cooperative scheduler selects the highest priority thread and runs it
until it is completed unless the thread carries out an I/O or yields
control using yield()

A preemptive scheduler allocates time quanta to threads so that they
all can run. High priority tasks should have more time than lower
priority ones.

Be aware of the implementation di↵erences that are not documented.
On older Java implementations, a thread cannot be taken away from the
processor if it does not complete an I/O operation

Pierre Nugues EDA095 Processes and Threads April 10, 2013 26 / 71

Adjusting Priorities

public static void main(String args[]) {
int firstPriority, secondPriority;
int loopCount;
firstPriority = Integer.parseInt(args[0]);
secondPriority = Integer.parseInt(args[1]);
loopCount = Integer.parseInt(args[2]);
MyThread3 fifthThread = new MyThread3("Thread#5", loopCount);
MyThread3 sixthThread = new MyThread3("Thread#6", loopCount);
fifthThread.setPriority(firstPriority);
sixthThread.setPriority(secondPriority);
fifthThread.start();
sixthThread.start();

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 27 / 71

Thread Implementation

The Java Virtual Machines do not implement threads the same way.
Result of a program execution depends on the Java version,
implementation, and OS variant.
Compare the execution of:

$ java Launcher5 1 10 1000000

on your Linux machines and on a Mac

Pierre Nugues EDA095 Processes and Threads April 10, 2013 28 / 71

Thread Communication Using a Shared Object

Let’s try this: One thread writes or produces data: a number for instance.
A second thread reads or consumes data
The threads access data using a shared object with get and set methods.

class SharedInt {

private int myInt;

public void setInt(int myInt) {

this.myInt = myInt;

}

public int getInt() {

return myInt;

}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 29 / 71

Thread Communication (Continued)

We create and start the reader and writer:

public class Launcher6 {

public static void main (String args[]) {

SharedInt mySharedInt = new SharedInt();

int loopCount = Integer.parseInt(args[0]);

Writer1 writer = new Writer1("Writer", mySharedInt, loopCount);

Reader1 reader = new Reader1("Reader", mySharedInt, loopCount);

writer.start();

reader.start();

}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 30 / 71

Thread Communication (Continued)

The writer is a thread:

class Writer1 extends Thread {
private SharedInt writeInput;
private int loopCount;
public Writer1(String str, SharedInt writeInput, int loopCount) {

super(str);
this.writeInput = writeInput;
this.loopCount = loopCount;

}
public void run() {

for (int i = 0; i < loopCount; i++) {
writeInput.setInt(i);

}
System.out.println(getName() + " Terminated");

}
}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 31 / 71

Thread Communication (Continued)

The Reader is also a thread:

class Reader1 extends Thread {
private SharedInt readOutput;
private int loopCount;
public Reader1(String str, SharedInt readOutput, int loopCount) {

super(str);
this.readOutput = readOutput;
this.loopCount = loopCount;

}
public void run() {

int myInt;
myInt = readOutput.getInt();
while (myInt < loopCount - 1) {

System.out.println(myInt);
myInt = readOutput.getInt();

}
System.out.println(getName() + " Terminated");

}
}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 32 / 71

Running the Threads

Does it work?
No! The code prints random numbers. . .
The reader and writer threads read and write continuously. There is no
coordination.
The result depends on the race conditions.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 33 / 71

Thread Communications Using Pipes

Java has pipes similar to those of Unix
A Java pipe consists of two pipe ends derived from the classes
PipedInputStream and PipedOutputStream

Pipe objects are connected using the connect() method.
Writing threads write in PipedOutputStream the object and reading
threads read from the PipedInputStream

!

Pierre Nugues EDA095 Processes and Threads April 10, 2013 34 / 71

Thread Communication Using Pipes

In this example, threads write and read characters using a pipe

import java.io.*;

class Launcher7 {

public static void main (String args[]) {

int loopCount;

PipedInputStream readOutput = new PipedInputStream();

PipedOutputStream writeInput = new PipedOutputStream();

try {

readOutput.connect(writeInput);

} catch (IOException EOut) {

System.err.println(EOut);

}

loopCount = Integer.parseInt(args[0]);

Writer2 writer = new Writer2("Writer", writeInput, loopCount);

Reader2 reader= new Reader2("Reader", readOutput, loopCount);

writer.start();

reader.start();

}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 35 / 71

Thread Communication Using Pipes (Continued)

class Writer2 extends Thread {

private PipedOutputStream writeInput;

private int loopCount;

public Writer2(String str, PipedOutputStream writeInput, int loopCount) {

super(str);

this.writeInput = writeInput;

this.loopCount = loopCount;

}

public void run() {

try {

for (int i = 0; i < loopCount; i++) {

writeInput.write(i);

}

writeInput.close();

} catch (IOException EOut) {

System.err.println(EOut);

}

System.out.println(getName() + " Terminated");

}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 36 / 71

Thread Communication Using Pipes (Continued)

class Reader2 extends Thread {

private PipedInputStream readOutput;

private int loopCount;

public Reader2(String str, PipedInputStream readOutput, int loopCount) {

super(str);

this.readOutput = readOutput;

this.loopCount = loopCount;

}

public void run() {

int readInt = 0;

try {

readInt = readOutput.read();

while (readInt != -1) {

System.out.println(getName() + " read in pipe\t" + readInt);

readInt = readOutput.read();

}

readOutput.close();

} catch (IOException EOut) {

System.err.println(EOut);

}

System.out.println(getName() + " Terminated");}} // Launcher7.java
Pierre Nugues EDA095 Processes and Threads April 10, 2013 37 / 71

Sharing the Work

Task pipeline Multiple tasks

!
Task

!
Tasks

The task is split into subtasks
and assigned to threads
organized as a pipeline
(Launcher7.java)

The tasks are marshaled and as-
signed to a pool of threads. See
page 144–149 of the textbook
and the java Executors.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 38 / 71

A Client-Server Organization

Server

Client requests

Control
threads

Dispatcher

Pierre Nugues EDA095 Processes and Threads April 10, 2013 39 / 71

Thread Coordination: A Simple Problem

Let us suppose that we want to reverse a list of numbers (countdown). A
simple and ine�cient algorithm would put all the items on a stack and
once it is finished, remove them from the stack.

1 2 3 1

2

3

3 2 1

In the real world, we would divide this task into two subtasks: pile the
boxes and then take them from the stack.
Let us try to implement it with two threads.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 40 / 71

The Stack Class

Stacks are a very common LIFO data structure.
Java has a built-in Stack class.
Stack has two main methods:

Object push(Object item) puts one item onto the top of the
stack and

Object pop() removes one item at the top of the stack and returns
it.

The empty() method is a Boolean to test the stack state.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 41 / 71

Wrapper Types

The Stack class as List, Vector, and other collections manipulates
Objects

It cannot store primitive types like boolean, int, float, or double that
are not objects
To store an integer variable, the program must associate it to an object –
a wrapper
Each primitive type has an object counterpart: char and Char, int and
Integer, etc.
From Java 1.5, moving an int to an Integer and the reverse are
automatic and are called “boxing” and “autoboxing.”

Pierre Nugues EDA095 Processes and Threads April 10, 2013 42 / 71

A Class to Create and Read a Stack

class MyStack extends Stack<Integer> {

int stackSize;

MyStack(int stackSize) { this.stackSize = stackSize; }

void buildStack() {

for (int count = 0; count < stackSize; count++) {

this.push(count);

}

System.out.println("Stack complete");

}

void printStack() {

while (!this.empty()) {

System.out.println(this.pop());

}

System.out.println("Stack printed");

}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 43 / 71

A Single Threaded Program

public class Launcher9 {

public static void main(String args[]) {

int loopCount = 0;

loopCount = Integer.parseInt(args[0]);

MyStack myStack = new MyStack(loopCount);

myStack.buildStack();

myStack.printStack();

}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 44 / 71

A Multi-Threaded Program Sharing a Stack

Now let us create two threads to share the work:

BuildingThread buildingThread = new BuildingThread(myStack);
PrintingThread printingThread = new PrintingThread(myStack);
buildingThread.start();
printingThread.start();

class BuildingThread extends Thread {
MyStack myStack;
BuildingThread(MyStack myStack) {

this.myStack = myStack;
}
public void run() {

myStack.buildStack();
}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 45 / 71

A Multi-Threaded Program (Continued)

class PrintingThread extends Thread {

MyStack myStack;

PrintingThread(MyStack myStack) {

this.myStack = myStack;

}

public void run() {

myStack.printStack();

}

}

(Launcher10.java)
Better design? What do you think?

Pierre Nugues EDA095 Processes and Threads April 10, 2013 46 / 71

The Execution Flow

The scheduler shares the time between the two threads

!

T

Main

Building Thread

Printing Thread

Stack complete

The lack of coordination produces a garbled output

Pierre Nugues EDA095 Processes and Threads April 10, 2013 47 / 71

What Should the Execution be

The scheduler must run the printStack() method after the
buildStack() method is complete

!

T

Main

buildStack()

printStack()

Stack complete

The code sections where the stack is being accessed – built and read – are
critical sections

Their access must be exclusive: one thread at a time

Pierre Nugues EDA095 Processes and Threads April 10, 2013 48 / 71

Busy Waiting

A first solution is to test continuously a condition before entering the
critical section
The condition is set when the task is complete

class BuildingThread extends Thread {

MyStack myStack;

volatile boolean complete = false;

BuildingThread(MyStack myStack) {

this.myStack = myStack;

}

public void run() {

myStack.buildStack();

complete = true;

}

boolean getStatus() {

return complete;

}

}
Pierre Nugues EDA095 Processes and Threads April 10, 2013 49 / 71

Busy Waiting (Continued)

The condition is tested before starting the 2nd thread (Launcher11.java)
It is called busy waiting

while (buildingThread.getStatus() == false) {

;

}

Busy waiting requires an atomic access to the condition variable
This is implemented using the volatile keyword
Busy waiting is generally not a good solution
An improved program would test the condition in the 2nd thread and use
yield() if it is not met
yield() moves the executing thread to runnable and allows the
scheduler to select and run another thread
It is a poor design too.

Pierre Nugues EDA095 Processes and Threads April 10, 2013 50 / 71

Monitors

Monitors are constructs that guarantee the mutual exclusion of methods
Per Brinch Hansen developed this concept of monitor in 1973
Any Java object is a potential monitor
The synchronized keyword declares the object methods that are part of
a monitor

class MyClass {

synchronized void m1() {}

void m2() {}

synchronized void m3() {}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 51 / 71

Monitors (Continued)

The methods m1() and m3() are part of the monitor: myObject.m1()
and myObject.m3() won’t run concurrently
The first method started must be finished before another one is started
Similarly, two threads can’t run myObject.m1() concurrently
The method myObject.m2() is not part of the monitor. It can be run at
any time
The set of threads competing to acquire a monitor is called the entry set

The Boolean method holdsLock(Object) returns true if the thread holds
the monitor lock

Pierre Nugues EDA095 Processes and Threads April 10, 2013 52 / 71

The Entry Set

!

Owning Thread

Thread

Thread

Thread

The monitor

The entry set

Pierre Nugues EDA095 Processes and Threads April 10, 2013 53 / 71

The New Class

class MyStack extends Stack {

int stackSize;

MyStack(int stackSize) { this.stackSize = stackSize; }

synchronized void buildStack() {

for (int count = 0; count < stackSize; count++) {

this.push(count);

}

System.out.println("Stack complete");

}

synchronized void printStack() {

while (!this.empty()) {

System.out.println(this.pop());

}

System.out.println("Stack printed");

}

} //Launcher12.java

Pierre Nugues EDA095 Processes and Threads April 10, 2013 54 / 71

Race Conditions

What happens if threads are started the other way around?

printingThread.start();

buildingThread.start(); // Launcher13.java

instead of

buildingThread.start();

printingThread.start(); // Launcher12.java

The result depends on the particular order of the instructions
This is called a race condition
Can we improve the monitor to avoid it?

Pierre Nugues EDA095 Processes and Threads April 10, 2013 55 / 71

Introducing the wait() Method

When a thread runs a synchronized method, it owns the object exclusively.
The others are in the blocked state.
Sometimes the object is not ready as when the stack is empty. The thread
is unable to start or continue.
It must wait then. . .
The wait() method moves the thread from running to the waiting
state and places it in a waiting list – the wait set.
All objects inherits the wait() method as potential monitors
(this.wait())

Pierre Nugues EDA095 Processes and Threads April 10, 2013 56 / 71

The Wait Set

!

Owning Thread

Thread

Thread

Thread

The monitor

The entry set

Thread

Thread

The wait set

wait()

Pierre Nugues EDA095 Processes and Threads April 10, 2013 57 / 71

The wait()Method (Continued)

The new code is:

synchronized void printStack() {

while (this.empty()) { // do not use if!

try {

wait();

} catch (InterruptedException e) {}

}

while (!this.empty()) {

System.out.println(this.pop());

}

System.out.println("Stack printed");

} // Launcher14.java

The stack is not printed! Why?

Pierre Nugues EDA095 Processes and Threads April 10, 2013 58 / 71

The notify() Method

After a wait() call, the thread is stuck in the wait set
The notify() method selects arbitrarily one thread from the wait set and
moves it to the entry set and the runnable state
The notifyAll() method moves all the threads in the wait set to the
entry set and to the runnable state

synchronized void buildStack() {

for (int count = 0; count < stackSize; count++) {

this.push(count);

}

System.out.println("Stack complete");

notifyAll();

} // Launcher15.java

Pierre Nugues EDA095 Processes and Threads April 10, 2013 59 / 71

The notifyAll() Method

!

Pierre Nugues EDA095 Processes and Threads April 10, 2013 60 / 71

Exiting the Wait Set

A thread exits the wait set when it is “notified”
It is also possible to set a time limit to wait() using
public final void wait (long milliseconds)

or
public final void wait (long milliseconds, int nanos)

The nanos value is not reliable however
This moves the thread in the timed waiting state, similar to waiting.
Finally, the interrupt() method of the Thread class enables a thread to
exit the wait set

Pierre Nugues EDA095 Processes and Threads April 10, 2013 61 / 71

The interrupt() Method

Under normal running conditions, interrupt() sets the interrupt status
and has not other e↵ects
When the thread is in the waiting state because of wait(), sleep(), or
join(), it receives an InterruptedException

Input/output blocks a running thread until the I/O is completed. With the
nio package, interrupt() wakes up a thread in an I/O method.
The Boolean method isInterrupted()returns the status value and
interrupted() returns and clears it

printingThread.start();

printingThread.interrupt();

buildingThread.start(); //(Launcher16.java)

Pierre Nugues EDA095 Processes and Threads April 10, 2013 62 / 71

Deadlocks

Threads programming is di�cult to master well
Deadlocks are a major source of bugs
A deadlock occurs when these conditions are met:

1 A thread has an exclusive resource that another thread is waiting for
and

2 The other thread has a resource that the first thread is waiting for

It is a hopeless circular wait

Pierre Nugues EDA095 Processes and Threads April 10, 2013 63 / 71

Deadlocks (Continued)

Thread 1 Thread 2

Request

Allocated

R 1 R 2

Pierre Nugues EDA095 Processes and Threads April 10, 2013 64 / 71

A Deadlock Example

In addition to methods, blocks of code can be synchronized as:

synchronized (Object) {

...

}

Objects can wait and notify using Object.wait() and Object.notify()

Let us program a deadlock: A first thread acquires two synchronized
objects, lock1 and lock2 and a second thread acquires the same objects
the other way around

Pierre Nugues EDA095 Processes and Threads April 10, 2013 65 / 71

A Deadlock Example

class Stuck1 extends Thread {
Integer lock1, lock2;
Stuck1(String name, Integer lock1, Integer lock2) {

super(name);
this.lock1 = lock1;
this.lock2 = lock2;

}
public void run() {

synchronized (lock1) {
System.out.println(getName() + " acquired lock1");
synchronized (lock2) {

System.out.println(getName() + " acquired lock2");
}

}
}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 66 / 71

A Deadlock Example

class Stuck2 extends Thread {
Integer lock1, lock2;
Stuck2(String name, Integer lock1, Integer lock2) {

super(name);
this.lock1 = lock1;
this.lock2 = lock2;

}
public void run() {

synchronized (lock2) {
System.out.println(getName() + " acquired lock2");
synchronized (lock1) {

System.out.println(getName() + " acquired lock1");
}

}
}

}

Pierre Nugues EDA095 Processes and Threads April 10, 2013 67 / 71

A Deadlock Example

public class Launcher17 {
public static void main(String args[]) {

Integer lock1 = new Integer(1), lock2 = new Integer(2);
Stuck1 stuck1 = new Stuck1("Stuck1", lock1, lock2);
Stuck2 stuck2 = new Stuck2("Stuck2", lock1, lock2);
stuck1.start();
stuck2.start();

}
}

The deadlock is not systematic. It depends on the completion speed of stuck1

Pierre Nugues EDA095 Processes and Threads April 10, 2013 68 / 71

Reentrance

A single thread can’t deadlock itself however because Java monitors are
reentrant

public class Reentrant {

public synchronized void a() {

b();

System.out.println("Running a()");

}

public synchronized void b() {

System.out.println("Running b()");

}

} // Launcher18.java

Pierre Nugues EDA095 Processes and Threads April 10, 2013 69 / 71

Thread Death

A thread terminates when it returns from the run() method.
Do not use stop()
Instead of using synchronized methods, we could simply have waited the
end the building thread.
This is possible using join() that waits for a thread to finish.
isAlive() tests if a thread is alive. It returns false if it is dead or not
started.
(Launcher19.java)

Pierre Nugues EDA095 Processes and Threads April 10, 2013 70 / 71

Semaphores

Semaphores are another type of coordination device
They are widely used although more di�cult than monitors
They are available on Unix in the IPC library and from version 1.5.0 of
Java in the java.util.concurrent package
A semaphore is a positive integer that is decremented and incremented
atomically using the P and V operations
A mutex is a semaphore initialized to one
It enables to protect a critical section as in

mutex = 1

P(mutex)

criticalSection()

V(mutex)

Pierre Nugues EDA095 Processes and Threads April 10, 2013 71 / 71

