

i

Javaª Media Framework
API Guide

November 19,1999
JMF 2.0 FCS

JMF API Guideii

iii

 1998-99 Sun Microsystems, Inc.
2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A.
All rights reserved.

The images of the video camera, video tape, VCR, television, and speakers
on page 12 copyright www.arttoday.com.

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the
U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR
227.7202-1(a).

The release described in this document may be protected by one or more
U.S. patents, foreign patents, or pending applications.

Sun, the Sun logo, Sun Microsystems, JDK, Java, and the Java Coffee Cup
logo are trademarks or registered trademarks of Sun Microsystems, Inc. in
the United States and other countries.

THIS PUBLICATION IS PROVIDED ÒAS ISÓ WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES
OR TYPOGRAPHICAL ERRORS. CHANGES ARE PERIODICALLY
ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN
MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S)
DESCRIBED IN THIS PUBLICATION AT ANY TIME.

JMF API Guideiv

Contents

Preface . xiii

About JMF. xiii

 Design Goals for the JMF API . xiv
 About the JMF RTP APIs . xv

 Design Goals for the JMF RTP APIs. xvi
 Partners in the Development of the JMF APIxvii
 Contact Information .xvii

About this Document .xvii

 Guide to Contents .xvii
 Change History . xix
 Comments . xx

Part 1: Javaª Media Framework .1

Working with Time-Based Media .3

Streaming Media . 4

 Content Type . 4
 Media Streams . 4
 Common Media Formats . 5

Media Presentation . 7

 Presentation Controls . 7
 Latency . 7
 Presentation Quality . 7
v

JMF API Guide

vi

Media Processing .8

 Demultiplexers and Multiplexers .9
 Codecs .9
 Effect Filters .9
 Renderers .9

 Compositing .9

Media Capture .10

 Capture Devices. .10
 Capture Controls .10

Understanding JMF . 11

High-Level Architecture .11

 Time Model. .13
 Managers. .14
 Event Model .15
 Data Model .16

 Push and Pull Data Sources .17
 Specialty DataSources .18
 Data Formats .19

 Controls. .20
 Standard Controls .20

 User Interface Components .23
 Extensibility .23

Presentation .24

 Players .25
 Player States .26
 Methods Available in Each Player State.28

 Processors .29
 Presentation Controls .29

 Standard User Interface Components 30
 Controller Events .30

Processing .32

 Processor States .33
 Methods Available in Each Processor State.35

 Processing Controls .36
 Data Output .36

vii

Capture . 37

Media Data Storage and Transmission. 37

 Storage Controls . 37

Extensibility . 38

 Implementing Plug-Ins . 38
 Implementing MediaHandlers and DataSources. 39

 MediaHandler Construction . 39
 DataSource Construction . 42

Presenting Time-Based Media with JMF 43

Controlling a Player. 43

 Creating a Player. 44
 Blocking Until a Player is Realized. 44
 Using a ProcessorModel to Create a Processor 44

 Displaying Media Interface Components 45
 Displaying a Visual Component. 45
 Displaying a Control Panel Component 45
 Displaying a Gain-Control Component. 46
 Displaying Custom Control Components. 46
 Displaying a Download-Progress Component. 47

 Setting the Playback Rate. 47
 Setting the Start Position . 48

 Frame Positioning . 48
 Preparing to Start . 49

 Realizing and Prefetching a Player. 49
 Determining the Start Latency . 50

 Starting and Stopping the Presentation. 50
 Starting the Presentation . 50
 Stopping the Presentation . 50
 Stopping the Presentation at a Specified Time 51

 Releasing Player Resources . 52

Querying a Player . 53

 Getting the Playback Rate . 53
 Getting the Media Time . 53
 Getting the Time-Base Time . 54
 Getting the Duration of the Media Stream 54

JMF API Guide

viii

Responding to Media Events .54

 Implementing the ControllerListener Interface 54
 Using ControllerAdapter .55

Synchronizing Multiple Media Streams56

 Using a Player to Synchronize Controllers 57
 Adding a Controller .58
 Controlling Managed Controllers58
 Removing a Controller .59

 Synchronizing Players Directly .60

Example: Playing an MPEG Movie in an Applet.61

 Overview of PlayerApplet .62
 Initializing the Applet .64
 Controlling the Player. .65
 Responding to Media Events .66

Presenting Media with the MediaPlayer Bean66

Presenting RTP Media Streams .68

 Listening for RTP Format Changes.69

Processing Time-Based Media with JMF 71

 Selecting Track Processing Options 72

Converting Media Data from One Format to Another73

 Specifying the Output Data Format73

Specifying the Media Destination .73

 Selecting a Renderer .74
 Writing Media Data to a File .74
 Connecting a Processor to another Player75

Using JMF Plug-Ins as Stand-alone Processing Modules75

Capturing Time-Based Media with JMF 77

Accessing Capture Devices .77

Capturing Media Data .78

Allowing the User to Control the Capture Process78

ix

Storing Captured Media Data . 79

Example: Capturing and Playing Live Audio Data 79

Example: Writing Captured Audio Data to a File. 80

Example: Encoding Captured Audio Data 82

Example: Capturing and Saving Audio and Video Data. 83

Extending JMF . 85

Implementing JMF Plug-Ins . 85

 Implementing a Demultiplexer Plug-In. 85
 Implementing a Codec or Effect Plug-In 88

 Effect Plug-ins . 89
 Example: GainEffect Plug-In . 89

 Implementing a Multiplexer Plug-In 94
 Implementing a Renderer Plug-In . 95

 Example: AWTRenderer . 95
 Registering a Custom Plug-In . 101

Implementing Custom Data Sources and Media Handlers. . 102

 Implementing a Protocol Data Source 102
 Example: Creating an FTP DataSource 103

 Integrating a Custom Data Source with JMF 103
 Implementing a Basic Controller . 104

 Example: Creating a Timeline Controller 104
 Implementing a DataSink . 105
 Integrating a Custom Media Handler with JMF 105

Registering a Capture Device with JMF 106

Part 2: Real-Time Transport Protocol 107

Working with Real-Time Media Streams. 109

Streaming Media . 109

 Protocols for Streaming Media . 109

Real-Time Transport Protocol . 110

 RTP Services. 111

JMF API Guide

x

 RTP Architecture .112
 Data Packets .112
 Control Packets .113

 RTP Applications. .114
 Receiving Media Streams From the Network115
 Transmitting Media Streams Across the Network115

References .115

Understanding the JMF RTP API . 117

RTP Architecture .118

 Session Manager .119
 Session Statistics. .119
 Session Participants .119
 Session Streams .120

 RTP Events .120
 Session Listener .122
 Send Stream Listener. .122
 Receive Stream Listener .123
 Remote Listener .123

 RTP Data .124
 Data Handlers .124

 RTP Controls .125

Reception .125

Transmission .126

Extensibility .127

 Implementing Custom Packetizers and Depacketizers . .127

Receiving and Presenting RTP Media Streams. 129

Creating a Player for an RTP Session .130

 Listening for Format Changes .131

Creating an RTP Player for Each New Receive Stream 132

 Handling RTP Payload Changes. .136
 Controlling Buffering of Incoming RTP Streams137

Presenting RTP Streams with RTPSocket138

xi

Transmitting RTP Media Streams. 145

 Configuring the Processor . 146
 Retrieving the Processor Output . 146
 Controlling the Packet Delay . 146

Transmitting RTP Data With a Data Sink 147

Transmitting RTP Data with the Session Manager. 150

 Creating a Send Stream . 150
 Using Cloneable Data Sources 150
 Using Merging Data Sources. 151

 Controlling a Send Stream. 151
 Sending Captured Audio Out in a Single Session 151
 Sending Captured Audio Out in Multiple Sessions 153

Transmitting RTP Streams with RTPSocket. 159

Importing and Exporting RTP Media Streams 163

Reading RTP Media Streams from a File 163

Exporting RTP Media Streams. 165

Creating Custom Packetizers and Depacketizers 167

RTP Data Handling . 170

 Dynamic RTP Payloads . 171

Registering Custom Packetizers and Depacketizers. 172

JMF Applet. 173

StateHelper . 179

Demultiplexer Plug-In . 183

Sample Data Source Implementation 197

 Source Stream . 205

Sample Controller Implementation 207

 TimeLineController . 208
 TimeLineEvent . 219
 EventPostingBase . 219
 ListenerList. 221
 EventPoster . 221

JMF API Guide

xii

RTPUtil . 223

Glossary . 229

Index. 241

Preface

The Javaª Media Framework (JMF) is an application programming inter-
face (API) for incorporating time-based media into Java applications and
applets. This guide is intended for Java programmers who want to incor-
porate time-based media into their applications and for technology pro-
viders who are interested in extending JMF and providing JMF plug-ins to
support additional media types and perform custom processing and ren-
dering.

About JMF

The JMF 1.0 API (the Java Media Player API) enabled programmers to
develop Java programs that presented time-based media. The JMF 2.0 API
extends the framework to provide support for capturing and storing
media data, controlling the type of processing that is performed during
playback, and performing custom processing on media data streams. In
addition, JMF 2.0 deÞnes a plug-in API that enables advanced developers
and technology providers to more easily customize and extend JMF func-
tionality.

The following classes and interfaces are new in JMF 2.0:

AudioFormat BitRateControl Buffer

BufferControl BufferToImage BufferTransferHandler

CaptureDevice CaptureDeviceInfo CaptureDeviceManager

CloneableDataSource Codec ConfigureCompleteEvent

ConnnectionErrorEvent DataSink DataSinkErrorEvent

DataSinkEvent DataSinkListener Demultiplexer
xiii

JMF API Guide

xiv

In addition, the MediaPlayer Java Bean has been included with the JMF
API in javax.media.bean.playerbean. MediaPlayer can be instantiated
directly and used to present one or more media streams.

Future versions of the JMF API will provide additional functionality and
enhancements while maintaining compatibility with the current API.

Design Goals for the JMF API

JMF 2.0 supports media capture and addresses the needs of application
developers who want additional control over media processing and ren-
dering. It also provides a plug-in architecture that provides direct access
to media data and enables JMF to be more easily customized and
extended. JMF 2.0 is designed to:

¥ Be easy to program

¥ Support capturing media data

¥ Enable the development of media streaming and conferencing
applications in Java

Effect EndOfStreamEvent FileTypeDescriptor

Format FormatChangeEvent FormatControl

FrameGrabbingControl FramePositioningControl FrameProcessingControl

FrameRateControl H261Control H261Format

H263Control H263Format ImageToBuffer

IndexedColorFormat InputSourceStream KeyFrameControl

MonitorControl MpegAudioControl Multiplexer

NoStorageSpaceErrorEvent PacketSizeControl PlugIn

PlugInManager PortControl Processor

ProcessorModel PullBufferDataSource PullBufferStream

PushBufferDataSource PushBufferStream QualityControl

Renderer RGBFormat SilenceSuppressionControl

StreamWriterControl Track TrackControl

VideoFormat VideoRenderer YUVFormat

xv

¥ Enable advanced developers and technology providers to implement
custom solutions based on the existing API and easily integrate new
features with the existing framework

¥ Provide access to raw media data

¥ Enable the development of custom, downloadable demultiplexers,
codecs, effects processors, multiplexers, and renderers (JMF plug-ins)

¥ Maintain compatibility with JMF 1.0

About the JMF RTP APIs

The classes in javax.media.rtp, javax.media.rtp.event, and
javax.media.rtp.rtcp provide support for RTP (Real-Time Transport Pro-
tocol). RTP enables the transmission and reception of real-time media
streams across the network. RTP can be used for media-on-demand appli-
cations as well as interactive services such as Internet telephony.

JMF-compliant implementations are not required to support the RTP
APIs in javax.media.rtp, javax.media.rtp.event, and
javax.media.rtp.rtcp. The reference implementations of JMF provided
by Sun Microsystems, Inc. and IBM Corporation fully support these APIs.

The Þrst version of the JMF RTP APIs (referred to as the RTP Session Man-
ager API) enabled developers to receive RTP streams and play them using
JMF. In JMF 2.0, the RTP APIs also support the transmission of RTP
streams.

The following RTP classes and interfaces are new in JMF 2.0:

The RTP packages have been reorganized and some classes, interfaces,
and methods have been renamed to make the API easier to use. The pack-
age reorganization consists of the following changes:

¥ The RTP event classes that were in javax.media.rtp.session are now
in javax.media.rtp.event.

¥ The RTCP-related classes that were in javax.media.rtp.session are
now in javax.media.rtp.rtcp.

SendStream SendStreamListener InactiveSendStreamEvent

ActiveSendStreamEvent SendPayloadChangeEvent NewSendStreamEvent

GlobalTransmissionStats TransmissionStats

JMF API Guide

xvi

¥ The rest of the classes in javax.media.rtp.session are now in
javax.media.rtp and the javax.media.rtp.session package has been
removed.

The name changes consist primarily of the removal of the RTP and RTCP
preÞxes from class and interface names and the elimination of non-stan-
dard abbreviations. For example, RTPRecvStreamListener has been
renamed to ReceiveStreamListener. For a complete list of the changes
made to the RTP packages, see the JMF 2.0 Beta release notes.

In addition, changes were made to the RTP APIs to make them compatible
with other changes in JMF 2.0:

¥ javax.media.rtp.session.io and
javax.media.rtp.session.depacketizer have been removed. Custom
RTP packetizers and depacketizers are now supported through the
JMF 2.0 plug-in architecture. Existing depacketizers will need to be
ported to the new plug-in architecture.

¥ Buffer is now the basic unit of transfer between the SessionManager
and other JMF objects, in place of DePacketizedUnit and
DePacketizedObject. RTP-formatted Buffers have a specific format
for their data and header objects.

¥ BaseEncodingInfo has been replaced by the generic JMF Format object.
An RTP-specific Format is differentiated from other formats by its
encoding string. Encoding strings for RTP-specific Formats end in
_RTP. Dynamic payload information can be provided by associating a
dynamic payload number with a Format object.

Design Goals for the JMF RTP APIs

The RTP APIs in JMF 2.0 support the reception and transmission of RTP
streams and address the needs of application developers who want to use
RTP to implement media streaming and conferencing applications. These
APIs are designed to:

¥ Enable the development of media streaming and conferencing
applications in Java

¥ Support media data reception and transmission using RTP and RTCP

¥ Support custom packetizer and depacketizer plug-ins through the
JMF 2.0 plug-in architecture.

¥ Be easy to program

xvii

Partners in the Development of the JMF API

The JMF 2.0 API is being jointly designed by Sun Microsystems, Inc. and
IBM Corporation.

The JMF 1.0 API was jointly developed by Sun Microsystems Inc., Intel
Corporation, and Silicon Graphics, Inc.

Contact Information

For the latest information about JMF, visit the Sun Microsystems, Inc.
website at:

http://java.sun.com/products/java-media/jmf/

Additional information about JMF can be found on the IBM Corporation
website at:

http://www.software.ibm.com/net.media/

About this Document

This document describes the architecture and use of the JMF 2.0 API. It
replaces the Java Media Player Guide distributed in conjunction with the
JMF 1.0 releases.

Except where noted, the information in this book is not implementation
speciÞc. For examples speciÞc to the JMF reference implementation devel-
oped by Sun Microsystems and IBM corporation, see the sample code and
solutions available from SunÕs JMF website (http://java.sun.com/prod-
ucts/java-media/jmf/index.html).

Guide to Contents

This document is split into two parts:

¥ Part 1 describes the features provided by the JMF 2.0 API and
illustrates how you can use JMF to incorporate time-based media in
your Java applications and applets.

¥ Part 2 describes the support for real-time streaming provided by the
JMF RTP APIs and illustrates how to send and receive streaming
media across the network.

JMF API Guide

xviii

Part 1 is organized into six chapters:

¥ ÒWorking with Time-Based MediaÓÑsets the stage for JMF by
introducing the key concepts of media content, presentation,
processing, and recording.

¥ ÒUnderstanding JMFÓÑintroduces the JMF 2.0 API and describes the
high-level architecture of the framework.

¥ ÒPresenting Time-Based Media with JMFÓÑdescribes how to use
JMF Players and Processors to present time-based media.

¥ ÒProcessing Time-Based Media with JMFÓÑdescribes how to
manipulate media data using a JMF Processor.

¥ ÒCapturing Time-Based Media with JMFÓÑdescribes how to record
media data using JMF DataSources and Processors.

¥ ÒExtending JMFÓÑdescribes how to enhance JMF functionality by
creating new processing plug-ins and implementing custom JMF
classes.

Part 2 is organized into six chapters:

¥ ÒWorking with Real-Time Media StreamsÓ--provides an overview of
streaming media and the Real-time Transport protocol (RTP).

¥ ÒUnderstanding the JMF RTP APIÓÑdescribes the JMF RTP APIs.

¥ ÒReceiving and Presenting RTP Media StreamsÓÑillustrates how to
handle RTP Client operations.

¥ ÒTransmitting RTP Media StreamsÓÑillustrates how to handle RTP
Server operations.

¥ ÒImporting and Exporting RTP Media StreamsÓÑshows how to read
and write RTP data to a file.

¥ ÒCreating Custom Packetizers and DepacketizersÓÑdescribes how
to use JMF plug-ins to support additional RTP packet formats and
codecs.

At the end of this document, youÕll Þnd Appendices that contain complete
sample code for some of the examples used in these chapters and a glos-
sary of JMF-speciÞc terms.

xix
Change History

Version JMF 2.0 FCS

¥ Fixed references to TrackControl methods to reflect modified
TrackControl API.

¥ Fixed minor sample code errors.

¥ Clarified behavior of cloneable data sources.

¥ Clarified order of events when writing to a file.

Version 0.9

Internal Review Draft

Version 0.8

JMF 2.0 Beta draft:

¥ Added an introduction to RTP, Working with Real-Time Media
Streams, and updated the RTP chapters.

¥ Updated to reflect API changes since the Early Access release.

¥ Added an example of registering a plug-in with the PlugInManager.

¥ Added chapter, figure, table, and example numbers and changed the
example code style.

Version 0.7

JMF 2.0 Early Access Release 1 draft:

¥ Updated and expanded RTP chapters in Part 2.

¥ Added Demultiplexer example to ÒExtending JMFÓ.

¥ Updated to reflect API changes since the public review.

Version 0.6

Internal Review Draft

Version 0.5

JMF 2.0 API public review draft.

¥ Added new concepts chapter, ÒWorking with Time-Based MediaÓ.

¥ Reorganized architecture information in ÒUnderstanding JMFÓ.

JMF API Guidexx
¥ Incorporated RTP Guide as Part 2.

Version 0.4

JMF 2.0 API licensee review draft.

Comments

Please submit any comments or suggestions you have for improving this
document to jmf-comments@eng.sun.com.

Part 1:
 Javaª Media Framework
1

JMF API Guide2

1

Working with

Time-Based Media

Any data that changes meaningfully with respect to time can be character-
ized as time-based media. Audio clips, MIDI sequences, movie clips, and
animations are common forms of time-based media. Such media data can
be obtained from a variety of sources, such as local or network Þles, cam-
eras, microphones, and live broadcasts.

This chapter describes the key characteristics of time-based media and
describes the use of time-based media in terms of a fundamental data pro-
cessing model:

Figure 1-1: Media processing model.

Input Output

Present

Save to a file

Send across
the networkNET

Process

Compress or decompressA

Convert between formatsBA

Apply effect filtersCapture

Read from a file

Receive from
the networkNET
3

JMF API Guide4
Streaming Media

A key characteristic of time-based media is that it requires timely delivery
and processing. Once the ßow of media data begins, there are strict timing
deadlines that must be met, both in terms of receiving and presenting the
data. For this reason, time-based media is often referred to as streaming
mediaÑit is delivered in a steady stream that must be received and pro-
cessed within a particular timeframe to produce acceptable results.

For example, when a movie is played, if the media data cannot be deliv-
ered quickly enough, there might be odd pauses and delays in playback.
On the other hand, if the data cannot be received and processed quickly
enough, the movie might appear jumpy as data is lost or frames are inten-
tionally dropped in an attempt to maintain the proper playback rate.

Content Type

The format in which the media data is stored is referred to as its content
type. QuickTime, MPEG, and WAV are all examples of content types. Con-
tent type is essentially synonymous with Þle typeÑcontent type is used
because media data is often acquired from sources other than local Þles.

Media Streams

A media stream is the media data obtained from a local Þle, acquired over
the network, or captured from a camera or microphone. Media streams
often contain multiple channels of data called tracks. For example, a
Quicktime file might contain both an audio track and a video track. Media
streams that contain multiple tracks are often referred to as multiplexed or
complex media streams. Demultiplexing is the process of extracting individ-
ual tracks from a complex media stream.

A trackÕs type identiÞes the kind of data it contains, such as audio or
video. The format of a track deÞnes how the data for the track is struc-
tured.

A media stream can be identiÞed by its location and the protocol used to
access it. For example, a URL might be used to describe the location of a
QuickTime Þle on a local or remote system. If the Þle is local, it can be
accessed through the FILE protocol. On the other hand, if itÕs on a web
server, the Þle can be accessed through the HTTP protocol. A media locator
provides a way to identify the location of a media stream when a URL
canÕt be used.

Working with Time-Based Media 5
Media streams can be categorized according to how the data is delivered:

¥ PullÑdata transfer is initiated and controlled from the client side. For
example, Hypertext Transfer Protocol (HTTP) and FILE are pull
protocols.

¥ PushÑthe server initiates data transfer and controls the flow of data.
For example, Real-time Transport Protocol (RTP) is a push protocol
used for streaming media. Similarly, the SGI MediaBase protocol is a
push protocol used for video-on-demand (VOD).

Common Media Formats

The following tables identify some of the characteristics of common media
formats. When selecting a format, itÕs important to take into account the
characteristics of the format, the target environment, and the expectations
of the intended audience. For example, if youÕre delivering media content
via the web, you need to pay special attention to the bandwidth require-
ments.

The CPU Requirements column characterizes the processing power neces-
sary for optimal presentation of the speciÞed format. The Bandwidth
Requirements column characterizes the transmission speeds necessary to
send or receive data quickly enough for optimal presentation.

Format Content Type Quality
CPU

Requirements
Bandwidth

Requirements

Cinepak AVI
QuickTime

Medium Low High

MPEG-1 MPEG High High High

H.261 AVI
RTP

Low Medium Medium

H.263 QuickTime
AVI
RTP

Medium Medium Low

JPEG QuickTime
AVI
RTP

High High High

JMF API Guide6
Table 1-1: Common video formats.

Table 1-2: Common audio formats.

Some formats are designed with particular applications and requirements
in mind. High-quality, high-bandwidth formats are generally targeted
toward CD-ROM or local storage applications. H.261 and H.263 are gener-
ally used for video conferencing applications and are optimized for video
where thereÕs not a lot of action. Similarly, G.723 is typically used to pro-
duce low bit-rate speech for telephony applications.

Indeo QuickTime
AVI

Medium Medium Medium

Format Content Type Quality
CPU

Requirements
Bandwidth

Requirements

PCM AVI
QuickTime
WAV

High Low High

Mu-Law AVI
QuickTime
WAV
RTP

Low Low High

ADPCM
(DVI,
IMA4)

AVI
QuickTime
WAV
RTP

Medium Medium Medium

MPEG-1 MPEG High High High

MPEG
Layer3

MPEG High High Medium

GSM WAV
RTP

Low Low Low

G.723.1 WAV
RTP

Medium Medium Low

Format Content Type Quality
CPU

Requirements
Bandwidth

Requirements

Working with Time-Based Media 7
Media Presentation

Most time-based media is audio or video data that can be presented
through output devices such as speakers and monitors. Such devices are
the most common destination for media data output. Media streams can
also be sent to other destinationsÑfor example, saved to a Þle or transmit-
ted across the network. An output destination for media data is some-
times referred to as a data sink.

Presentation Controls

While a media stream is being presented, VCR-style presentation controls
are often provided to enable the user to control playback. For example, a
control panel for a movie player might offer buttons for stopping, starting,
fast-forwarding, and rewinding the movie.

Latency

In many cases, particularly when presenting a media stream that resides
on the network, the presentation of the media stream cannot begin imme-
diately. The time it takes before presentation can begin is referred to as the
start latency. Users might experience this as a delay between the time that
they click the start button and the time when playback actually starts.

Multimedia presentations often combine several types of time-based
media into a synchronized presentation. For example, background music
might be played during an image slide-show, or animated text might be
synchronized with an audio or video clip. When the presentation of multi-
ple media streams is synchronized, it is essential to take into account the
start latency of each streamÑotherwise the playback of the different
streams might actually begin at different times.

Presentation Quality

The quality of the presentation of a media stream depends on several fac-
tors, including:

¥ The compression scheme used

¥ The processing capability of the playback system

¥ The bandwidth available (for media streams acquired over the
network)

JMF API Guide8
Traditionally, the higher the quality, the larger the Þle size and the greater
the processing power and bandwidth required. Bandwidth is usually rep-
resented as the number of bits that are transmitted in a certain period of
timeÑthe bit rate.

To achieve high-quality video presentations, the number of frames dis-
played in each period of time (the frame rate) should be as high as possible.
Usually movies at a frame rate of 30 frames-per-second are considered
indistinguishable from regular TV broadcasts or video tapes.

Media Processing

In most instances, the data in a media stream is manipulated before it is
presented to the user. Generally, a series of processing operations occur
before presentation:

1. If the stream is multiplexed, the individual tracks are extracted.

2. If the individual tracks are compressed, they are decoded.

3. If necessary, the tracks are converted to a different format.

4. Effect filters are applied to the decoded tracks (if desired).

The tracks are then delivered to the appropriate output device. If the
media stream is to be stored instead of rendered to an output device, the
processing stages might differ slightly. For example, if you wanted to cap-
ture audio and video from a video camera, process the data, and save it to
a Þle:

1. The audio and video tracks would be captured.

2. Effect filters would be applied to the raw tracks (if desired).

3. The individual tracks would be encoded.

4. The compressed tracks would be multiplexed into a single media
stream.

5. The multiplexed media stream would then be saved to a file.

Working with Time-Based Media 9
Demultiplexers and Multiplexers

A demultiplexer extracts individual tracks of media data from a multi-
plexed media stream. A mutliplexer performs the opposite function, it
takes individual tracks of media data and merges them into a single multi-
plexed media stream.

Codecs

A codec performs media-data compression and decompression. When a
track is encoded, it is converted to a compressed format suitable for stor-
age or transmission; when it is decoded it is converted to a non-com-
pressed (raw) format suitable for presentation.

Each codec has certain input formats that it can handle and certain output
formats that it can generate. In some situations, a series of codecs might be
used to convert from one format to another.

Effect Filters

An effect Þlter modiÞes the track data in some way, often to create special
effects such as blur or echo.

Effect Þlters are classiÞed as either pre-processing effects or post-process-
ing effects, depending on whether they are applied before or after the
codec processes the track. Typically, effect Þlters are applied to uncom-
pressed (raw) data.

Renderers

A renderer is an abstraction of a presentation device. For audio, the pre-
sentation device is typically the computerÕs hardware audio card that out-
puts sound to the speakers. For video, the presentation device is typically
the computer monitor.

Compositing

Certain specialized devices support compositing. Compositing time-based
media is the process of combining multiple tracks of data onto a single
presentation medium. For example, overlaying text on a video presenta-
tion is one common form of compositing. Compositing can be done in
either hardware or software. A device that performs compositing can be
abstracted as a renderer that can receive multiple tracks of input data.

JMF API Guide10
Media Capture

Time-based media can be captured from a live source for processing and
playback. For example, audio can be captured from a microphone or a
video capture card can be used to obtain video from a camera. Capturing
can be thought of as the input phase of the standard media processing
model.

A capture device might deliver multiple media streams. For example, a
video camera might deliver both audio and video. These streams might be
captured and manipulated separately or combined into a single, multi-
plexed stream that contains both an audio track and a video track.

Capture Devices

To capture time-based media you need specialized hardwareÑfor exam-
ple, to capture audio from a live source, you need a microphone and an
appropriate audio card. Similarly, capturing a TV broadcast requires a TV
tuner and an appropriate video capture card. Most systems provide a
query mechanism to Þnd out what capture devices are available.

Capture devices can be characterized as either push or pull sources. For
example, a still camera is a pull sourceÑthe user controls when to capture
an image. A microphone is a push sourceÑthe live source continuously
provides a stream of audio.

The format of a captured media stream depends on the processing per-
formed by the capture device. Some devices do very little processing and
deliver raw, uncompressed data. Other capture devices might deliver the
data in a compressed format.

Capture Controls

Controls are sometimes provided to enable the user to manage the capture
process. For example, a capture control panel might enable the user to
specify the data rate and encoding type for the captured stream and start
and stop the capture process.

2

Understanding JMF

Javaª Media Framework (JMF) provides a uniÞed architecture and mes-
saging protocol for managing the acquisition, processing, and delivery of
time-based media data. JMF is designed to support most standard media
content types, such as AIFF, AU, AVI, GSM, MIDI, MPEG, QuickTime,
RMF, and WAV.

By exploiting the advantages of the Java platform, JMF delivers the prom-
ise of ÒWrite Once, Run AnywhereªÓ to developers who want to use
media such as audio and video in their Java programs. JMF provides a
common cross-platform Java API for accessing underlying media frame-
works. JMF implementations can leverage the capabilities of the underly-
ing operating system, while developers can easily create portable Java
programs that feature time-based media by writing to the JMF API.

With JMF, you can easily create applets and applications that present, cap-
ture, manipulate, and store time-based media. The framework enables
advanced developers and technology providers to perform custom pro-
cessing of raw media data and seamlessly extend JMF to support addi-
tional content types and formats, optimize handling of supported formats,
and create new presentation mechanisms.

High-Level Architecture

Devices such as tape decks and VCRs provide a familiar model for record-
ing, processing, and presenting time-based media. When you play a movie
using a VCR, you provide the media stream to the VCR by inserting a
video tape. The VCR reads and interprets the data on the tape and sends
appropriate signals to your television and speakers.
11

JMF API Guide12

Figure 2-1: Recording, processing, and presenting time-based media.

JMF uses this same basic model. A data source encapsulates the media
stream much like a video tape and a player provides processing and con-
trol mechanisms similar to a VCR. Playing and capturing audio and video
with JMF requires the appropriate input and output devices such as
microphones, cameras, speakers, and monitors.

Data sources and players are integral parts of JMFÕs high-level API for
managing the capture, presentation, and processing of time-based media.
JMF also provides a lower-level API that supports the seamless integra-
tion of custom processing components and extensions. This layering pro-
vides Java developers with an easy-to-use API for incorporating time-
based media into Java programs while maintaining the ßexibility and
extensibility required to support advanced media applications and future
media technologies.

Output Devices
(Destination)

VCR
(Player)

Video tape
(Data Source)

Video camera
(Capture Device)

Understanding JMF 13
Figure 2-2: High-level JMF achitecture.

Time Model

JMF keeps time to nanosecond precision. A particular point in time is typ-
ically represented by a Time object, though some classes also support the
speciÞcation of time in nanoseconds.

Classes that support the JMF time model implement Clock to keep track of
time for a particular media stream. The Clock interface deÞnes the basic
timing and synchronization operations that are needed to control the pre-
sentation of media data.

Figure 2-3: JMF time model.

A Clock uses a TimeBase to keep track of the passage of time while a media
stream is being presented. A TimeBase provides a constantly ticking time
source, much like a crystal oscillator in a watch. The only information that
a TimeBase provides is its current time, which is referred to as the time-base

Java Applications, Applets, Beans

JMF Presentation and Processing API

JMF Plug-In API

Codecs Effects RenderersDemultiplexers Multiplexers

TimeBasehas aClock

syncStart

stop

getMediaTime

setMediaTime

getRate

setRate

getStopTime

setStopTime

getTimeBase

setTimeBase

getTime

getNanoseconds

Time

getNanoseconds

getSeconds

secondsToNanoseconds

Time(long nanoseconds)

Time(double seconds)

Duration

getDuration

JMF API Guide14
time. The time-base time cannot be stopped or reset. Time-base time is
often based on the system clock.

A Clock objectÕs media time represents the current position within a media
streamÑthe beginning of the stream is media time zero, the end of the
stream is the maximum media time for the stream. The duration of the
media stream is the elapsed time from start to ÞnishÑthe length of time
that it takes to present the media stream. (Media objects implement the
Duration interface if they can report a media streamÕs duration.)

To keep track of the current media time, a Clock uses:

¥ The time-base start-timeÑthe time that its TimeBase reports when the
presentation begins.

¥ The media start-timeÑthe position in the media stream where
presentation begins.

¥ The playback rateÑhow fast the Clock is running in relation to its
TimeBase. The rate is a scale factor that is applied to the TimeBase. For
example, a rate of 1.0 represents the normal playback rate for the
media stream, while a rate of 2.0 indicates that the presentation will
run at twice the normal rate. A negative rate indicates that the Clock is
running in the opposite direction from its TimeBaseÑfor example, a
negative rate might be used to play a media stream backward.

When presentation begins, the media time is mapped to the time-base
time and the advancement of the time-base time is used to measure the
passage of time. During presentation, the current media time is calculated
using the following formula:

MediaTime = MediaStartTime + Rate(TimeBaseTime - TimeBaseStartTime)

When the presentation stops, the media time stops, but the time-base time
continues to advance. If the presentation is restarted, the media time is
remapped to the current time-base time.

Managers

The JMF API consists mainly of interfaces that deÞne the behavior and
interaction of objects used to capture, process, and present time-based
media. Implementations of these interfaces operate within the structure of
the framework. By using intermediary objects called managers, JMF makes
it easy to integrate new implementations of key interfaces that can be used
seamlessly with existing classes.

Understanding JMF 15
JMF uses four managers:

¥ ManagerÑhandles the construction of Players, Processors,
DataSources, and DataSinks. This level of indirection allows new
implementations to be integrated seamlessly with JMF. From the client
perspective, these objects are always created the same way whether
the requested object is constructed from a default implementation or a
custom one.

¥ PackageManagerÑmaintains a registry of packages that contain JMF
classes, such as custom Players, Processors, DataSources, and
DataSinks.

¥ CaptureDeviceManagerÑmaintains a registry of available capture
devices.

¥ PlugInManagerÑmaintains a registry of available JMF plug-in
processing components, such as Multiplexers, Demultiplexers,
Codecs, Effects, and Renderers.

To write programs based on JMF, youÕll need to use the Manager create
methods to construct the Players, Processors, DataSources, and DataSinks
for your application. If youÕre capturing media data from an input device,
youÕll use the CaptureDeviceManager to find out what devices are available
and access information about them. If youÕre interested in controlling
what processing is performed on the data, you might also query the Plug-
InManager to determine what plug-ins have been registered.

If you extend JMF functionality by implementing a new plug-in, you can
register it with the PlugInManager to make it available to Processors that
support the plug-in API. To use a custom Player, Processor, DataSource,
or DataSink with JMF, you register your unique package prefix with the
PackageManager.

Event Model

JMF uses a structured event reporting mechanism to keep JMF-based pro-
grams informed of the current state of the media system and enable JMF-
based programs to respond to media-driven error conditions, such as out-
of data and resource unavailable conditions. Whenever a JMF object needs
to report on the current conditions, it posts a MediaEvent. MediaEvent is
subclassed to identify many particular types of events. These objects fol-
low the established Java Beans patterns for events.

JMF API Guide16
For each type of JMF object that can post MediaEvents, JMF deÞnes a corre-
sponding listener interface. To receive notiÞcation when a MediaEvent is
posted, you implement the appropriate listener interface and register your
listener class with the object that posts the event by calling its addListener
method.

Controller objects (such as Players and Processors) and certain Control
objects such as GainControl post media events.

Figure 2-4: JMF event model.

RTPSessionManager objects also post events. For more information, see
ÒRTP EventsÓ on page 122.

Data Model

JMF media players usually use DataSources to manage the transfer of
media-content. A DataSource encapsulates both the location of media and
the protocol and software used to deliver the media. Once obtained, the
source cannot be reused to deliver other media.

A DataSource is identiÞed by either a JMF MediaLocator or a URL (univer-
sal resource locator). A MediaLocator is similar to a URL and can be con-
structed from a URL, but can be constructed even if the corresponding
protocol handler is not installed on the system. (In Java, a URL can only be
constructed if the corresponding protocol handler is installed on the sys-
tem.)

A DataSource manages a set of SourceStream objects. A standard data
source uses a byte array as the unit of transfer. A buffer data source uses a
Buffer object as its unit of transfer. JMF deÞnes several types of Data-
Source objects:

ControllerListenerhas aController

addControllerListener
removeControllerListener

controllerUpdate(ControllerEvent)

creates ControllerEvent

getSourceController

MediaEvent

extends

Understanding JMF 17
Figure 2-5: JMF data model.

Push and Pull Data Sources

Media data can be obtained from a variety of sources, such as local or net-
work Þles and live broadcasts. JMF data sources can be categorized
according to how data transfer is initiated:

¥ Pull Data-SourceÑthe client initiates the data transfer and controls the
flow of data from pull data-sources. Established protocols for this type
of data include Hypertext Transfer Protocol (HTTP) and FILE. JMF
defines two types of pull data sources: PullDataSource and
PullBufferDataSource, which uses a Buffer object as its unit of
transfer.

¥ Push Data-SourceÑthe server initiates the data transfer and controls
the flow of data from a push data-source. Push data-sources include
broadcast media, multicast media, and video-on-demand (VOD). For
broadcast data, one protocol is the Real-time Transport Protocol
(RTP), under development by the Internet Engineering Task Force
(IETF). The MediaBase protocol developed by SGI is one protocol used
for VOD. JMF defines two types of push data sources: PushDataSource
and PushBufferDataSource, which uses a Buffer object as its unit of
transfer.

The degree of control that a client program can extend to the user depends
on the type of data source being presented. For example, an MPEG Þle can

DataSource

PullDataSource

PushBufferDataSource

PullBufferDataSource

 PushDataSource

URLDataSource

 Controls Duration

 SourceStream
manages one or more

 PushSourceStream

PullSourceStream

PushBufferStream

PullBufferStream

InputSourceStream

JMF API Guide18
be repositioned and a client program could allow the user to replay the
video clip or seek to a new position in the video. In contrast, broadcast
media is under server control and cannot be repositioned. Some VOD pro-
tocols might support limited user controlÑfor example, a client program
might be able to allow the user to seek to a new position, but not fast for-
ward or rewind.

Specialty DataSources

JMF deÞnes two types of specialty data sources, cloneable data sources
and merging data sources.

A cloneable data source can be used to create clones of either a pull or
push DataSource. To create a cloneable DataSource, you call the Manager
createCloneableDataSource method and pass in the DataSource you want
to clone. Once a DataSource has been passed to createCloneableData-
Source, you should only interact with the cloneable DataSource and its
clones; the original DataSource should no longer be used directly.

Cloneable data sources implement the SourceCloneable interface, which
deÞnes one method, createClone. By calling createClone, you can create
any number of clones of the DataSource that was used to construct the
cloneable DataSource. The clones can be controlled through the cloneable
DataSource used to create themÑ when connect, disconnect, start, or
stop is called on the cloneable DataSource, the method calls are propa-
gated to the clones.

The clones donÕt necessarily have the same properties as the cloneable
data source used to create them or the original DataSource. For example, a
cloneable data source created for a capture device might function as a
master data source for its clonesÑin this case, unless the cloneable data
source is used, the clones wonÕt produce any data. If you hook up both the
cloneable data source and one or more clones, the clones will produce
data at the same rate as the master.

A MergingDataSource can be used to combine the SourceStreams from sev-
eral DataSources into a single DataSource. This enables a set of Data-
Sources to be managed from a single point of controlÑwhen connect,
disconnect, start, or stop is called on the MergingDataSource, the method
calls are propagated to the merged DataSources.

To construct a MergingDataSource, you call the Manager createMerging-
DataSource method and pass in an array that contains the data sources
you want to merge. To be merged, all of the DataSources must be of the

Understanding JMF 19
same type; for example, you cannot merge a PullDataSource and a Push-
DataSource. The duration of the merged DataSource is the maximum of
the merged DataSource objectsÕ durations. The ContentType is applica-
tion/mixed-media.

Data Formats

The exact media format of an object is represented by a Format object. The
format itself carries no encoding-speciÞc parameters or global timing
information, it describes the formatÕs encoding name and the type of data
the format requires.

JMF extends Format to deÞne audio- and video-speciÞc formats.

Figure 2-6: JMF media formats.

An AudioFormat describes the attributes speciÞc to an audio format, such
as sample rate, bits per sample, and number of channels. A VideoFormat
encapsulates information relevant to video data. Several formats are
derived from VideoFormat to describe the attributes of common video
formats, including:

• IndexedColorFormat

• RGBFormat

• YUVFormat

• JPEGFormat

• H261Format

• H263Format

FormatControlFormat

AudioFormat

VideoFormat

IndexedColorFormat

RGBFormat

YUVFormat

getFormat
setFormat
getSupportedFormats
isEnabled
setEnabled

JPEGFormat

H261Format

H263Format

JMF API Guide20
To receive notiÞcation of format changes from a Controller, you imple-
ment the ControllerListener interface and listen for FormatChangeEvents.
(For more information, see ÒResponding to Media EventsÓ on page 54.)

Controls

JMF Control provides a mechanism for setting and querying attributes of
an object. A Control often provides access to a corresponding user inter-
face component that enables user control over an objectÕs attributes. Many
JMF objects expose Controls, including Controller objects, DataSource
objects, DataSink objects, and JMF plug-ins.

Any JMF object that wants to provide access to its corresponding Control
objects can implement the Controls interface. Controls deÞnes methods
for retrieving associated Control objects. DataSource and PlugIn use the
Controls interface to provide access to their Control objects.

Standard Controls

JMF deÞnes the standard Control interfaces shown in Figure 2-8:, ÒJMF
controls."

CachingControl enables download progress to be monitored and dis-
played. If a Player or Processor can report its download progress, it
implements this interface so that a progress bar can be displayed to the
user.

GainControl enables audio volume adjustments such as setting the level
and muting the output of a Player or Processor. It also supports a listener
mechanism for volume changes.

Figure 2-7: Gain control.

GainChangeListener

has one or more

GainControl

addGainChangeListener
removeGainChangeListener

gainChange(GainChangeEvent)

creates GainChangeEvent

getDB

MediaEvent

extends

getLevel
getMute

Understanding JMF 21
Figure 2-8: JMF controls.

DataSink or Multiplexer objects that read media from a DataSource and
write it out to a destination such as a Þle can implement the StreamWrit-
erControl interface. This Control enables the user to limit the size of the
stream that is created.

FramePositioningControl and FrameGrabbingControl export frame-based
capabilities for Players and Processors. FramePositioningControl enables
precise frame positioning within a Player or Processor objectÕs media
stream. FrameGrabbingControl provides a mechanism for grabbing a still
video frame from the video stream. The FrameGrabbingControl can also be
supported at the Renderer level.

Control

StreamWriterControl

MonitorControl

FrameGrabbingControl

GainControl

CachingControl

 BufferControl

FramePositioningControl

PortControl

H261Control

FrameProcessingControl

 BitRateControl

KeyFrameControl

FrameRateControl

 SilenceSuppressionControl

 QualityControl

TrackControl

PacketSizeControl

H263Control

MpegAudioControl

 RTPControl

FormatControl

JMF API Guide22
Objects that have a Format can implement the FormatControl interface to
provide access to the Format. FormatControl also provides methods for
querying and setting the format.

A TrackControl is a type of FormatControl that provides the mechanism
for controlling what processing a Processor object performs on a particu-
lar track of media data. With the TrackControl methods, you can specify
what format conversions are performed on individual tracks and select
the Effect, Codec, or Renderer plug-ins that are used by the Processor.
(For more information about processing media data, see ÒProcessing
Time-Based Media with JMFÓ on page 71.)

Two controls, PortControl and MonitorControl enable user control over
the capture process. PortControl deÞnes methods for controlling the out-
put of a capture device. MonitorControl enables media data to be pre-
viewed as it is captured or encoded.

BufferControl enables user-level control over the buffering done by a par-
ticular object.

JMF also deÞnes several codec controls to enable control over hardware or
software encoders and decoders:

¥ BitRateControlÑused to export the bit rate information for an
incoming stream or to control the encoding bit rate. Enables
specification of the bit rate in bits per second.

¥ FrameProcessingControlÑenables the specification of frame
processing parameters that allow the codec to perform minimal
processing when it is falling behind on processing the incoming data.

¥ FrameRateControlÑenables modification of the frame rate.

¥ H261ControlÑenables control over the H.261 video codec still-image
transmission mode.

¥ H263ControlÑenables control over the H.263 video-codec parameters,
including support for the unrestricted vector, arithmetic coding,
advanced prediction, PB Frames, and error compensation extensions.

¥ KeyFrameControlÑenables the specification of the desired interval
between key frames. (The encoder can override the specified key-
frame interval if necessary.)

¥ MpegAudioControlÑexports an MPEG audio codecÕs capabilities and
enables the specification of selected MPEG encoding parameters.

¥ QualityControlÑenables specification of a preference in the trade-off

Understanding JMF 23
between quality and CPU usage in the processing performed by a
codec. This quality hint can have different effects depending on the
type of compression. A higher quality setting will result in better
quality of the resulting bits, for example better image quality for
video.

¥ SilenceSuppressionControlÑenables specification of silence
suppression parameters for audio codecs. When silence suppression
mode is on, an audio encoder does not output any data if it detects
silence at its input.

User Interface Components

A Control can provide access to a user interface Component that exposes its
control behavior to the end user. To get the default user interface compo-
nent for a particular Control, you call getControlComponent. This method
returns an AWT Component that you can add to your appletÕs presentation
space or application window.

A Controller might also provide access to user interface Components. For
example, a Player provides access to both a visual component and a con-
trol panel componentÑto retrieve these components, you call the Player
methods getVisualComponent and getControlPanelComponent.

If you donÕt want to use the default control components provided by a
particular implementation, you can implement your own and use the
event listener mechanism to determine when they need to be updated. For
example, you might implement your own GUI components that support
user interaction with a Player. Actions on your GUI components would
trigger calls to the appropriate Player methods, such as start and stop.
By registering your custom GUI components as ControllerListeners for
the Player, you can also update your GUI in response to changes in the
Player objectÕs state.

Extensibility

Advanced developers and technology providers can extend JMF function-
ality in two ways:

¥ By implementing custom processing components (plug-ins) that can be
interchanged with the standard processing components used by a JMF
Processor

JMF API Guide24
¥ By directly implementing the Controller, Player, Processor,
DataSource, or DataSink interfaces

Implementing a JMF plug-in enables you to customize or extend the capa-
bilities of a Processor without having to implement one from scratch.
Once a plug-in is registered with JMF, it can be selected as a processing
option for any Processor that supports the plug-in API. JMF plug-ins can
be used to:

¥ Extend or replace a Processor objectÕs processing capability piecewise
by selecting the individual plug-ins to be used.

¥ Access the media data at specific points in the data flow. For example,
different Effect plug-ins can be used for pre- and post-processing of
the media data associated with a Processor.

¥ Process media data outside of a Player or Processor. For example, you
might use a Demultiplexer plug-in to get individual audio tracks from
a multiplexed media-stream so you could play the tracks through Java
Sound.

In situations where an even greater degree of flexibility and control is
required, custom implementations of the JMF Controller, Player, Proces-
sor, DataSource, or DataSink interfaces can be developed and used seam-
lessly with existing implementations. For example, if you have a
hardware MPEG decoder, you might want to implement a Player that
takes input from a DataSource and uses the decoder to perform the pars-
ing, decoding, and rendering all in one step. Custom Players and Proces-
sors can also be implemented to integrate media engines such as
MicrosoftÕs Media Player, Real NetworkÕs RealPlayer, and IBMÕs HotMe-
dia with JMF.

Note: JMF Players and Processors are not required to support plug-ins.
Plug-ins wonÕt work with JMF 1.0-based Players and some Processor im-
plementations might choose not to support them. The reference imple-
mentation of JMF 2.0 provided by Sun Microsystems, Inc. and IBM
Corporation fully supports the plug-in API.

Presentation

In JMF, the presentation process is modeled by the Controller interface.
Controller deÞnes the basic state and control mechanism for an object
that controls, presents, or captures time-based media. It deÞnes the phases

Understanding JMF 25
that a media controller goes through and provides a mechanism for con-
trolling the transitions between those phases. A number of the operations
that must be performed before media data can be presented can be time
consuming, so JMF allows programmatic control over when they occur.

 A Controller posts a variety of controller-speciÞc MediaEvents to provide
notiÞcation of changes in its status. To receive events from a Controller
such as a Player, you implement the ControllerListener interface. For
more information about the events posted by a Controller, see ÒControl-
ler EventsÓ on page 30.

The JMF API deÞnes two types of Controllers: Players and Processors. A
Player or Processor is constructed for a particular data source and is nor-
mally not re-used to present other media data.

Figure 2-9: JMF controllers.

Players

A Player processes an input stream of media data and renders it at a pre-
cise time. A DataSource is used to deliver the input media-stream to the
Player.The rendering destination depends on the type of media being pre-
sented.

Figure 2-10: JMF player model.

extends

extends

extends

TimeBasehas a

DataSourcehas a

Clock

Duration

Controller

Player

extends

Processor

extends

MediaHandler

PlayerDataSource

JMF API Guide26
A Player does not provide any control over the processing that it performs
or how it renders the media data.

Player supports standardized user control and relaxes some of the opera-
tional restrictions imposed by Clock and Controller.

Figure 2-11: JMF players.

Player States

A Player can be in one of six states. The Clock interface deÞnes the two
primary states: Stopped and Started. To facilitate resource management,
Controller breaks the Stopped state down into Þve standby states: Unreal-
ized, Realizing, Realized, Prefetching, and Prefetched.

Figure 2-12: Player states.

Duration

getDuration

prefetch
realize

Player

Clock

syncStart

start

extends

extends

Controller

addController
getVisualComponent
getControlPanelComponent

stop
getMediaTime
getTimeBase
setTimeBase
setRate

deallocate
close
addControllerListener

extends

TimeBasehas a

setSource

DataSourcehas a

extends

MediaHandler

setSource

Unrealized Realized Prefetching Prefetched StartedRealizing

Started

RCE PFCE

SE

Stopped

Transition Events:

RealizeCompleteEvent
PrefetchCompleteEvent
StopEvent

RCE
PFCE
SE

Understanding JMF 27
In normal operation, a Player steps through each state until it reaches the
Started state:

¥ A Player in the Unrealized state has been instantiated, but does not yet
know anything about its media. When a media Player is first created,
it is Unrealized.

¥ When realize is called, a Player moves from the Unrealized state into
the Realizing state. A Realizing Player is in the process of determining
its resource requirements. During realization, a Player acquires the
resources that it only needs to acquire once. These might include
rendering resources other than exclusive-use resources. (Exclusive-
use resources are limited resources such as particular hardware
devices that can only be used by one Player at a time; such resources
are acquired during Prefetching.) A Realizing Player often downloads
assets over the network.

¥ When a Player finishes Realizing, it moves into the Realized state. A
Realized Player knows what resources it needs and information about
the type of media it is to present. Because a Realized Player knows how
to render its data, it can provide visual components and controls. Its
connections to other objects in the system are in place, but it does not
own any resources that would prevent another Player from starting.

¥ When prefetch is called, a Player moves from the Realized state into
the Prefetching state. A Prefetching Player is preparing to present its
media. During this phase, the Player preloads its media data, obtains
exclusive-use resources, and does whatever else it needs to do to
prepare itself to play. Prefetching might have to recur if a Player
objectÕs media presentation is repositioned, or if a change in the Player
objectÕs rate requires that additional buffers be acquired or alternate
processing take place.

¥ When a Player finishes Prefetching, it moves into the Prefetched state. A
Prefetched Player is ready to be started.

¥ Calling start puts a Player into the Started state. A Started Player
objectÕs time-base time and media time are mapped and its clock is
running, though the Player might be waiting for a particular time to
begin presenting its media data.

A Player posts TransitionEvents as it moves from one state to another.
The ControllerListener interface provides a way for your program to
determine what state a Player is in and to respond appropriately. For
example, when your program calls an asynchronous method on a Player

JMF API Guide28

addCon rror

deallo rror

getCon

getGai

getSta

getTim

getVis

mapToT

remove rror

setMed

setRat

setSto ror
 set

setTim rror

syncSt rror
or Processor, it needs to listen for the appropriate event to determine
when the operation is complete.

Using this event reporting mechanism, you can manage a Player objectÕs
start latency by controlling when it begins Realizing and Prefetching. It also
enables you to determine whether or not the Player is in an appropriate
state before calling methods on the Player.

Methods Available in Each Player State

To prevent race conditions, not all methods can be called on a Player in
every state. The following table identiÞes the restrictions imposed by JMF.
If you call a method that is illegal in a Player objectÕs current state, the
Player throws an error or exception.

Table 2-1: Method restrictions for players.

Method Unrealized
Player

Realized
Player

Prefetched
Player

Started
Player

troller NotRealizedError legal legal ClockStartedE

cate legal legal legal ClockStartedE

trolPanelComponent NotRealizedError legal legal legal

nControl NotRealizedError legal legal legal

rtLatency NotRealizedError legal legal legal

eBase NotRealizedError legal legal legal

ualComponent NotRealizedError legal legal legal

imeBase ClockStoppedException ClockStoppedException ClockStoppedException legal

Controller NotRealizedError legal legal ClockStartedE

iaTime NotRealizedError legal legal legal

e NotRealizedError legal legal legal

pTime NotRealizedError legal legal StopTimeSetEr
if previously

eBase NotRealizedError legal legal ClockStartedE

art NotPrefetchedError NotPrefetchedError legal ClockStartedE

Understanding JMF 29
Processors

Processors can also be used to present media data. A Processor is just a
specialized type of Player that provides control over what processing is
performed on the input media stream. A Processor supports all of the
same presentation controls as a Player.

Figure 2-13: JMF processor model.

In addition to rendering media data to presentation devices, a Processor
can output media data through a DataSource so that it can be presented by
another Player or Processor, further manipulated by another Processor,
or delivered to some other destination, such as a Þle.

For more information about Processors, see ÒProcessingÓ on page 32.

Presentation Controls

In addition to the standard presentation controls deÞned by Controller, a
Player or Processor might also provide a way to adjust the playback vol-
ume. If so, you can retrieve its GainControl by calling getGainControl. A
GainControl object posts a GainChangeEvent whenever the gain is modi-
Þed. By implementing the GainChangeListener interface, you can respond
to gain changes. For example, you might want to update a custom gain
control Component.

Additional custom Control types might be supported by a particular
Player or Processor implementation to provide other control behaviors
and expose custom user interface components. You access these controls
through the getControls method.

For example, the CachingControl interface extends Control to provide a
mechanism for displaying a download progress bar. If a Player can report
its download progress, it implements this interface. To Þnd out if a Player
supports CachingControl, you can call getControl(CachingControl) or
use getControls to get a list of all the supported Controls.

ProcessorDataSource DataSource

JMF API Guide30
Standard User Interface Components

A Player or Processor generally provides two standard user interface
components, a visual component and a control-panel component.You can
access these Components directly through the getVisualComponent and get-
ControlPanelComponent methods.

You can also implement custom user interface components, and use the
event listener mechanism to determine when they need to be updated.

Controller Events

The ControllerEvents posted by a Controller such as a Player or Proces-
sor fall into three categories: change notiÞcations, closed events, and tran-
sition events:

¥ Change notification events such as RateChangeEvent,
DurationUpdateEvent, and FormatChangeEvent indicate that some
attribute of the Controller has changed, often in response to a method
call. For example, a Player posts a RateChangeEvent when its rate is
changed by a call to setRate.

¥ TransitionEvents allow your program to respond to changes in a
Controller objectÕs state. A Player posts transition events whenever
it moves from one state to another. (See ÒPlayer StatesÓ on page 26 for
more information about the states and transitions.)

¥ ControllerClosedEvents are posted by a Controller when it shuts
down. When a Controller posts a ControllerClosedEvent, it is no
longer usable. A ControllerErrorEvent is a special case of
ControllerClosedEvent. You can listen for ControllerErrorEvents so
that your program can respond to Controller malfunctions to
minimize the impact on the user.

Understanding JMF 31
Figure 2-14: JMF events.

ControllerEvent

ControllerClosedEvent

ResourceUnavailableEvent

DurationUpdateEvent

MediaTimeSetEvent

RateChangeEvent

StopTimeChangeEvent

TransitionEvent

PrefetchCompleteEvent

RealizeCompleteEvent

StartEvent

StopEvent

DeallocateEvent

EndOfMediaEvent

RestartingEvent

StopAtTimeEvent

StopByRequestEvent

InternalErrorEvent

CachingControlEvent

ConnectionErrorEvent

DataStarvedEvent

ControllerErrorEvent

 AudioDeviceUnavailableEvent

DataLostErrorEvent

SizeChangeEvent

ConfigureCompleteEvent

JMF API Guide32
Processing

A Processor is a Player that takes a DataSource as input, performs some
user-deÞned processing on the media data, and then outputs the pro-
cessed media data.

Figure 2-15: JMF processors.

A Processor can send the output data to a presentation device or to a
DataSource. If the data is sent to a DataSource, that DataSource can be used
as the input to another Player or Processor, or as the input to a DataSink.

While the processing performed by a Player is predeÞned by the imple-
mentor, a Processor allows the application developer to deÞne the type of
processing that is applied to the media data. This enables the application
of effects, mixing, and compositing in real-time.

The processing of the media data is split into several stages:

Figure 2-16: Processor stages.

¥ Demultiplexing is the process of parsing the input stream. If the
stream contains multiple tracks, they are extracted and output

Player

start

extends

addController
getVisualComponent
getControlPanelComponent

setSource

DataSourcehas a

Processor

configure

setOutputContentDescriptor
getOutputContentDescriptor
getDataOutput

getTrackControls
getSupportedContentDescriptors

DataSourcecreates a

Processor

Track 1

Track 2

Post-processing
Effect Plug-In

Pre-processing
Effect Plug-In

Codec
Plug-In

BA

BA

Multiplexer
Plug-In

DataSource
Demultiplexer

Plug-In

DataSource

Renderer
Plug-In

Renderer
Plug-In

Understanding JMF 33
separately. For example, a QuickTime file might be demultiplexed
into separate audio and video tracks. Demultiplexing is performed
automatically whenever the input stream contains multiplexed data.

¥ Pre-Processing is the process of applying effect algorithms to the
tracks extracted from the input stream.

¥ Transcoding is the process of converting each track of media data from
one input format to another. When a data stream is converted from a
compressed type to an uncompressed type, it is generally referred to
as decoding. Conversely, converting from an uncompressed type to a
compressed type is referred to as encoding.

¥ Post-Processing is the process of applying effect algorithms to
decoded tracks.

¥ Multiplexing is the process of interleaving the transcoded media
tracks into a single output stream. For example, separate audio and
video tracks might be multiplexed into a single MPEG-1 data stream.
You can specify the data type of the output stream with the Processor
setOutputContentDescriptor method.

¥ Rendering is the process of presenting the media to the user.

The processing at each stage is performed by a separate processing com-
ponent. These processing components are JMF plug-ins. If the Processor
supports TrackControls, you can select which plug-ins you want to use to
process a particular track. There are Þve types of JMF plug-ins:

¥ DemultiplexerÑparses media streams such as WAV, MPEG or
QuickTime. If the stream is multiplexed, the separate tracks are
extracted.

¥ EffectÑperforms special effects processing on a track of media data.

¥ CodecÑperforms data encoding and decoding.

¥ MultiplexerÑcombines multiple tracks of input data into a single
interleaved output stream and delivers the resulting stream as an
output DataSource.

¥ RendererÑprocesses the media data in a track and delivers it to a
destination such as a screen or speaker.

Processor States

A Processor has two additional standby states, ConÞguring and ConÞg-
ured, which occur before the Processor enters the Realizing state..

JMF API Guide34

t

Figure 2-17: Processor states.

¥ A Processor enters the Configuring state when configure is called.
While the Processor is in the Configuring state, it connects to the
DataSource, demultiplexes the input stream, and accesses information
about the format of the input data.

¥ The Processor moves into the Configured state when it is connected to
the DataSource and data format has been determined. When the
Processor reaches the Configured state, a ConfigureCompleteEvent is
posted.

¥ When Realize is called, the Processor is transitioned to the Realized
state. Once the Processor is Realized it is fully constructed.

While a Processor is in the ConÞgured state, getTrackControls can be
called to get the TrackControl objects for the individual tracks in the
media stream. These TrackControl objects enable you specify the media
processing operations that you want the Processor to perform.

Calling realize directly on an Unrealized Processor automatically transi-
tions it through the ConÞguring and ConÞgured states to the Realized state.
When you do this, you cannot conÞgure the processing options through
the TrackControlsÑthe default Processor settings are used.

Calls to the TrackControl methods once the Processor is in the Realized
state will typically fail, though some Processor implementations might
support them.

Unrealized Configuring Configured Realized Prefetching Prefetched StartedRealizing

Unrealized Realized

CCE RCE PFCE

SE

CCE ConfigureCompleteEven
RCE RealizeCompleteEvent
PFCE PrefetchCompleteEvent
SE StopEvent

Transition Events:

Understanding JMF 35

M ized
ssor

addControl

deallocate

getControl

getControl

getDataOut

getGainCon

getOutputC

getStartLa

getSupport
Descriptor

getTimeBas

getTrackCo nge-

getVisualC

mapToTimeB ped-

realize

removeCont

setOutputC nge-

setMediaTi

setRate

setStopTim

setTimeBas

syncStart chedError
Methods Available in Each Processor State

Since a Processor is a type of Player, the restrictions on when methods can
be called on a Player also apply to Processors. Some of the Processor-spe-
ciÞc methods also are restricted to particular states. The following table
shows the restrictions that apply to a Processor. If you call a method that
is illegal in the current state, the Processor throws an error or exception.

Table 2-2: Method restrictions for processors.

ethod Unrealized
Processor

ConÞguring
Processor

ConÞgured
Processor

Real
Proce

ler NotRealizedError NotRealizedError NotRealizedError legal

legal legal legal legal

PanelComponent NotRealizedError NotRealizedError NotRealizedError legal

s legal legal legal legal

put NotRealizedError NotRealizedError NotRealizedError legal

trol NotRealizedError NotRealizedError NotRealizedError legal

ontentDescriptor NotConfiguredError NotConfiguredError legal legal

tency NotRealizedError NotRealizedError NotRealizedError legal

edContent-
s

legal legal legal legal

e NotRealizedError NotRealizedError NotRealizedError legal

ntrols NotConfiguredError NotConfiguredError legal FormatCha
Exception

omponent NotRealizedError NotRealizedError NotRealizedError legal

ase ClockStoppedException ClockStoppedException ClockStoppedException ClockStop
Exception

legal legal legal legal

roller NotRealizedError NotRealizedError NotRealizedError legal

ontentDescriptor NotConfiguredError NotConfiguredError legal FormatCha
Exception

me NotRealizedError NotRealizedError NotRealizedError legal

NotRealizedError NotRealizedError NotRealizedError legal

e NotRealizedError NotRealizedError NotRealizedError legal

e NotRealizedError NotRealizedError NotRealizedError legal

NotPrefetchedError NotPrefetchedError NotPrefetchedError NotPrefet

JMF API Guide36
Processing Controls

You can control what processing operations the Processor performs on a
track through the TrackControl for that track. You call Processor
getTrackControls to get the TrackControl objects for all of the tracks in
the media stream.

Through a TrackControl, you can explicitly select the Effect, Codec, and
Renderer plug-ins you want to use for the track. To Þnd out what options
are available, you can query the PlugInManager to Þnd out what plug-ins
are installed.

To control the transcoding thatÕs performed on a track by a particular
Codec, you can get the Controls associated with the track by calling the
TrackControl getControls method. This method returns the codec con-
trols available for the track, such as BitRateControl and QualityControl.
(For more information about the codec controls deÞned by JMF, see ÒCon-
trolsÓ on page 20.)

If you know the output data format that you want, you can use the set-
Format method to specify the Format and let the Processor choose an
appropriate codec and renderer. Alternatively, you can specify the output
format when the Processor is created by using a ProcessorModel. A Pro-
cessorModel deÞnes the input and output requirements for a Processor.
When a ProcessorModel is passed to the appropriate Manager create
method, the Manager does its best to create a Processor that meets the
speciÞed requirements.

Data Output

The getDataOutput method returns a Processor objectÕs output as a Data-
Source. This DataSource can be used as the input to another Player or Pro-
cessor or as the input to a data sink. (For more information about data
sinks, see ÒMedia Data Storage and TransmissionÓ on page 37.)

A Processor objectÕs output DataSource can be of any type: PushData-
Source, PushBufferDataSource, PullDataSource, or PullBufferDataSource.

Not all Processor objects output dataÑa Processor can render the pro-
cessed data instead of outputting the data to a DataSource. A Processor
that renders the media data is essentially a conÞgurable Player.

Understanding JMF 37
Capture

A multimedia capturing device can act as a source for multimedia data
delivery. For example, a microphone can capture raw audio input or a dig-
ital video capture board might deliver digital video from a camera. Such
capture devices are abstracted as DataSources. For example, a device that
provides timely delivery of data can be represented as a PushDataSource.
Any type of DataSource can be used as a capture DataSource: PushData-
Source, PushBufferDataSource, PullDataSource, or PullBufferDataSource.

Some devices deliver multiple data streamsÑfor example, an audio/
video conferencing board might deliver both an audio and a video stream.
The corresponding DataSource can contain multiple SourceStreams that
map to the data streams provided by the device.

Media Data Storage and Transmission

A DataSink is used to read media data from a DataSource and render the
media to some destinationÑgenerally a destination other than a presenta-
tion device. A particular DataSink might write data to a Þle, write data
across the network, or function as an RTP broadcaster. (For more informa-
tion about using a DataSink as an RTP broadcaster, see ÒTransmitting RTP
Data With a Data SinkÓ on page 149.)

Like Players, DataSink objects are constructed through the Manager using
a DataSource. A DataSink can use a StreamWriterControl to provide addi-
tional control over how data is written to a Þle. See ÒWriting Media Data
to a FileÓ on page 74 for more information about how DataSink objects are
used.

Storage Controls

A DataSink posts a DataSinkEvent to report on its status. A DataSinkEvent
can be posted with a reason code, or the DataSink can post one of the fol-
lowing DataSinkEvent subtypes:

¥ DataSinkErrorEvent, which indicates that an error occurred while the
DataSink was writing data.

¥ EndOfStreamEvent, which indicates that the entire stream has
successfully been written.

JMF API Guide38
To respond to events posted by a DataSink, you implement the DataSin-
kListener interface.

Extensibility

You can extend JMF by implementing custom plug-ins, media handlers,
and data sources.

Implementing Plug-Ins

By implementing one of the JMF plug-in interfaces, you can directly access
and manipulate the media data associated with a Processor:

¥ Implementing the Demultiplexer interface enables you to control how
individual tracks are extracted from a multiplexed media stream.

¥ Implementing the Codec interface enables you to perform the
processing required to decode compressed media data, convert media
data from one format to another, and encode raw media data into a
compressed format.

¥ Implementing the Effect interface enables you to perform custom
processing on the media data.

¥ Implementing the Multiplexer interface enables you to specify how
individual tracks are combined to form a single interleaved output
stream for a Processor.

¥ Implementing the Renderer interface enables you to control how data
is processed and rendered to an output device.

Note: The JMF Plug-In API is part of the ofÞcial JMF API, but JMF Players
and Processors are not required to support plug-ins. Plug-ins wonÕt work
with JMF 1.0-based Players and some Processor implementations might
choose not to support them. The reference implementation of JMF 2.0 pro-
vided by Sun Microsystems, Inc. and IBM Corporation fully supports the
plug-in API.

Custom Codec, Effect, and Renderer plug-ins are available to a Processor
through the TrackControl interface. To make a plug-in available to a
default Processor or a Processor created with a ProcessorModel, you need
to register it with the PlugInManager. Once youÕve registered your plug-in,
it is included in the list of plug-ins returned by the PlugInManager get-

Understanding JMF 39
PlugInList method and can be accessed by the Manager when it constructs
a Processor object.

Implementing MediaHandlers and DataSources

If the JMF Plug-In API doesnÕt provide the degree of ßexibility that you
need, you can directly implement several of the key JMF interfaces: Con-
troller, Player, Processor, DataSource, and DataSink. For example, you
might want to implement a high-performance Player that is optimized to
present a single media format or a Controller that manages a completely
different type of time-based media.

The Manager mechanism used to construct Player, Processor, DataSource,
and DataSink objects enables custom implementations of these JMF inter-
faces to be used seamlessly with JMF. When one of the create methods is
called, the Manager uses a well-deÞned mechanism to locate and construct
the requested object. Your custom class can be selected and constructed
through this mechanism once you register a unique package preÞx with
the PackageManager and put your class in the appropriate place in the pre-
deÞned package hierarchy.

MediaHandler Construction

Players, Processors, and DataSinks are all types of MediaHandlersÑthey
all read data from a DataSource. A MediaHandler is always constructed for
a particular DataSource, which can be either identiÞed explicitly or with a
MediaLocator. When one of the createMediaHandler methods is called,
Manager uses the content-type name obtained from the DataSource to Þnd
and create an appropriate MediaHandler object.

JMF API Guide40

Figure 2-18: JMF media handlers.

JMF also supports another type of MediaHandler, MediaProxy. A MediaProxy
processes content from one DataSource to create another. Typically, a Medi-
aProxy reads a text conÞguration Þle that contains all of the information
needed to make a connection to a server and obtain media data. To create
a Player from a MediaProxy, Manager:

1. Constructs a DataSource for the protocol described by the MediaLocator

2. Uses the content-type of the DataSource to construct a MediaProxy to
read the configuration file.

3. Gets a new DataSource from the MediaProxy.

4. Uses the content-type of the new DataSource to construct a Player.

The mechanism that Manager uses to locate and instantiate an appropriate
MediaHandler for a particular DataSource is basically the same for all types
of MediaHandlers:

Manager

createPlayer

createDataSource
DataSource

Player

PackageManager

getContentName

getContentPrefixList
getProtocolPrefixList

uses

MediaHandler

extends

creates
createRealizedPlayer

createProcessor

MediaProxy

Processor
creates

createDataSink DataSink

DataSinkProxy

creates

creates

creates

creates

extends

extends

createRealizedProcessor

Understanding JMF 41
¥ Using the list of installed content package-prefixes retrieved from
PackageManager, Manager generates a search list of available
MediaHandler classes.

¥ Manager steps through each class in the search list until it finds a class
named Handler that can be constructed and to which it can attach the
DataSource.

When constructing Players and Processors, Manager generates the search
list of available handler classes from the list of installed content package-
preÞxes and the content-type name of the DataSource. To search for Play-
ers, Manager looks for classes of the form:

 <content package-prefix>.media.content.<content-type>.Handler

To search for Processors, Manager looks for classes of the form:

 <content package-prefix>.media.processor.<content-type>.Handler

If the located MediaHandler is a MediaProxy, Manager gets a new DataSource
from the MediaProxy and repeats the search process.

If no appropriate MediaHandler can be found, the search process is
repeated, substituting unknown for the content-type name. The unknown
content type is supported by generic Players that are capable of handling
a large variety of media types, often in a platform-dependent way.

Because a DataSink renders the data it reads from its DataSource to an out-
put destination, when a DataSink is created the destination must also be
taken into account. When constructing DataSinks, Manager uses the list of
content package-preÞxes and the protocol from the MediaLocator that
identiÞes the destination. For each content package-preÞx, Manager adds
to the search list a class name of the form:

<content package-prefix>.media.datasink.protocol.Handler

If the located MediaHandler is a DataSink, Manager instantiates it, sets its
DataSource and MediaLocator, and returns the resulting DataSink object. If
the handler is a DataSinkProxy, Manager retrieves the content type of the
proxy and generates a list of DataSink classes that support the protocol of
the destination Medialocator and the content type returned by the proxy:

<content package-prefix>.media.datasink.protocol.<content-type>.Handler

The process continues until an appropriate DataSink is located or the Man-
ager has iterated through all of the content package-preÞxes.

JMF API Guide42
DataSource Construction

Manager uses the same mechanism to construct DataSources that it uses to
construct MediaHandlers, except that it generates the search list of Data-
Source class names from the list of installed protocol package-preÞxes.

For each protocol package-preÞx, Manager adds to the search list a class
name of the form:

 <protocol package-prefix>.media.protocol.<protocol>.DataSource

Manager steps through each class in the list until it Þnds a DataSource that
it can instantiate and to which it can attach the MediaLocator.

3

Presenting Time-Based

Media with JMF

To present time-based media such as audio or video with JMF, you use a
Player. Playback can be controlled programmatically, or you can display a
control-panel component that enables the user to control playback interac-
tively. If you have several media streams that you want to play, you need
to use a separate Player for each one. to play them in sync, you can use
one of the Player objects to control the operation of the others.

A Processor is a special type of Player that can provide control over how
the media data is processed before it is presented. Whether youÕre using a
basic Player or a more advanced Processor to present media content, you
use the same methods to manage playback. For information about how to
control what processing is performed by a Processor, see ÒProcessing
Time-Based Media with JMFÓ on page 71.

The MediaPlayer bean is a Java Bean that encapsulates a JMF player to pro-
vide an easy way to present media from an applet or application. The
MediaPlayer bean automatically constructs a new Player when a different
media stream is selected, which makes it easier to play a series of media
clips or allow the user to select which media clip to play. For information
about using the MediaPlayer bean, see ÒPresenting Media with the Media-
Player BeanÓ on page 66

Controlling a Player

To play a media stream, you need to construct a Player for the stream, con-
Þgure the Player and prepare it to run, and then start the Player to begin
playback.
43

JMF API Guide44
Creating a Player

You create a Player indirectly through the media Manager. To display the
Player, you get the Player objectÕs components and add them to your
appletÕs presentation space or application window.

When you need to create a new Player, you request it from the Manager by
calling createPlayer or createProcessor. The Manager uses the media URL
or MediaLocator that you specify to create an appropriate Player. A URL
can only be successfully constructed if the appropriate corresponding URL-
StreamHandler is installed. MediaLocator doesnÕt have this restriction.

Blocking Until a Player is Realized

Many of the methods that can be called on a Player require the Player to
be in the Realized state. One way to guarantee that a Player is Realized
when you call these methods is to use the Manager createRealizedPlayer
method to construct the Player. This method provides a convenient way
to create and realize a Player in a single step. When this method is called,
it blocks until the Player is Realized. Manager provides an equivalent cre-
ateRealizeProcessor method for constructing a Realized Processor.

Note: Be aware that blocking until a Player or Processor is Realized can
produce unsatisfactory results. For example, if createRealizedPlayer is
called in an applet, Applet.start and Applet.stop will not be able to
interrupt the construction process.

Using a ProcessorModel to Create a Processor

A Processor can also be created using a ProcessorModel. The Processor-
Model deÞnes the input and output requirements for the Processor and the
Manager does its best to create a Processor that meets these requirements.
To create a Processor using a ProcessorModel, you call the Manager.cre-
ateRealizedProcessor method. Example 3-1 creates a Realized Processor
that can produce IMA4-encoded stereo audio tracks with a 44.1 kHz sam-
ple rate and a 16-bit sample size.

Example 3-1: Constructing a Processor with a ProcessorModel.

AudioFormat afs[] = new AudioFormat[1];
afs[0] = new AudioFormat("ima4", 44100, 16, 2);
Manager.createRealizedProcessor(new ProcessorModel(afs, null));

Presenting Time-Based Media with JMF 45
Since the ProcessorModel does not specify a source URL in this example,
Manager implicitly Þnds a capture device that can capture audio and then
creates a Processor that can encode that into IMA4.

Note that when you create a Realized Processor with a ProcessorModel you
will not be able to specify processing options through the Processor
objectÕs TrackControls. For more information about specifying processing
options for a Processor, see ÒProcessing Time-Based Media with JMFÓ on
page 71.

Displaying Media Interface Components

A Player generally has two types of user interface components, a visual
component and a control-panel component. Some Player implementa-
tions can display additional components, such as volume controls and
download-progress bars.

Displaying a Visual Component

A visual component is where a Player presents the visual representation
of its media, if it has one. Even an audio Player might have a visual com-
ponent, such as a waveform display or animated character.

To display a Player objectÕs visual component, you:

1. Get the component by calling getVisualComponent.

2. Add it to the appletÕs presentation space or application window.

You can access the Player objectÕs display properties, such as its x and y
coordinates, through its visual component. The layout of the Player com-
ponents is controlled through the AWT layout manager.

Displaying a Control Panel Component

A Player often has a control panel that allows the user to control the
media presentation. For example, a Player might be associated with a set
of buttons to start, stop, and pause the media stream, and with a slider
control to adjust the volume.

JMF API Guide46
Every Player provides a default control panel. To display the default con-
trol panel:

1. Call getControlPanelComponent to get the Component.

2. Add the returned Component to your appletÕs presentation space or ap-
plication window.

If you prefer to deÞne a custom user-interface, you can implement custom
GUI Components and call the appropriate Player methods in response to
user actions. If you register the custom components as ControllerListen-
ers, you can also update them when the state of the Player changes.

Displaying a Gain-Control Component

Player implementations that support audio gain adjustments implement
the GainControl interface. GainControl provides methods for adjusting the
audio volume, such as setLevel and setMute. To display a GainControl
Component if the Player provides one, you:

1. Call getGainControl to get the GainControl from the Player. If the
Player returns null, it does not support the GainControl interface.

2. Call getControlComponent on the returned GainControl.

3. Add the returned Component to your appletÕs presentation space or ap-
plication window.

Note that getControls does not return a Player objectÕs GainControl. You
can only access the GainControl by calling getGainControl.

Displaying Custom Control Components

Many Players have other properties that can be managed by the user. For
example, a video Player might allow the user to adjust brightness and
contrast, which are not managed through the Player interface. You can
Þnd out what custom controls a Player supports by calling the getCon-
trols method.

For example, you can call getControls to determine if a Player supports
the CachingControl interface.

Presenting Time-Based Media with JMF 47
Displaying a Download-Progress Component

The CachingControl interface is a special type of Control implemented by
Players that can report their download progress. A CachingControl pro-
vides a default progress-bar component that is automatically updated as
the download progresses. To use the default progress bar in an applet:

1. Implement the ControllerListener interface and listen for
CachingControlEvents in controllerUpdate.

2. The first time you receive a CachingControlEvent:

a. Call getCachingControl on the event to get the caching control.

b. Call getProgressBar on the CachingControl to get the default
progress bar component.

c. Add the progress bar component to your appletÕs presentation
space.

3. Each time you receive a CachingControlEvent, check to see if the down-
load is complete. When getContentProgress returns the same value as
getContentLength, remove the progress bar.

The Player posts a CachingControlEvent whenever the progress bar needs
to be updated. If you implement your own progress bar component, you
can listen for this event and update the download progress whenever
CachingControlEvent is posted.

Setting the Playback Rate

The Player objectÕs rate determines how media time changes with respect
to time-base time; it deÞnes how many units a Player objectÕs media time
advances for every unit of time-base time. The Player objectÕs rate can be
thought of as a temporal scale factor. For example, a rate of 2.0 indicates

Example 3-2: Using getControls to Þnd out what Controls are supported.

Control[] controls = player.getControls();
 for (int i = 0; i < controls.length; i++) {
 if (controls[i] instanceof CachingControl) {
 cachingControl = (CachingControl) controls[i];
 }
 }

JMF API Guide48
that media time passes twice as fast as the time-base time when the Player
is started.

In theory, a Player objectÕs rate could be set to any real number, with neg-
ative rates interpreted as playing the media in reverse. However, some
media formats have dependencies between frames that make it impossi-
ble or impractical to play them in reverse or at non-standard rates.

To set the rate, you call setRate and pass in the temporal scale factor as a
ßoat value. When setRate is called, the method returns the rate that is
actually set, even if it has not changed. Players are only guaranteed to
support a rate of 1.0.

Setting the Start Position

Setting a Player objectÕs media time is equivalent to setting a read posi-
tion within a media stream. For a media data source such as a Þle, the
media time is bounded; the maximum media time is deÞned by the end of
the media stream.

To set the media time you call setMediaTime and pass in a Time object that
represents the time you want to set.

Frame Positioning

Some Players allow you to seek to a particular frame of a video. This
enables you to easily set the start position to the beginning of particular
frame without having to specify the exact media time that corresponds to
that position. Players that support frame positioning implement the
FramePositioningControl.

To set the frame position, you call the FramePositioningControl seek
method. When you seek to a frame, the Player objectÕs media time is set
to the value that corresponds to the beginning of that frame and a Media-
TimeSetEvent is posted.

Some Players can convert between media times and frame positions. You
can use the FramePositioningControl mapFrameToTime and mapTimeToFrame
methods to access this information, if itÕs available. (Players that support
FramePositioningControl are not required to export this information.)
Note that there is not a one-to-one correspondence between media times
and frames Ña frame has a duration, so several different media times
might map to the same frame. (See ÒGetting the Media TimeÓ on page 53
for more information.)

Presenting Time-Based Media with JMF 49
Preparing to Start

Most media Players cannot be started instantly. Before the Player can
start, certain hardware and software conditions must be met. For example,
if the Player has never been started, it might be necessary to allocate buff-
ers in memory to store the media data. Or, if the media data resides on a
network device, the Player might have to establish a network connection
before it can download the data. Even if the Player has been started
before, the buffers might contain data that is not valid for the current
media position.

Realizing and Prefetching a Player

JMF breaks the process of preparing a Player to start into two phases,
Realizing and Prefetching. Realizing and Prefetching a Player before you start
it minimizes the time it takes the Player to begin presenting media when
start is called and helps create a highly-responsive interactive experience
for the user. Implementing the ControllerListener interface allows you to
control when these operations occur.

Note: Processor introduces a third phase to the preparation process called
ConÞguring. During this phase, Processor options can be selected to con-
trol how the Processor manipulates the media data. For more informa-
tion, see ÒSelecting Track Processing OptionsÓ on page 72.

You call realize to move the Player into the Realizing state and begin the
realization process. You call prefetch to move the Player into the Prefetch-
ing state and initiate the prefetching process. The realize and prefetch
methods are asynchronous and return immediately. When the Player
completes the requested operation, it posts a RealizeCompleteEvent or
PrefetchCompleteEvent. ÒPlayer StatesÓ on page 26 describes the opera-
tions that a Player performs in each of these states.

A Player in the Prefetched state is prepared to start and its start-up latency
cannot be further reduced. However, setting the media time through set-
MediaTime might return the Player to the Realized state and increase its
start-up latency.

Keep in mind that a Prefetched Player ties up system resources. Because
some resources, such as sound cards, might only be usable by one pro-
gram at a time, having a Player in the Prefetched state might prevent other
Players from starting.

JMF API Guide50
Determining the Start Latency

To determine how much time is required to start a Player, you can call
getStartLatency. For Players that have a variable start latency, the return
value of getStartLatency represents the maximum possible start latency.
For some media types, getStartLatency might return LATENCY_UNKNOWN.

The start-up latency reported by getStartLatency might differ depending
on the Player objectÕs current state. For example, after a prefetch opera-
tion, the value returned by getStartLatency is typically smaller. A Con-
troller that can be added to a Player will return a useful value once it is
Prefetched. (For more information, see ÒUsing a Player to Synchronize
ControllersÓ on page 57.)

Starting and Stopping the Presentation

The Clock and Player interfaces deÞne the methods for starting and stop-
ping presentation.

Starting the Presentation

You typically start the presentation of media data by calling start. The
start method tells the Player to begin presenting media data as soon as
possible. If necessary, start prepares the Player to start by performing the
realize and prefetch operations. If start is called on a Started Player, the
only effect is that a StartEvent is posted in acknowledgment of the
method call.

Clock deÞnes a syncStart method that can be used for synchronization.
See ÒSynchronizing Multiple Media StreamsÓ on page 56 for more infor-
mation.

To start a Player at a speciÞc point in a media stream:

1. Specify the point in the media stream at which you want to start by call-
ing setMediaTime.

2. Call start on the Player.

Stopping the Presentation

There are four situations in which the presentation will stop:

¥ When the stop method is called

Presenting Time-Based Media with JMF 51
¥ When the specified stop time is reached

¥ When thereÕs no more media data to present

¥ When the media data is being received too slowly for acceptable play-
back

When a Player is stopped, its media time is frozen if the source of the
media can be controlled. If the Player is presenting streamed media, it
might not be possible to freeze the media time. In this case, only the
receipt of the media data is stoppedÑthe data continues to be streamed
and the media time continues to advance.

When a Stopped Player is restarted, if the media time was frozen, presenta-
tion resumes from the stop time. If media time could not be frozen when
the Player was stopped, reception of the stream resumes and playback
begins with the newly-received data.

To stop a Player immediately, you call the stop method. If you call stop on
a Stopped Player, the only effect is that a StopByRequestEvent is posted in
acknowledgment of the method call.

Stopping the Presentation at a Specified Time

You can call setStopTime to indicate when a Player should stop. The
Player stops when its media time passes the speciÞed stop time. If the
Player objectÕs rate is positive, the Player stops when the media time
becomes greater than or equal to the stop time. If the Player objectÕs rate
is negative, the Player stops when the media time becomes less than or
equal to the stop time. The Player stops immediately if its current media
time is already beyond the speciÞed stop time.

For example, assume that a Player objectÕs media time is 5.0 and setStop-
Time is called to set the stop time to 6.0. If the Player objectÕs rate is posi-
tive, media time is increasing and the Player will stop when the media
time becomes greater than or equal to 6.0. However, if the Player objectÕs
rate is negative, it is playing in reverse and the Player will stop immedi-
ately because the media time is already beyond the stop time. (For more
information about Player rates, see ÒSetting the Playback RateÓ on
page 47.)

You can always call setStopTime on a Stopped Player. However, you can
only set the stop time on a Started Player if the stop time is not currently

JMF API Guide52
set. If the Started Player already has a stop time, setStopTime throws an
error.

You can call getStopTime to get the currently scheduled stop time. If the
clock has no scheduled stop time, getStopTime returns Clock.RESET. To
remove the stop time so that the Player continues until it reaches end-of-
media, call setStopTime(Clock.RESET).

Releasing Player Resources

The deallocate method tells a Player to release any exclusive resources
and minimize its use of non-exclusive resources. Although buffering and
memory management requirements for Players are not speciÞed, most
Players allocate buffers that are large by the standards of Java objects. A
well-implemented Player releases as much internal memory as possible
when deallocate is called.

The deallocate method can only be called on a Stopped Player. To avoid
ClockStartedErrors, you should call stop before you call deallocate.
Calling deallocate on a Player in the Prefetching or Prefetched state returns
it to the Realized state. If deallocate is called while the Player is realizing,
the Player posts a DeallocateEvent and returns to the Unrealized state.
(Once a Player has been realized, it can never return to the Unrealized
state.)

You generally call deallocate when the Player is not being used. For
example, an applet should call deallocate as part of its stop method. By
calling deallocate, the program can maintain references to the Player,
while freeing other resources for use by the system as a whole. (JMF does
not prevent a Realized Player that has formerly been Prefetched or Started
from maintaining information that would allow it to be started up more
quickly in the future.)

When you are Þnished with a Player (or any other Controller) and are
not going to use it anymore, you should call close. The close method
indicates that the Controller will no longer be used and can shut itself
down. Calling close releases all of the resources that the Controller was
using and causes it to cease all activity. When a Controller is closed, it
posts a ControllerClosedEvent. A closed Controller cannot be reopened
and invoking methods on a closed Controller might generate errors.

Presenting Time-Based Media with JMF 53
Querying a Player

A Player can provide information about its current parameters, including
its rate, media time, and duration.

Getting the Playback Rate

To get a Player objectÕs current rate, you call getRate. Calling getRate
returns the playback rate as a ßoat value.

Getting the Media Time

To get a Player objectÕs current media time, you call getMediaTime. Calling
getMediaTime returns the current media time as a Time object. If the Player
is not presenting media data, this is the point from which media presenta-
tion will commence.

Note that there is not a one-to-one correspondence between media times
and frames. Each frame is presented for a certain period of time, and the
media time continues to advance during that period.

For example, imagine you have a slide show Player that displays each
slide for 5 secondsÑthe Player essentially has a frame rate of 0.2 frames
per second.

Figure 3-1: Frame duration and media time.

If you start the Player at time 0.0, while the Þrst frame is displayed, the
media time advances from 0.0 to 5.0. If you start at time 2.0, the Þrst frame
is displayed for 3 seconds, until time 5.0 is reached.

5 10 15} }}

frame 1 frame 2 frame 3

getMediaTime

Duration

5

10

15

JMF API Guide54
Getting the Time-Base Time

You can get a Player objectÕs current time-base time by getting the Player
objectÕs TimeBase and calling getTime:

myCurrentTBTime = player1.getTimeBase().getTime();

When a Player is running, you can get the time-base time that corre-
sponds to a particular media time by calling mapToTimeBase.

Getting the Duration of the Media Stream

Since programs often need to know how long a particular media stream
will run, all Controllers implement the Duration interface. This interface
deÞnes a single method, getDuration. The duration represents the length
of time that a media object would run, if played at the default rate of 1.0. A
media streamÕs duration is only accessible through a Player.

If the duration canÕt be determined when getDuration is called,
DURATION_UNKNOWN is returned. This can happen if the Player has not yet
reached a state where the duration of the media source is available. At a
later time, the duration might be available and a call to getDuration
would return the duration value. If the media source does not have a
deÞned duration, as in the case of a live broadcast, getDuration returns
DURATION_UNBOUNDED.

Responding to Media Events

ControllerListener is an asynchronous interface for handling events gen-
erated by Controller objects. Using the ControllerListener interface
enables you to manage the timing of potentially time-consuming Player
operations such as prefetching.

Implementing the ControllerListener Interface

To implement the ControllerListener interface, you need to:

1. Implement the ControllerListener interface in a class.

2. Register that class as a listener by calling addControllerListener on the
Controller that you want to receive events from.

Presenting Time-Based Media with JMF 55
When a Controller posts an event, it calls controllerUpdate on each regis-
tered listener.

Typically, controllerUpdate is implemented as a series of if-else state-
ments.

This Þlters out the events that you are not interested in. If you have regis-
tered as a listener with multiple Controllers, you also need to determine
which Controller posted the event. ControllerEvents come ÒstampedÓ
with a reference to their source that you can access by calling getSource.

When you receive events from a Controller, you might need to do some
additional processing to ensure that the Controller is in the proper state
before calling a control method. For example, before calling any of the
methods that are restricted to Stopped Players, you should check the
Player objectÕs target state by calling getTargetState. If start has been
called, the Player is considered to be in the Started state, though it might
be posting transition events as it prepares the Player to present media.

Some types of ControllerEvents contain additional state information. For
example, the StartEvent and StopEvent classes each deÞne a method that
allows you to retrieve the media time at which the event occurred.

Using ControllerAdapter

ControllerAdapter is a convenience class that implements ControllerLis-
tener and can be easily extended to respond to particular Events. To
implement the ControllerListener interface using ControllerAdapter,
you need to:

1. Subclass ControllerAdapter and override the event methods for the
events that youÕre interested in.

2. Register your ControllerAdapter class as a listener for a particular Con-
troller by calling addControllerListener.

Example 3-3:Implementing controllerUpdate.

if (event instanceof EventType){
...
} else if (event instanceof OtherEventType){
...
}

JMF API Guide56
When a Controller posts an event, it calls controllerUpdate on each regis-
tered listener. ControllerAdapter automatically dispatches the event to
the appropriate event method, Þltering out the events that youÕre not
interested in.

For example, the following code extends a ControllerAdapter with a JDK
1.1 anonymous inner-class to create a self-contained Player that is auto-
matically reset to the beginning of the media and deallocated when the
Player reaches the end of the media.

If you register a single ControllerAdapter as a listener for multiple Play-
ers, in your event method implementations you need to determine which
Player generated the event. You can call getSource to determine where a
ControllerEvent originated.

Synchronizing Multiple Media Streams

To synchronize the playback of multiple media streams, you can synchro-
nize the Players by associating them with the same TimeBase. To do this,
you use the getTimeBase and setTimeBase methods deÞned by the Clock
interface. For example, you could synchronize player1 with player2 by
setting player1 to use player2’s time base:

player1.setTimeBase(player2.getTimeBase());

When you synchronize Players by associating them with the same Time-
Base, you must still manage the control of each Player individually.
Because managing synchronized Players in this way can be complicated,
JMF provides a mechanism that allows a Player to assume control over
any other Controller. The Player manages the states of these Controllers
automatically, allowing you to interact with the entire group through a

Example 3-4: Using ControllerAdapter.

player.addControllerListener(new ControllerAdapter() {

 public void endOfMedia(EndOfMediaEvent e) {

 Controller controller = e.getSource();

 controller.stop();

 controller.setMediaTime(new Time(0));

 controller.deallocate();

 }
})

Presenting Time-Based Media with JMF 57
single point of control. For more information, see See ÒUsing a Player to
Synchronize ControllersÓ.

Using a Player to Synchronize Controllers

Synchronizing Players directly using syncStart requires that you care-
fully manage the states of all of the synchronized Players. You must con-
trol each one individually, listening for events and calling control methods
on them as appropriate. Even with only a few Players, this quickly
becomes a difÞcult task. Through the Player interface, JMF provides a
simpler solution: a Player can be used to manage the operation of any
Controller.

When you interact with a managing Player, your instructions are auto-
matically passed along to the managed Controllers as appropriate. The
managing Player takes care of the state management and synchronization
for all of the other Controllers.

This mechanism is implemented through the addController and remove-
Controller methods. When you call addController on a Player, the Con-
troller you specify is added to the list of Controllers managed by the
Player. Conversely, when you call removeController, the speciÞed Con-
troller is removed from the list of managed Controllers.

Typically, when you need to synchronize Players or other Controllers,
you should use this addController mechanism. It is simpler, faster, and
less error-prone than attempting to manage synchronized Players indi-
vidually.

When a Player assumes control of a Controller:

¥ The Controller assumes the Player objectÕs time base.

¥ The Player objectÕs duration becomes the longer of the Controller
objectÕs duration and its own. If multiple Controllers are placed un-
der a Player objectÕs control, the Player objectÕs duration is set to
longest duration.

¥ The Player objectÕs start latency becomes the longer of the Controller
objectÕs start latency and its own. If multiple Controllers are placed
under a Player objectÕs control, the Player objectÕs start latency is set
to the longest latency.

A managing Player only posts completion events for asynchronous meth-
ods after each of its managed Controllers have posted the event. The

JMF API Guide58
managing Player reposts other events generated by the Controllers as
appropriate.

Adding a Controller

You use the addController method to add a Controller to the list of Con-
trollers managed by a particular Player. To be added, a Controller must
be in the Realized state; otherwise, a NotRealizedError is thrown. Two
Players cannot be placed under control of each other. For example, if
player1 is placed under the control of player2, player2 cannot be placed
under the control of player1 without Þrst removing player1 from
player2’s control.

Once a Controller has been added to a Player, do not call methods
directly on the managed Controller. To control a managed Controller,
you interact with the managing Player.

To have player2 assume control of player1, call:

player2.addController(player1);

Controlling Managed Controllers

To control the operation of a group of Controllers managed by a particu-
lar Player, you interact directly with the managing Player.

For example, to prepare all of the managed Controllers to start, call
prefetch on the managing Player. Similarly, when you want to start them,
call start on the managing Player. The managing Player makes sure that
all of the Controllers are Prefetched, determines the maximum start
latency among the Controllers, and calls syncStart to start them, specify-
ing a time that takes the maximum start latency into account.

When you call a Controller method on the managing Player, the Player
propagates the method call to the managed Controllers as appropriate.
Before calling a Controller method on a managed Controller, the Player
ensures that the Controller is in the proper state. The following table
describes what happens to the managed Controllers when you call con-
trol methods on the managing Player.

Presenting Time-Based Media with JMF 59
Table 3-1: Calling control methods on a managing player.

Removing a Controller

You use the removeController method to remove a Controller from the
list of controllers managed by a particular Player.

Function Stopped Player Started Player

setMediaTime Invokes setMediaTime on all man-
aged Controllers.

Stops all managed Controllers, in-
vokes setMediaTime, and restarts
Controllers.

setRate Invokes setRate on all managed
Controllers. Returns the actual
rate that was supported by all Con-
trollers and set.

Stops all managed Controllers, in-
vokes setRate, and restarts Control-
lers. Returns the actual rate that
was supported by all Controllers
and set.

start Ensures all managed Controllers
are Prefetched and invokes sync-
Start on each of them, taking into
account their start latencies.

Depends on the Player implementa-
tion. Player might immediately post
a StartEvent.

realize The managing Player immediate-
ly posts a RealizeCompleteEvent.
To be added, a Controller must
already be realized.

The managing Player immediately
posts a RealizeCompleteEvent. To be
added, a Controller must already
be realized.

prefetch Invokes prefetch on all managed
Controllers.

The managing Player immediately
posts a PrefetchCompleteEvent, in-
dicating that all managed Control-
lers are Prefetched.

stop No effect. Invokes stop on all managed Con-
trollers.

deallocate Invokes deallocate on all man-
aged Controllers.

It is illegal to call deallocate on a
Started Player.

setStopTime Invokes setStopTime on all man-
aged Controllers. (Player must be
Realized.)

Invokes setStopTime on all managed
Controllers. (Can only be set once
on a Started Player.)

syncStart Invokes syncStart on all managed
Controllers.

It is illegal to call syncStart on a
Started Player.

close Invokes close on all managed
Controllers.

It is illegal to call close on a Started
Player.

JMF API Guide60
To have player2 release control of player1, call:

player2.removeController(player1);

Synchronizing Players Directly

In a few situations, you might want to manage the synchronization of
multiple Player objects yourself so that you can control the rates or media
times independently. If you do this, you must:

1. Register as a listener for each synchronized Player.

2. Determine which Player objectÕs time base is going to be used to drive
the other Player objects and set the time base for the synchronized
Player objects. Not all Player objects can assume a new time base.
For example, if one of the Player objects you want to synchronize has
a push data-source, that Player objectÕs time base must be used to
drive the other Player objects.

3. Set the rate for all of the Players. If a Player cannot support the rate you
specify, it returns the rate that was used. (There is no mechanism for
querying the rates that a Player supports.)

4. Synchronize the states of all of the Player objects. (For example, stop all
of the players.)

5. Synchronize the operation of the Player objects:

¥ Set the media time for each Player.

¥ Prefetch each Player.

¥ Determine the maximum start latency among the synchronized
Player objects.

¥ Start the Player objects by calling syncStart with a time that takes
into account the maximum latency.

You must listen for transition events for all of the Player objects and
keep track of which ones have posted events. For example, when you
prefetch the Player objects, you need to keep track of which ones have
posted PrefetchComplete events so that you can be sure all of them are
Prefetched before calling syncStart. Similarly, when you request that the
synchronized Player objects stop at a particular time, you need to listen

Presenting Time-Based Media with JMF 61
for the stop event posted by each Player to determine when all of them
have actually stopped.

In some situations, you need to be careful about responding to events
posted by the synchronized Player objects. To be sure of the state of all of
the Player objects, you might need to wait at certain stages for all of them
to reach the same state before continuing.

For example, assume that you are using one Player to drive a group of
synchronized Player objects. A user interacting with that Player sets the
media time to 10, starts the Player, and then changes the media time to 20.
You then:

1. Pass along the first setMediaTime call to all of the synchronized Player
objects.

2. Call prefetch on each Player to prepare them to start.

3. Call stop on each Player when the second set media time request is re-
ceived.

4. Call setMediaTime on each Player with the new time.

5. Restart the prefetching operation.

6. When all of the Player objects have been prefetched, start them by call-
ing syncStart, taking into account their start latencies.

In this case, just listening for PrefetchComplete events from all of the
Player objects before calling syncStart isnÕt sufÞcient. You canÕt tell
whether those events were posted in response to the Þrst or second
prefetch operation. To avoid this problem, you can block when you call
stop and wait for all of the Player objects to post stop events before con-
tinuing. This guarantees that the next PrefetchComplete events you
receive are the ones that you are really interested in.

Example: Playing an MPEG Movie in an Applet

The sample program PlayerApplet demonstrates how to create a Player
and present an MPEG movie from within a Java applet. This is a general
example that could easily be adapted to present other types of media
streams.

JMF API Guide62
The Player objectÕs visual presentation and its controls are displayed
within the appletÕs presentation space in the browser window. If you cre-
ate a Player in a Java application, you are responsible for creating the win-
dow to display the Player objectÕs components.

Note: While PlayerApplet illustrates the basic usage of a Player, it does
not perform the error handling necessary in a real applet or application.
For a more complete sample suitable for use as a template, see ÒJMF
AppletÓ on page 173.

Overview of PlayerApplet

The APPLET tag is used to invoke PlayerApplet in an HTML Þle. The WIDTH
and HEIGHT Þelds of the HTML APPLET tag determine the dimensions of the
appletÕs presentation space in the browser window. The PARAM tag identi-
Þes the media Þle to be played.

When a user opens a web page containing PlayerApplet, the applet loads
automatically and runs in the speciÞed presentation space, which contains
the Player objectÕs visual component and default controls. The Player
starts and plays the MPEG movie once. The user can use the default
Player controls to stop, restart, or replay the movie. If the page containing
the applet is closed while the Player is playing the movie, the Player auto-
matically stops and frees the resources it was using.

To accomplish this, PlayerApplet extends Applet and implements the Con-
trollerListener interface. PlayerApplet deÞnes Þve methods:

¥ initÑcreates a Player for the file that was passed in through the PARAM
tag and registers PlayerApplet as a controller listener so that it can ob-
serve media events posted by the Player. (This causes the PlayerAp-
plet controllerUpdate method to be called whenever the Player posts
an event.)

¥ startÑstarts the Player when PlayerApplet is started.
¥ stopÑstops and deallocates the Player when PlayerApplet is

stopped.
¥ destroyÑcloses the Player when PlayerApplet is removed.

Example 3-5: Invoking PlayerApplet.

<APPLET CODE=ExampleMedia.PlayerApplet
WIDTH=320 HEIGHT=300>
<PARAM NAME=FILE VALUE="sample2.mpg">
</APPLET>

Presenting Time-Based Media with JMF 63
¥ controllerUpdateÑresponds to Player events to display the Player
objectÕs components.

Example 3-6: PlayerApplet.

import java.applet.*;

import java.awt.*;

import java.net.*;

import javax.media.*;

public class PlayerApplet extends Applet implements ControllerListener {

 Player player = null;

 public void init() {

 setLayout(new BorderLayout());

 String mediaFile = getParameter(“FILE”);

 try {

 URL mediaURL = new URL(getDocumentBase(), mediaFile);

 player = Manager.createPlayer(mediaURL);

 player.addControllerListener(this);

 }

 catch (Exception e) {

 System.err.println("Got exception "+e);

 }

 }

 public void start() {

 player.start();

 }

 public void stop() {

 player.stop();

 player.deallocate();

 }

 public void destroy() {

 player.close();

 }

 public synchronized void controllerUpdate(ControllerEvent event) {

 if (event instanceof RealizeCompleteEvent) {

 Component comp;

 if ((comp = player.getVisualComponent()) != null)

 add ("Center", comp);

 if ((comp = player.getControlPanelComponent()) != null)

 add ("South", comp);

 validate();

 }

 }

}

JMF API Guide64
Initializing the Applet

When a Java applet starts, its init method is invoked automatically. You
override init to prepare your applet to be started. PlayerApplet performs
four tasks in init:

1. Retrieves the appletÕs FILE parameter.

2. Uses the FILE parameter to locate the media file and build a URL object
that describes that media file.

3. Creates a Player for the media file by calling Manager.createPlayer.

4. Registers the applet as a controller listener with the new Player by call-
ing addControllerListener. Registering as a listener causes the Player-
Applet controllerUpdate method to be called automatically whenever
the Player posts a media event. The Player posts media events when-
ever its state changes. This mechanism allows you to control the Player
objectÕs transitions between states and ensure that the Player is in a
state in which it can process your requests. (For more information, see
ÒPlayer StatesÓ on page 26.)

Example 3-7: Initializing PlayerApplet.

public void init() {
 setLayout(new BorderLayout());
 // 1. Get the FILE parameter.
 String mediaFile = getParameter(“FILE”);
 try {
 // 2. Create a URL from the FILE parameter. The URL
 // class is defined in java.net.
 URL mediaURL = new URL(getDocumentBase(), mediaFile);
 // 3. Create a player with the URL object.
 player = Manager.createPlayer(mediaURL);
 // 4. Add PlayerApplet as a listener on the new player.
 player.addControllerListener(this);
 }
 catch (Exception e) {
 System.err.println("Got exception "+e);
 }
}

Presenting Time-Based Media with JMF 65
Controlling the Player

The Applet class deÞnes start and stop methods that are called automati-
cally when the page containing the applet is opened and closed. You over-
ride these methods to deÞne what happens each time your applet starts
and stops.

PlayerApplet implements start to start the Player whenever the applet is
started.

Similarly, PlayerApplet overrides stop to stop and deallocate the Player:

Deallocating the Player releases any resources that would prevent another
Player from being started. For example, if the Player uses a hardware
device to present its media, deallocate frees that device so that other
Players can use it.

When an applet exits, destroy is called to dispose of any resources created
by the applet. PlayerApplet overrides destroy to close the Player. Closing
a Player releases all of the resources that itÕs using and shuts it down per-
manently.

Example 3-8: Starting the Player in PlayerApplet.

public void start() {
 player.start();
}

Example 3-9: Stopping the Player in PlayerApplet.

public void stop() {
 player.stop();
 player.deallocate();
}

Example 3-10: Destroying the Player in PlayerApplet.

 public void destroy() {
 player.close();
 }

JMF API Guide66
Responding to Media Events

PlayerApplet registers itself as a ControllerListener in its init method so
that it receives media events from the Player. To respond to these events,
PlayerApplet implements the controllerUpdate method, which is called
automatically when the Player posts an event.

PlayerApplet responds to one type of event, RealizeCompleteEvent. When
the Player posts a RealizeCompleteEvent, PlayerApplet displays the
Player objectÕs components.

A Player objectÕs user-interface components cannot be displayed until the
Player is Realized; an Unrealized Player doesnÕt know enough about its
media stream to provide access to its user-interface components. Player-
Applet waits for the Player to post a RealizeCompleteEvent and then dis-
plays the Player objectÕs visual component and default control panel by
adding them to the applet container. Calling validate triggers the layout
manager to update the display to include the new components.

Presenting Media with the MediaPlayer Bean

Using the MediaPlayer Java Bean (javax.media.bean.playerbean.Media-
Player) is the simplest way to present media streams in your applets and
applications. MediaPlayer encapsulates a full-featured JMF Player in a
Java Bean. You can either use the MediaPlayer beanÕs default controls or
customize its control Components.

One key advantage to using the MediaPlayer bean is that it automatically
constructs a new Player when a different media stream is selected for

Example 3-11: Responding to media events in PlayerApplet.

public synchronized void controllerUpdate(ControllerEvent event)
{
 if (event instanceof RealizeCompleteEvent) {
 Component comp;
 if ((comp = player.getVisualComponent()) != null)
 add ("Center", comp);
 if ((comp = player.getControlPanelComponent()) != null)
 add ("South", comp);
 validate();
 }
}

Presenting Time-Based Media with JMF 67
playback. This makes it easy to play a series of media clips or enable the
user to select the media clip that they want to play.

A MediaPlayer bean has several properties that you can set, including the
media source:

Table 3-2: Media bean properties.

To play a media clip with the MediaPlayer bean:

1. Construct an instance of MediaPlayer:

MediaPlayer mp1 = new javax.media.bean.playerbean.MediaPlayer();

2. Set the location of the clip you want to play:

mp1.setMediaLocation(new java.lang.String("file:///E:/jvideo/media/
Sample1.mov"));

3. Start the MediaPlayer:

mp1.start();

Property Type Default Description

Show control panel Boolean Yes Controls whether or not the video control
panel is visible.

Loop Boolean Yes Controls whether or not the media clip
loops continuously.

Media location String N/A The location of the media clip to be played.
It can be an URL or a relative address. For
example:

file:///e:/video/media/
Sample1.mov

http://webServer/media/
Sample1.mov

media/Sample1.mov

Show caching
control

Boolean No Controls whether or not the download-
progress bar is displayed.

Fixed Aspect Ratio Boolean Yes Controls whether or not the mediaÕs origi-
nal fixed aspect ratio is maintained.

Volume int 3 Controls the audio volume.

JMF API Guide68
You can stop playback by calling stop on the MediaPlayer:

mp1.stop();

By setting up the MediaPlayer in your AppletÕs init method and starting
the MediaPlayer in your AppletÕs start method, you can automatically
begin media presentation when the Applet is loaded. You should call stop
in the AppletÕs stop method so that playback halts when the Applet is
stopped.

Alternatively, you can display the MediaPlayer beanÕs default control
panel or provide custom controls to allow the user to control the media
presentation. If you provide custom controls, call the appropriate Media-
Player control and properties methods when the user interacts with the
controls. For example, if you provide a custom Start button in your
Applet, listen for the mouse events and call start when the user clicks on
the button.

Presenting RTP Media Streams

You can present streaming media with a JMF Player constructed through
the Manager using a MediaLocator that has the parameters of an RTP ses-
sion. For more information about streaming media and RTP, see ÒWorking
with Real-Time Media StreamsÓ on page 109.

When you use a MediaLocator to construct a Player for an RTP session,
only the first RTP stream thatÕs detected in the session can be presentedÑ
Manager creates a Player for the Þrst stream thatÕs detected in the RTP ses-
sion. For information about playing multiple RTP streams from the same
session, see ÒReceiving and Presenting RTP Media StreamsÓ on page 129.

Note: JMF-compliant implementations are not required to support the
RTP APIs in javax.media.rtp, javax.media.rtp.event, and javax.me-
dia.rtp.rtcp. The reference implementations of JMF provided by Sun Mi-
crosystems, Inc. and IBM Corporation fully support these APIs.

Presenting Time-Based Media with JMF 69
When data is detected on the session, the Player posts a RealizeComple-
teEvent. By listening for this event, you can determine whether or not any
data has arrived and if the Player is capable of presenting any data. Once
the Player posts this event, you can retrieve its visual and control compo-
nents.

Listening for RTP Format Changes

When a Player posts a FormatChangeEvent, it can indicate that a payload
change has occurred. Player objects constructed with a MediaLocator
automatically process payload changes. In most cases, this processing
involves constructing a new Player to handle the new format. Programs
that present RTP media streams need to listen for FormatChangeEvents so
that they can respond if a new Player is created.

When a FormatChangeEvent is posted, check whether or not the Player
objectÕs control and visual components have changed. If they have, a new
Player has been constructed and you need to remove references to the old
Player objectÕs components and get the new Player objectÕs components.

Example 3-12: Creating a Player for an RTP session.

 String url= "rtp://224.144.251.104:49150/audio/1";

 MediaLocator mrl= new MediaLocator(url);

 if (mrl == null) {
 System.err.println("Can't build MRL for RTP");
 return false;
 }

 // Create a player for this rtp session
 try {
 player = Manager.createPlayer(mrl);
 } catch (NoPlayerException e) {
 System.err.println("Error:" + e);
 return false;
 } catch (MalformedURLException e) {
 System.err.println("Error:" + e);
 return false;
 } catch (IOException e) {
 System.err.println("Error:" + e);
 return false;
 }

JMF API Guide70
Example 3-13: Listening for RTP format changes.

 public synchronized void controllerUpdate(ControllerEvent ce) {
 if (ce instanceof FormatChangeEvent) {
 Dimension vSize = new Dimension(320,0);
 Component oldVisualComp = visualComp;

 if ((visualComp = player.getVisualComponent()) != null) {
 if (oldVisualComp != visualComp) {
 if (oldVisualComp != null) {
 oldVisualComp.remove(zoomMenu);
 }
 framePanel.remove(oldVisualComp);

 vSize = visualComp.getPreferredSize();
 vSize.width = (int)(vSize.width * defaultScale);
 vSize.height = (int)(vSize.height * defaultScale);

 framePanel.add(visualComp);

 visualComp.setBounds(0,
 0,
 vSize.width,
 vSize.height);
 addPopupMenu(visualComp);
 }
 }

 Component oldComp = controlComp;

 controlComp = player.getControlPanelComponent();

 if (controlComp != null)
 {
 if (oldComp != controlComp)
 {
 framePanel.remove(oldComp);
 framePanel.add(controlComp);

 if (controlComp != null) {
 int prefHeight = controlComp
 .getPreferredSize()
 .height;

 controlComp.setBounds(0,
 vSize.height,
 vSize.width,
 prefHeight);
 }
 }
 }
 }
 }

4

Processing Time-Based

Media with JMF

A Processor can be used as a programmable Player that enables you to
control the decoding and rendering process. A Processor can also be used
as a capture processor that enables you to control the encoding and multi-
plexing of the captured media data.

You can control what processing is performed by a Processor several dif-
ferent ways:

¥ Use a ProcessorModel to construct a Processor that has certain input
and output characteristics.

¥ Use the TrackControl setFormat method to specify what format
conversions are performed on individual tracks.

¥ Use the Processor setOutputContentDescriptor method to specify the
multiplexed data format of the Processor objectÕs output.

¥ Use the TrackControl setCodecChain method to select the Effect or
Codec plug-ins that are used by the Processor.

¥ Use the TrackControl setRenderer method to select the Renderer plug-
in used by the Processor.

Note: Some high-performance or light-weight Processor implementations
might choose not to support the selection of processing options so that
they can provide a highly-optimized JMF presentation solution. The refer-
ence implementation of JMF 2.0 provided by Sun Microsystems, Inc. and
IBM Corporation fully supports the selection of processing options
through TrackControl objects and setOutputContentDescriptor.
71

JMF API Guide72
Configuring a Processor

In addition to the Realizing and Prefetching phases that any Player moves
through as it prepares to start, a Processor also goes through a ConÞguring
phase. You call configure to move an Unrealized Processor into the ConÞg-
uring state.

While in the ConÞguring state, a Processor gathers the information it
needs to construct TrackControl objects for each track. When itÕs Þn-
ished, it moves into the ConÞgured state and posts a ConfigureComple-
teEvent. Once a Processor is ConÞgured, you can set its output format and
TrackControl options. When youÕre Þnished specifying the processing
options, you call realize to move the Processor into the Realizing state
and begin the realization process.

Once a Processor is Realized, further attempts to modify its processing
options are not guaranteed to work. In most cases, a FormatChangeExcep-
tion will be thrown.

Selecting Track Processing Options

To select which plug-ins are used to process each track in the media
stream, you:

1. Call the PlugInManager.getPlugInList method to determine what
plug-ins are available. The PlugInManager returns a list of plug-ins that
match the specified input and output formats and plug-in type.

2. Call getTrackControls on the Processor to get a TrackControl for each
track in the media stream. The Processor must in the ConÞgured state
before you call getTrackControls.

3. Call the TrackControl setCodecChain or setRenderer methods to spec-
ify the plug-ins that you want to use for each track.

When you use setCodecChain to specify the codec and effect plug-ins for a
Processor, the order in which the plug-ins actually appear in the process-
ing chain is determined by the input and output formats each plug-in sup-
ports.

To control the transcoding thatÕs performed on a track by a particular
Codec, you can use the codec controls associated with the track. To get the
codec controls, you call the TrackControl getControls method. This

Processing Time-Based Media with JMF 73
returns all of the Controls associated with the track, including codec con-
trols such as H263Control, QualityControl, and MPEGAudioControl. (For a
list of the codec controls deÞned by JMF, see ÒStandard ControlsÓ on
page 20.)

Converting Media Data from One Format to Another

You can select the format for a particular track through the TrackControl
for that track:

1. Call getTrackControls on the Processor to get a TrackControl for each
track in the media stream. The Processor must be in the ConÞgured state
before you call getTrackControls.

2. Use the TrackControl setFormat method to specify the format to which
you want to convert the selected track.

Specifying the Output Data Format

You can use the Processor setContentDescriptor method to specify the
format of the data output by the Processor. You can get a list of supported
data formats by calling getSupportedContentDescriptors.

You can also select the output format that you want by using a Processor-
Model to create the Processor. (See ÒUsing a ProcessorModel to Create a
ProcessorÓ on page 44 for more information.)

Specifying an output data format automatically selects the default pro-
cessing options for this format, overriding the previous processing
options selected through the TrackControls. Setting the output data for-
mat to null causes the media data to be rendered instead of output to the
Processor objectÕs output DataSource.

Specifying the Media Destination

You can specify a destination for the media stream by selecting a particu-
lar Renderer for a track through its TrackControl, or by using the output
from a Processor as the input to a particular DataSink. You can also use
the Processor output as the input to another Player or Processor that has
a different destination.

JMF API Guide74
Selecting a Renderer

To select the Renderer that you want to use, you:

1. Call getTrackControls on the Processor to get a TrackControl for each
track in the media stream. The Processor must in the ConÞgured state
before you call getTrackControls.

2. Call the TrackControl setRenderer method to specify the Renderer
plug-in.

Writing Media Data to a File

You can use a DataSink to read media data from Processor objectÕs output
DataSource and render the data to a Þle.

1. Get the output DataSource from the Processor by calling getDataOut-
put.

2. Construct a file writer DataSink by calling Manager.createDataSink.
Pass in the output DataSource and a MediaLocator that specifies the lo-
cation of the file to which you want to write.

3. Call open on the DataSink to open the file.

4. Call start on the DataSink to begin writing data.

The format of the data written to the speciÞed Þle is controlled through
the Processor. By default, a Processor outputs raw data. To change the
content type of a Processor objectÕs output DataSource, you use the set-
ContentDescriptor method.

A Processor can enable user control over the maximum number of bytes
that it can write to its destination by implementing the StreamWriterCon-
trol. You Þnd out if a Processor provides a StreamWriterControl by call-

Example 4-1: Using a DataSink to write media data to a Þle.

DataSink sink;
MediaLocator dest = new MediaLocator(file://newfile.wav);
try{

sink = Manager.createDataSink(p.getDataOutput(), dest);
sink.open();
sink.start();

} catch (Exception) {}

Processing Time-Based Media with JMF 75
ing getControl("javax.media.datasink.StreamWriterControl") on the
Processor.

Connecting a Processor to another Player

The output from a Processor can be used as the input to another Player.
To get the output from a Processor, you call getDataOutput, which returns
a DataSource. This DataSource can in turn be used to construct a Player or
Processor through the Manager.

Using JMF Plug-Ins as Stand-alone Processing Modules

JMF Plug-ins can also be used outside of the JMF framework. You can
instantiate the plug-in directly and call its processing method to perform
the processing operation.

You might want to do this to encode or decode a media stream, or convert
a stream from one format to another.

JMF API Guide76

5

Capturing Time-Based

Media with JMF

You can use JMF to capture media data from a capture device such as a
microphone or video camera. Captured media data can be processed and
rendered or stored for future use.

To capture media data, you:

1. Locate the capture device you want to use by querying the CaptureDe-
viceManager.

2. Get a CaptureDeviceInfo object for the device.

3. Get a MediaLocator from the CaptureDeviceInfo object and use it to cre-
ate a DataSource.

4. Create a Player or Processor using the DataSource.

5. Start the Player or Processor to begin the capture process.

When you use a capture DataSource with a Player, you can only render the
captured media data. To explicitly process or store the captured media
data, you need to use a Processor.

Accessing Capture Devices

You access capture devices through the CaptureDeviceManager. The Cap-
tureDeviceManager is the central registry for all of the capture devices
available to JMF. You can get a list of the available capture devices by call-
ing the CaptureDeviceManager.getDeviceList method.
77

JMF API Guide78
Each device is represented by a CaptureDeviceInfo object. To get the Cap-
tureDeviceInfo object for a particular device, you call CaptureDeviceMan-
ager.getDevice:

CaptureDeviceInfo deviceInfo = CaptureDeviceManager.getDevice("deviceName");

Capturing Media Data

To capture media data from a particular device, you need to get the
deviceÕs MediaLocator from its CaptureDeviceInfo object. You can either
use this MediaLocator to construct a Player or Processor directly, or use
the MediaLocator to construct a DataSource that you can use as the input to
a Player or Processor. To initiate the capture process, you start the
Player or Processor.

Allowing the User to Control the Capture Process

A capture device generally has a set of implementation-speciÞc attributes
that can be used to control the device. Two control types are deÞned to
enable programmatic control of capture devices: PortControl and Moni-
torControl. You access these controls by calling getControl on the capture
DataSource and passing in the name of the control you want.

A PortControl provides a way to select the port from which data will be
captured. A MonitorControl provides a means for displaying the deviceÕs
capture monitor.

Like other Control objects, if thereÕs a visual component that corresponds
to the PortControl or MonitorControl, you can get it by calling getCon-
trolComponent. Adding the Component to your applet or application win-
dow will enable users to interact with the capture control.

You can also display the standard control-panel component and visual
component associated with the Player or Processor youÕre using.

Example 5-1: Displaying GUI components for a processor.

Component controlPanel, visualComponent;

if ((controlPanel = p.getControlPanelComponent()) != null)

 add(controlPanel);

if ((visualComponent = p.getVisualComponent()) != null)

 add(visualComponent);

Capturing Time-Based Media with JMF 79
Storing Captured Media Data

If you want to save captured media data to a Þle, you need to use a Pro-
cessor instead of a Player. You use a DataSink to read media data from
Processor objectÕs output data source and render the data to a Þle.

1. Get the output DataSource from the Processor by calling getDataOut-
put.

2. Construct a file writer DataSink by calling Manager.createDataSink.
Pass in the output DataSource and a MediaLocator that specifies the lo-
cation of the file to which you want to write.

3. Call open on the DataSink to open the file.

4. Call start on the DataSink.

5. Call start on the Processor to begin capturing data.

6. Wait for an EndOfMediaEvent, a particular media time, or a user event.

7. Call stop on the Processor to end the data capture.

8. Call close on the Processor.

9. When the Processor is closed and the DataSink posts an EndOf-
StreamEvent, call close on the DataSink.

Example: Capturing and Playing Live Audio Data

To capture live audio data from a microphone and present it, you need to:

1. Get the CaptureDeviceInfo object for the microphone.

2. Create a Player using the MediaLocator retrieved from the CaptureDe-

Example 5-2: Saving captured media data to a Þle.

DataSink sink;

MediaLocator dest = new MediaLocator("file://newfile.wav");

try {

sink = Manager.createDataSink(p.getDataOutput(), dest);

sink.open();

sink.start();

} catch (Exception) {}

JMF API Guide80
viceInfo object. (You can create the Player by calling createPlay-
er(MediaLocator) or create a DataSource with the MediaLocator and
use createPlayer(DataSource) to construct the Player.)

Example: Writing Captured Audio Data to a File

You can write captured media data to a Þle using a DataSink. To capture
and store audio data, you need to:

1. Get a CaptureDeviceInfo object for the audio capture device.

2. Create a Processor using the MediaLocator retrieved from the Capture-
DeviceInfo object.

3. Get the output DataSource from the Processor.

4. Create a MediaLocator for the file where you want to write the captured
data.

5. Create a file writer DataSink using the output DataSource.

6. Start the file writer and the Processor.

Example 5-3: Capturing and playing audio from a microphone.

// Get the CaptureDeviceInfo for the live audio capture device

Vector deviceList = CaptureDeviceManager.getDeviceList(new

 AudioFormat("linear", 44100, 16, 2));

if (deviceList.size() > 0)

di = (CaptureDeviceInfo)deviceList.firstElement();

else

// Exit if we can't find a device that does linear, 44100Hz, 16 bit,

// stereo audio.

 System.exit(-1);

// Create a Player for the capture device:

try{

 Player p = Manager.createPlayer(di.getLocator());

} catch (IOException e) {

} catch (NoPlayerException e) {}

Capturing Time-Based Media with JMF 81
This example uses a helper class, StateHelper.java, to manage the state of
the Processor. The complete source for StateHelper is included in the
appendix starting on page 179.

Example 5-4: Writing captured audio to a Þle with a DataSink. (1 of 2)

CaptureDeviceInfo di = null;
Processor p = null;
StateHelper sh = null;
Vector deviceList = CaptureDeviceManager.getDeviceList(new

AudioFormat(AudioFormat.LINEAR, 44100, 16, 2));
if (deviceList.size() > 0)
 di = (CaptureDeviceInfo)deviceList.firstElement();
else
 // Exit if we can't find a device that does linear,

 // 44100Hz, 16 bit,
 // stereo audio.
 System.exit(-1);
try {
 p = Manager.createProcessor(di.getLocator());
 sh = new StateHelper(p);
} catch (IOException e) {
 System.exit(-1);
} catch (NoProcessorException e) {
 System.exit(-1);
}
// Configure the processor
if (!sh.configure(10000))
 System.exit(-1);
// Set the output content type and realize the processor
p.setContentDescriptor(new

 FileTypeDescriptor(FileTypeDescriptor.WAVE));
if (!sh.realize(10000))
 System.exit(-1);
// get the output of the processor
DataSource source = p.getDataOutput();
// create a File protocol MediaLocator with the location of the
// file to which the data is to be written
MediaLocator dest = new MediaLocator("file://foo.wav");
// create a datasink to do the file writing & open the sink to
// make sure we can write to it.
DataSink filewriter = null;
try {
 filewriter = Manager.createDataSink(source, dest);
 filewriter.open();
} catch (NoDataSinkException e) {
 System.exit(-1);
} catch (IOException e) {
 System.exit(-1);
} catch (SecurityException e) {
 System.exit(-1);
}

JMF API Guide82
Example: Encoding Captured Audio Data

You can conÞgure a Processor to transcode captured media data before
presenting, transmitting, or storing the data. To encode captured audio
data in the IMA4 format before saving it to a Þle:

1. Get the MediaLocator for the capture device and construct a Processor.

2. Call configure on the Processor.

3. Once the Processor is in the Configured state, call getTrackControls.

4. Call setFormat on each track until you find one that can be converted
to IMA4. (For setFormat to succeed, appropriate codec plug-ins must
be available to perform the conversion.)

5. Realize the Processor and use itÕs output DataSource to construct a
DataSink to write the data to a file.

// if the Processor implements StreamWriterControl, we can
// call setStreamSizeLimit
// to set a limit on the size of the file that is written.
StreamWriterControl swc = (StreamWriterControl)
 p.getControl("javax.media.control.StreamWriterControl");
//set limit to 5MB
if (swc != null)
 swc.setStreamSizeLimit(5000000);

// now start the filewriter and processor
try {
 filewriter.start();
} catch (IOException e) {
 System.exit(-1);
}
// Capture for 5 seconds
sh.playToEndOfMedia(5000);
sh.close();
// Wait for an EndOfStream from the DataSink and close it...
filewriter.close();

Example 5-4: Writing captured audio to a Þle with a DataSink. (2 of 2)

Capturing Time-Based Media with JMF 83
Example: Capturing and Saving Audio and Video Data

In this example, a ProcessorModel is used to create a Processor to capture
live audio and video data, encode the data as IMA4 and Cinepak tracks,
interleave the tracks, and save the interleaved media stream to a Quick-
Time Þle.

When you construct a ProcessorModel by specifying the track formats and
output content type and then use that model to construct a Processor, the
Processor is automatically connected to the capture device that meets the
format requirements, if there is one.

Example 5-5: Encoding captured audio data.

// Configure the processor
if (!sh.configure(10000))
 System.exit(-1);
// Set the output content type
p.setContentDescriptor(new

 FileTypeDescriptor(FileTypeDescriptor.WAVE));

// Get the track control objects
TrackControl track[] = p.getTrackControls();
boolean encodingPossible = false;
// Go through the tracks and try to program one of them
// to output ima4 data.
for (int i = 0; i < track.length; i++) {
 try {

track[i].setFormat(new AudioFormat(AudioFormat.IMA4_MS));
encodingPossible = true;

 } catch (Exception e) {
// cannot convert to ima4
track[i].setEnabled(false);

 }
}

if (!encodingPossible) {
 sh.close();
 System.exit(-1);
}
// Realize the processor
if (!sh.realize(10000))
 System.exit(-1);

JMF API Guide84

Example 5-6: Creating a capture Processor with ProcessorModel.

Format formats[] = new Format[2];
formats[0] = new AudioFormat(AudioFormat.IMA4);
formats[1] = new VideoFormat(VideoFormat.CINEPAK);
FileTypeDescriptor outputType =
 new FileTypeDescriptor(FileTypeDescriptor.QUICKTIME);
Processor p = null;

try {
 p = Manager.createRealizedProcessor(new ProcessorModel(formats,

 outputType));
} catch (IOException e) {
 System.exit(-1);
} catch (NoProcessorException e) {
 System.exit(-1);
} catch (CannotRealizeException e) {
 System.exit(-1);
}
// get the output of the processor
DataSource source = p.getDataOutput();
// create a File protocol MediaLocator with the location

 // of the file to
// which bits are to be written
MediaLocator dest = new MediaLocator("file://foo.mov");
// create a datasink to do the file writing & open the

 // sink to make sure
// we can write to it.
DataSink filewriter = null;
try {
 filewriter = Manager.createDataSink(source, dest);
 filewriter.open();
} catch (NoDataSinkException e) {
 System.exit(-1);
} catch (IOException e) {
 System.exit(-1);
} catch (SecurityException e) {
 System.exit(-1);
}
// now start the filewriter and processor
try {
 filewriter.start();
} catch (IOException e) {
 System.exit(-1);
}
p.start();
// stop and close the processor when done capturing...
// close the datasink when EndOfStream event is received...

6

Extending JMF

You can extend JMF by implementing one of the plug-in interfaces to per-
form custom processing on a Track, or by implementing completely new
DataSources and MediaHandlers.

Note: JMF Players and Processors are not required to support plug-
insÑplug-ins wonÕt work with JMF 1.0-based Players and some 2.0-based
implementations might choose not to support plug-ins. The reference im-
plementation of JMF 2.0 provided by Sun Microsystems, Inc. and IBM
Corporation fully supports the plug-in API.

Implementing JMF Plug-Ins

Custom JMF plug-ins can be used seamlessly with Processors that sup-
port the plug-in API. After you implement your plug-in, you need to
install it and register it with the PlugInManager to make it available to
plug-in compatible Processors.

Implementing a Demultiplexer Plug-In

A Demultiplexer parses media streams such as WAV, MPEG or QuickTime.
If the stream is multiplexed, the separate tracks are extracted. You might
want to implement a Demultiplexer plug-in to support a new Þle format
or provide a higher-performance demultiplexer. If you implement a cus-
tom DataSource, you can implement a Demultiplexer plug-in that works
with your custom DataSource to enable playback through an existing Pro-
cessor.

A Demultiplexer is a single-input, multi-output processing component. It
reads data from a push or pull DataSource, extracts the individual tracks,
and outputs each track separately.
85

JMF API Guide86
A Demultiplexer is a type of MediaHandler, it must implement the MediaH-
andler setSource method. This method is used by the Processor to locate
a Demultiplexer that can handle its DataSource. The Processor goes
through the list of registered Demultiplexers until it Þnds one that does
not return an exception when setSource it called.

The main work performed by a Demultiplexer is done in the implementa-
tion of the getTracks method, which returns an array of the tracks
extracted from the input DataSource.

A complete example of a GSM demultiplexer is provided in ÒDemulti-
plexer Plug-InÓ on page 183. When you implement a Demultiplexer, you
need to:

1. Implement getSupportedInputContentDescriptors to advertise what
input formats the demulitplexer supports. For example, the GSM de-
multiplexer needs to advertise that it supports GSM files.

2. Implement the MediaHandler setSource method to check the Data-
Source and determine whether or not the Demultiplexer can handle
that type of source. For example, the GSM demultiplexer supports
PullDataSources:

Example 6-1: Implementing getSupportedInputContentDescriptors.

 private static ContentDescriptor[] supportedFormat =

 new ContentDescriptor[] {new ContentDescriptor("audio.x_gsm")};

 public ContentDescriptor [] getSupportedInputContentDescriptors() {

 return supportedFormat;

 }

Example 6-2: Implementing setSource for a Demultiplexer. (1 of 2)

 public void setSource(DataSource source)
 throws IOException, IncompatibleSourceException {

 if (!(source instanceof PullDataSource)) {
 throw new IncompatibleSourceException("DataSource
 not supported: " + source);
 } else {
 streams = ((PullDataSource) source).getStreams();
 }

Extending JMF 87
3. Implement getTracks to parse the header and extract the individual
tracks from the stream if it is multiplexed. In the GSM demultiplexer a
readHeader method is implemented to parse the header. The getTracks
method returns an array of GsmTracks. (See ÒDemultiplexer Plug-InÓ on
page 183 for the implementation of GsmTracks.)

 if (streams == null) {
 throw new IOException("Got a null stream from the DataSource");
 }

 if (streams.length == 0) {
 throw new IOException("Got a empty stream array
 from the DataSource");
 }

 this.source = source;
 this.streams = streams;

 positionable = (streams[0] instanceof Seekable);
 seekable = positionable && ((Seekable)
 streams[0]).isRandomAccess();

 if (!supports(streams))
 throw new IncompatibleSourceException("DataSource not
 supported: " + source);
 }

Example 6-3: Implementing getTracks for a Demultiplexer. (1 of 2)

 public Track[] getTracks() throws IOException, BadHeaderException {

 if (tracks[0] != null)
 return tracks;
 stream = (PullSourceStream) streams[0];
 readHeader();
 bufferSize = bytesPerSecond;
 tracks[0] = new GsmTrack((AudioFormat) format,
 /*enabled=*/ true,
 new Time(0),
 numBuffers,
 bufferSize,
 minLocation,
 maxLocation
);
 return tracks;
 }

Example 6-2: Implementing setSource for a Demultiplexer. (2 of 2)

JMF API Guide88
Implementing a Codec or Effect Plug-In

Codec plug-ins are used to decode compressed media data, convert media
data from one format to another, or encode raw media data into a com-
pressed format. You might want to implement a Codec to provide perfor-
mance enhancements over existing solutions, support new compressed or
uncompressed data formats, or convert data from a custom format to a
standard format that can be easily processed and rendered.

A Codec is a single-input, single-output processing component. It reads
data for an individual track, processes the data, and outputs the results.

A Codec plug-in can enable the user to control the processing it performs
through EncodingControl or DecodingControl objects. These controls pro-
vide a way to adjust attributes such as the frame rate, bit rate, and com-
pression ratio. Codec controls are accessed through the getControls
method. If a particular CodecControl provides a user-interface component,
its accessed by calling getControlComponent.

When you implement a Codec, you need to:

1. Implement getSupportedInputFormats and getSupportedOutputFor-
mats to advertise what input and output formats the codec supports.

2. Enable the selection of those formats by implementing setInputFormat
and setOutputFormat.

3. Implement process to actually perform the compression or decompres-
sion of the input Track.

// ...

 private void readHeader()
 throws IOException, BadHeaderException {

 minLocation = getLocation(stream); // Should be zero

 long contentLength = stream.getContentLength();
 if (contentLength != SourceStream.LENGTH_UNKNOWN) {
 double durationSeconds = contentLength / bytesPerSecond;
 duration = new Time(durationSeconds);
 maxLocation = contentLength;
 } else {
 maxLocation = Long.MAX_VALUE;
 }

Example 6-3: Implementing getTracks for a Demultiplexer. (2 of 2)

Extending JMF 89
Effect Plug-ins

An Effect plug-in is actually a specialized type of Codec that performs
some processing on the input Track other than compression or decom-
pression. For example, you might implement a gain effect that adjusts the
volume of an audio track. Like a Codec, an Effect is a single-input, single-
output processing component and the data manipulation that the Effect
performs is implemented in the process method.

An Effect plug-in can be used as either a pre-processing effect or a post-
processing effect. For example, if a Processor is being used to render a
compressed media stream, the Effect would typically be used as a post-
processing effect and applied after the stream has been decoded. Con-
versely, if the Processor was being used to output a compressed media
stream, the Effect would typically be applied as a pre-processing effect
before the stream is encoded.

When you implement an Effect, you need to:

1. Implement getSupportedInputFormats and getSupportedOutputFor-
mats to advertise what input and output formats the effect supports.

2. Enable the selection of those formats by implementing setInputFormat
and setOutputFormat.

3. Implement process to actually perform the effect processing.

Note that thereÕs no mechanism for specifying what a particular Effect
doesÑthe name of an Effect plug-in class should provide some indica-
tion of its intended use.

Example: GainEffect Plug-In

In this example, the Effect interface is implemented to create an effect
that adjusts the gain on the incoming audio data and outputs the modiÞed
data. By default, the GainEffect process method increases the gain by a
factor of 2.

JMF API Guide90
Example 6-4: Implementing a gain effect plug-in (1 of 5)

import javax.media.*;
import javax.media.format.*;
import javax.media.format.audio.*;

public class GainEffect implements Effect {

 /** The effect name **/
 private static String EffectName="GainEffect";

 /** chosen input Format **/
 protected AudioFormat inputFormat;

 /** chosen output Format **/
 protected AudioFormat outputFormat;

 /** supported input Formats **/
 protected Format[] supportedInputFormats=new Format[0];

 /** supported output Formats **/
 protected Format[] supportedOutputFormats=new Format[0];

 /** selected Gain **/
 protected float gain = 2.0F;
 /** initialize the formats **/
 public GainEffect() {
 supportedInputFormats = new Format[] {

 new AudioFormat(
 AudioFormat.LINEAR,

 Format.NOT_SPECIFIED,
 16,
 Format.NOT_SPECIFIED,
 AudioFormat.LITTLE_ENDIAN,
 AudioFormat.SIGNED,
 16,
 Format.NOT_SPECIFIED,
 Format.byteArray

)
};

 supportedOutputFormats = new Format[] {
 new AudioFormat(
 AudioFormat.LINEAR,

 Format.NOT_SPECIFIED,
 16,
 Format.NOT_SPECIFIED,
 AudioFormat.LITTLE_ENDIAN,
 AudioFormat.SIGNED,
 16,
 Format.NOT_SPECIFIED,
 Format.byteArray

)
};

Extending JMF 91
 }
 /** get the resources needed by this effect **/
 public void open() throws ResourceUnavailableException {
 }

 /** free the resources allocated by this codec **/
 public void close() {
 }

 /** reset the codec **/
 public void reset() {
 }

 /** no controls for this simple effect **/
 public Object[] getControls() {
 return (Object[]) new Control[0];
 }

 /**
 * Return the control based on a control type for the effect.
 **/
 public Object getControl(String controlType) {
 try {
 Class cls = Class.forName(controlType);
 Object cs[] = getControls();
 for (int i = 0; i < cs.length; i++) {
 if (cls.isInstance(cs[i]))
 return cs[i];
 }
 return null;
 } catch (Exception e) { // no such controlType or such control
 return null;
 }
 }
 /************** format methods *************/
 /** set the input format **/
 public Format setInputFormat(Format input) {
 // the following code assumes valid Format
 inputFormat = (AudioFormat)input;
 return (Format)inputFormat;
 }
 /** set the output format **/
 public Format setOutputFormat(Format output) {
 // the following code assumes valid Format
 outputFormat = (AudioFormat)output;
 return (Format)outputFormat;
 }
 /** get the input format **/
 protected Format getInputFormat() {
 return inputFormat;
 }

Example 6-4: Implementing a gain effect plug-in (2 of 5)

JMF API Guide92
 /** get the output format **/
 protected Format getOutputFormat() {
 return outputFormat;
 }

 /** supported input formats **/
 public Format [] getSupportedInputFormats() {
 return supportedInputFormats;
 }

 /** output Formats for the selected input format **/
 public Format [] getSupportedOutputFormats(Format in) {
 if (! (in instanceof AudioFormat))
 return new Format[0];

 AudioFormat iaf=(AudioFormat) in;

 if (!iaf.matches(supportedInputFormats[0]))
 return new Format[0];

AudioFormat oaf= new AudioFormat(
 AudioFormat.LINEAR,

 iaf.getSampleRate(),
 16,
 iaf.getChannels(),
 AudioFormat.LITTLE_ENDIAN,
 AudioFormat.SIGNED,
 16,
 Format.NOT_SPECIFIED,
 Format.byteArray
);

 return new Format[] {oaf};
 }

 /** gain accessor method **/
 public void setGain(float newGain){
 gain=newGain;
 }
 /** return effect name **/
 public String getName() {
 return EffectName;
 }

 /** do the processing **/
 public int process(Buffer inputBuffer, Buffer outputBuffer){

 // == prolog
 byte[] inData = (byte[])inputBuffer.getData();
 int inLength = inputBuffer.getLength();
 int inOffset = inputBuffer.getOffset();

Example 6-4: Implementing a gain effect plug-in (3 of 5)

Extending JMF 93
 byte[] outData = validateByteArraySize(outputBuffer, inLength);
 int outOffset = outputBuffer.getOffset();

int samplesNumber = inLength / 2 ;

 // == main

 for (int i=0; i< samplesNumber;i++) {
 int tempL = inData[inOffset ++];
 int tempH = inData[inOffset ++];
 int sample = tempH | (tempL & 255);

 sample = (int)(sample * gain);

 if (sample>32767) // saturate
 sample = 32767;
 else if (sample < -32768)
 sample = -32768;

 outData[outOffset ++]=(byte) (sample & 255);
 outData[outOffset ++]=(byte) (sample >> 8);

 }

 // == epilog
 updateOutput(outputBuffer,outputFormat, samplesNumber, 0);
 return BUFFER_PROCESSED_OK;
 }
 /**
 * Utility: validate that the Buffer object's data size is at least
 * newSize bytes.
 * @return array with sufficient capacity
 **/
 protected byte[] validateByteArraySize(Buffer buffer,int newSize) {
 Object objectArray=buffer.getData();
 byte[] typedArray;
 if (objectArray instanceof byte[]) { // is correct type AND not null
 typedArray=(byte[])objectArray;
 if (typedArray.length >= newSize) { // is sufficient capacity
 return typedArray;
 }
 }
 System.out.println(getClass().getName()+

 " : allocating byte["+newSize+"] ");
 typedArray = new byte[newSize];
 buffer.setData(typedArray);
 return typedArray;
 }
 /** utility: update the output buffer fields **/
 protected void updateOutput(Buffer outputBuffer,
 Format format,int length, int offset) {

Example 6-4: Implementing a gain effect plug-in (4 of 5)

JMF API Guide94
Implementing a Multiplexer Plug-In

A Multiplexer is essentially the opposite of a Demultiplexer: it takes indi-
vidual tracks of media data and merges them into a single multiplexed
media-stream such as an MPEG or QuickTime Þle. You might want to
implement a Multiplexer plug-in to support a custom DataSource or pro-
vide a higher-performance. However, itÕs not always necessary to imple-
ment a separate Multiplexer plug-inÑmultiplexing can also be
performed by a DataSink.

A Multiplexer is a multi-input, single-output processing component. It
reads data from a set of tracks and outputs a DataSource.

The main work performed by a Multiplexer is done in the implementa-
tion of the process method. The getDataSource method returns the Data-
Source generated by the Multiplexer.

When you implement a Multiplexer, you need to:

1. Implement getSupportedOutputContentDescriptors to advertise what
output formats the Multiplexer supports.

2. Enable the selection of the output format by implementing setOutput-
ContentDescriptor.

3. Implement process to actually merge the individual tracks into an out-
put stream of the selected format.

Unlike a Codec, there is no speciÞc query mechanism. The initialize-
Tracks method should return false if any of the speciÞed track formats
are not supported.

 outputBuffer.setFormat(format);

 outputBuffer.setLength(length);

 outputBuffer.setOffset(offset);

 }

}

Example 6-4: Implementing a gain effect plug-in (5 of 5)

Extending JMF 95
Implementing a Renderer Plug-In

A Renderer delivers media data in its Þnal processed state. It is a single-
input processing component with no output. Renderer plug-ins read data
from a DataSource and typically present the media data to the user, but
can also be used to provide access to the processed media data for use by
another application or device. For example, you might implement a Ren-
derer plug-in if you want to render a video to a location other than the
screen.

If youÕre implementing a video renderer, you should implement the Vide-
oRenderer interface, which extends Renderer to deÞne video-speciÞc
attributes such as the Component where the video will be rendered.

The main work performed by a Renderer is done in the implementation of
the process method. When you implement a Renderer, you need to:

1. Implement getSupportedInputFormats to advertise what input formats
the Renderer supports.

2. Enable the selection of the input format by implementing setInputFor-
mat.

3. Implement process to actually process the data and render it to the out-
put device that this Renderer represents.

Example: AWTRenderer

This example implements the Renderer plug-in to create a Renderer for
RGB images that uses AWT Image.

Example 6-5: Implementing a Renderer plug-in (1 of 7)

import javax.media.*;

import javax.media.renderer.VideoRenderer;

import javax.media.format.Format;

import javax.media.format.video.VideoFormat;

import javax.media.format.video.RGBFormat;

import java.awt.*;

import java.awt.image.*;

import java.awt.event.*;

import java.util.Vector;

JMF API Guide96
/***
 * Renderer for RGB images using AWT Image.
**/
public class SampleAWTRenderer implements
javax.media.renderer.VideoRenderer {
 /**
 * Variables and Constants
 **/

 // The descriptive name of this renderer
 private static final String name = "Sample AWT Renderer";

 protected RGBFormat inputFormat;
 protected RGBFormat supportedRGB;
 protected Format [] supportedFormats;

 protected MemoryImageSource sourceImage;
 protected Image destImage;
 protected Buffer lastBuffer = null;

 protected int inWidth = 0;
 protected int inHeight = 0;
 protected Component component = null;
 protected Rectangle reqBounds = null;
 protected Rectangle bounds = new Rectangle();
 protected boolean started = false;

 /**
 * Constructor
 **/

 public SampleAWTRenderer() {

// Prepare supported input formats and preferred format
int rMask = 0x000000FF;
int gMask = 0x0000FF00;
int bMask = 0x00FF0000;

supportedRGB = new RGBFormat(null, // size
 Format.NOT_SPECIFIED, // maxDataLength
 int[].class, // buffer type
 Format.NOT_SPECIFIED, // frame rate
 32, // bitsPerPixel
 RGBFormat.PACKED, // packed
 rMask, gMask, bMask, // component masks
 1, // pixel stride
 Format.NOT_SPECIFIED, // line stride
 Format.FALSE, // flipped
 Format.NOT_SPECIFIED // endian
);

supportedFormats = new VideoFormat[1];
supportedFormats[0] = supportedRGB;

 }

Example 6-5: Implementing a Renderer plug-in (2 of 7)

Extending JMF 97
 /**
 * Controls implementation
 **/

 // Returns an array of supported controls

 public Object[] getControls() {
// No controls

 return (Object[]) new Control[0];
 }

 /**
 * Return the control based on a control type for the PlugIn.
 */
 public Object getControl(String controlType) {
 try {
 Class cls = Class.forName(controlType);
 Object cs[] = getControls();
 for (int i = 0; i < cs.length; i++) {
 if (cls.isInstance(cs[i]))
 return cs[i];
 }
 return null;
 } catch (Exception e) { // no such controlType or such control
 return null;
 }
 }

 /**
 * PlugIn implementation
 **/

 public String getName() {
return name;

 }

 // Opens the plugin
 public void open() throws ResourceUnavailableException {

sourceImage = null;
destImage = null;
lastBuffer = null;

 }
 /** Resets the state of the plug-in. Typically at end of media or
 * when media is repositioned.
 */
 public void reset() {

// Nothing to do
 }

 public void close() {
// Nothing to do

 }

Example 6-5: Implementing a Renderer plug-in (3 of 7)

JMF API Guide98
 /**
 * Renderer implementation
 **/

 public void start() {
started = true;

 }

 public void stop() {
started = false;

 }

 // Lists the possible input formats supported by this plug-in.

 public Format [] getSupportedInputFormats() {
return supportedFormats;

 }
 // Set the data input format.

 public Format setInputFormat(Format format) {
if (format != null && format instanceof RGBFormat &&
 format.matches(supportedRGB)) {

 inputFormat = (RGBFormat) format;
 Dimension size = inputFormat.getSize();
 inWidth = size.width;
 inHeight = size.height;
 return format;
} else
 return null;

 }

 // Processes the data and renders it to a component

 public synchronized int process(Buffer buffer) {
if (component == null)
 return BUFFER_PROCESSED_FAILED;

Format inf = buffer.getFormat();
if (inf == null)
 return BUFFER_PROCESSED_FAILED;
if (inf != inputFormat || !buffer.getFormat().equals(inputFormat))

 {
 if (setInputFormat(inf) != null)

 return BUFFER_PROCESSED_FAILED;
}

Object data = buffer.getData();
if (!(data instanceof int[]))
 return BUFFER_PROCESSED_FAILED;

Example 6-5: Implementing a Renderer plug-in (4 of 7)

Extending JMF 99
if (lastBuffer != buffer) {
 lastBuffer = buffer;
 newImage(buffer);
}

sourceImage.newPixels(0, 0, inWidth, inHeight);

Graphics g = component.getGraphics();
if (g != null) {
 if (reqBounds == null) {

bounds = component.getBounds();
bounds.x = 0;
bounds.y = 0;

 } else
 bounds = reqBounds;

 g.drawImage(destImage, bounds.x, bounds.y,
bounds.width, bounds.height,
0, 0, inWidth, inHeight, component);

}

return BUFFER_PROCESSED_OK;
 }

 /**
 * VideoRenderer implementation
 **/

 /**
 * Returns an AWT component that it will render to. Returns null
 * if it is not rendering to an AWT component.
 */
 public java.awt.Component getComponent() {

if (component == null) {
 component = new Canvas() {

public Dimension getPreferredSize() {
 return new Dimension(getInWidth(), getInHeight());
}

public void update(Graphics g) {
}

public void paint(Graphics g) {
 // Need to repaint image if the movie is in paused state
}

 };
}

return component;
 }

Example 6-5: Implementing a Renderer plug-in (5 of 7)

JMF API Guide100
 /**
 * Requests the renderer to draw into a specified AWT component.
 * Returns false if the renderer cannot draw into the specified
 * component.
 */
 public boolean setComponent(java.awt.Component comp) {

component = comp;
return true;

 }

 /**
 * Sets the region in the component where the video is to be
 * rendered to. Video is to be scaled if necessary. If
 * <code>rect</code> is null, then the video occupies the entire
 * component.
 */
 public void setBounds(java.awt.Rectangle rect) {

reqBounds = rect;
 }

 /**
 * Returns the region in the component where the video will be
 * rendered to. Returns null if the entire component is being used.
 */
 public java.awt.Rectangle getBounds() {

return reqBounds;
 }

 /**
 * Local methods
 **/

 int getInWidth() {
return inWidth;

 }

 int getInHeight() {
return inHeight;

 }

 private void newImage(Buffer buffer) {

Object data = buffer.getData();
if (!(data instanceof int[]))
 return;
RGBFormat format = (RGBFormat) buffer.getFormat();

DirectColorModel dcm = new
 DirectColorModel(format.getBitsPerPixel(),

 format.getRedMask(),
 format.getGreenMask(),
 format.getBlueMask());

Example 6-5: Implementing a Renderer plug-in (6 of 7)

Extending JMF 101
Registering a Custom Plug-In With the Plug-In Manager

To make a custom plug-in available to a Processor through the TrackCon-
trol interface, you need to register it with the PlugInManager. (The
default plug-ins are registered automatically.)

To register a new plug-in, you use the PlugInManager addPlugIn method.
You must call commit to make the addition permanent. For example, to
register the GainEffect plug-in from the example on page 89:

sourceImage = new MemoryImageSource(format.getLineStride(),

 format.getSize().height,

 dcm,

 (int[])data, 0,

 format.getLineStride());

sourceImage.setAnimated(true);

sourceImage.setFullBufferUpdates(true);

if (component != null) {

 destImage = component.createImage(sourceImage);

 component.prepareImage(destImage, component);

}

 }

}

Example 6-6: Registering a new plug-in. (1 of 2)

// Name of the new plugin
string GainPlugin = new String(“COM.mybiz.media.GainEffect”);

// Supported input Formats
Format[] supportedInputFormats = new Format[] {

 new AudioFormat(
 AudioFormat.LINEAR,

 Format.NOT_SPECIFIED,
 16,
 Format.NOT_SPECIFIED,
 AudioFormat.LITTLE_ENDIAN,
 AudioFormat.SIGNED,
 16,
 Format.NOT_SPECIFIED,
 Format.byteArray

Example 6-5: Implementing a Renderer plug-in (7 of 7)

JMF API Guide102
If you want to make your plug-in available to other users, you should cre-
ate an Java applet or application that performs this registration process
and distribute it with your plug-in.

You can remove a plug-in either temporarily or permanently with the
removePlugIn method. To make the change permanent, you call commit.

Note: The reference implementation of JMF 2.0 provided by Sun Micro-
systems, Inc. and IBM Corporation provides a utility application, JMFReg-
istry, that you can use to register plug-ins interactively.

Implementing Custom Data Sources and Media Handlers

Custom DataSources and MediaHandlers such as Players and Processors
can be used seamlessly with JMF to support new formats and integrate
existing media engines with JMF.

Implementing a Protocol Data Source

A DataSource is an abstraction of a media protocol-handler. You can
implement new types of DataSources to support additional protocols by

)
};

// Supported output Formats
Format[] supportedOutputFormats = new Format[] {

 new AudioFormat(
 AudioFormat.LINEAR,

 Format.NOT_SPECIFIED,
 16,
 Format.NOT_SPECIFIED,
 AudioFormat.LITTLE_ENDIAN,
 AudioFormat.SIGNED,
 16,
 Format.NOT_SPECIFIED,
 Format.byteArray

)
};

// Add the new plug-in to the plug-in registry
PlugInManager.addPlugIn(GainPlugin, supportedInputFormats,
 supportedOutputFormats, EFFECT);

// Save the changes to the plug-in registry
PlugInManager.commit();

Example 6-6: Registering a new plug-in. (2 of 2)

Extending JMF 103
extending PullDataSource, PullBufferDataSource, PushDataSource, or
PushBufferDataSource. If you implement a custom DataSource, you can
implement Demultiplexer and Multiplexer plug-ins that work with your
custom DataSource to enable playback through an existing Processor, or
you can implement a completely custom MediaHandler for your Data-
Source.

A DataSource manages a collection of SourceStreams of the corresponding
type. For example, a PullDataSource only supports pull data-streams; it
manages a collection of PullSourceStreams. Similarly, a PushDataSource
only supports push data-streams; it manages a collection of PushSourceS-
treams. When you implement a new DataSource, you also need to imple-
ment the corresponding source stream: PullSourceStream,
PullBufferStream, PushSourceStream, or PushBufferStream.

If your DataSource supports changing the media position within the
stream to a speciÞed time, it should implement the Positionable interface.
If the DataSource supports seeking to a particular point in the stream, the
corresponding SourceStream should implement the Seekable interface.

So that the Manager can construct your custom DataSource, the name and
package hierarchy for the DataSource must follow certain conventions.
The fully qualiÞed name of your custom DataSource should be:

<protocol package-prefix>.media.protocol.<protocol>.DataSource

The protocol package-preÞx is a unique identiÞer for your code that you reg-
ister with the JMF PackageManager (for example, COM.mybiz) as a protocol
package-preÞx. The protocol identiÞes the protocol for your new Data-
Source. For more information, see ÒIntegrating a Custom Data Source
with JMFÓ on page 103.

Example: Creating an FTP DataSource

The example in ÒSample Data Source ImplementationÓ on page 197 dem-
onstrates how to support an additional protocol by implementing a cus-
tom DataSource and SourceStream. This DataSource, FTPDataSource,
implements PullDataSource.

Integrating a Custom Data Source with JMF

To integrate a custom DataSource implementation with JMF you need to:

JMF API Guide104
¥ Install the package containing the new DataSource class, <protocol-
prefix>.media.protocol.<protocol>.DataSource.

¥ Add your package prefix to the protocol package-prefix list controlled
by the PackageManager. The Manager queries the PackageManager for the
list of protocol package-prefixes it uses to search for a DataSource.

For example, to integrate a new DataSource for the protocol type xxx, you
would create and install a package called:

<protocol package-prefix>.media.protocol.xxx.DataSource

that contains the new DataSource class. You also need to add your package
preÞx (an identiÞer for your code, such as COM.mybiz) to the protocol pack-
age-preÞx list managed by the PackageManager.

If you want to make your new DataSource available to other users, you
should create an Java applet or application that performs this registration
process and distribute it with your DataSource.

Implementing a Basic Controller

Controllers can be implemented to present time-based media other than
audio or video data. For example, you might want to create a Controller
that manages a slide-show presentation of still images.

Example: Creating a Timeline Controller

The sample in ÒSample Controller ImplementationÓ on page 207 illus-
trates how a simple time-line Controller can be implemented in JMF. This
Controller, TimeLineController, takes array of time values (representing a
time line) and it keeps track of which segment in the time line you are in.

Example 6-7: Registering a protocol package-preÞx.

Vector packagePrefix = PackageManager.getProtocolPrefixList();
string myPackagePrefix = new String(“COM.mybiz”);
// Add new package prefix to end of the package prefix list.
packagePrefix.addElement(myPackagePrefix);
PackageManager.setProtocolPrefixList();
// Save the changes to the package prefix list.
PackageManager.commitProtocolPrefixList();

Extending JMF 105
TimeLineController uses a custom media event, TimeLineEvent, to indi-
cate when the segment in the time line changes.

Implementing a DataSink

JMF provides a default DataSink that can be used to write data to a Þle.
Other types of DataSink classes can be implemented to facilitate writing
data to the network or to other destinations.

To create a custom DataSink, you implement the DataSink interface. A
DataSink is a type of MediaHandler, so you must also implement the Medi-
aHandler setSource method.

To use your DataSink with JMF, you need to add your package-preÞx to
the content package-preÞx list maintained by the PackageManager. For
more information, see ÒIntegrating a Custom Media Handler with JMFÓ.

Integrating a Custom Media Handler with JMF

To integrate a new MediaHandler with JMF, you need to:

¥ Implement the MediaHandler setSource method to check the Data-
Source and determine whether or not the handler can handle that type
of source. When the client programmer calls the appropriate Manager
create method, setSource is called as the Manager searches for an ap-
propriate MediaHandler.

¥ Install the package containing the new class.

¥ Add your package prefix to the content package-prefix list controlled
by the PackageManager. The Manager queries the PackageManager for the
list of content package-prefixes it uses to search for a MediaHandler.

For example, to integrate a new Player for the content type mpeg.sys, you
would create and install a package called:

<content package-prefix>.media.content.mpeg.sys.Handler

that contains the new Player class. The package preÞx is an identiÞer for
your code, such as COM.mybiz. You also need to add your package preÞx to
the content package-preÞx list managed by the PackageManager.

JMF API Guide106
If you want to make your new MediaHandler available to other users, you
should create an Java applet or application that performs this registration
process and distribute it with your MediaHandler.

Registering a Capture Device with JMF

The implementor of a device is responsible for deÞning a CaptureDevice-
Info object for the device. When the device is installed, it must be regis-
tered with the CaptureDeviceManager by calling addDevice.

Example 6-8: Registering a content package-preÞx.

Vector packagePrefix = PackageManager.getContentPrefixList();
string myPackagePrefix = new String(“COM.mybiz”);
// Add new package prefix to end of the package prefix list.
packagePrefix.addElement(myPackagePrefix);
PackageManager.setContentPrefixList();
// Save the changes to the package prefix list.
PackageManager.commitContentPrefixList();

Part 2:
 Real-Time Transport

Protocol
107

JMF API Guide108

7

Working with Real-Time

Media Streams

To send or receive a live media broadcast or conduct a video conference
over the Internet or Intranet, you need to be able to receive and transmit
media streams in real-time. This chapter introduces streaming media con-
cepts and describes the Real-time Transport Protocol JMF uses for receiv-
ing and transmitting media streams across the network.

Streaming Media

When media content is streamed to a client in real-time, the client can
begin to play the stream without having to wait for the complete stream to
download. In fact, the stream might not even have a predeÞned dura-
tionÑdownloading the entire stream before playing it would be impossi-
ble. The term streaming media is often used to refer to both this technique of
delivering content over the network in real-time and the real-time media
content thatÕs delivered.

Streaming media is everywhere you look on the webÑlive radio and tele-
vision broadcasts and webcast concerts and events are being offered by a
rapidly growing number of web portals, and itÕs now possible to conduct
audio and video conferences over the Internet. By enabling the delivery of
dynamic, interactive media content across the network, streaming media
is changing the way people communicate and access information.

Protocols for Streaming Media

Transmitting media data across the net in real-time requires high network
throughput. ItÕs easier to compensate for lost data than to compensate for
109

JMF API Guide110
large delays in receiving the data. This is very different from accessing
static data such as a Þle, where the most important thing is that all of the
data arrive at its destination. Consequently, the protocols used for static
data donÕt work well for streaming media.

The HTTP and FTP protocols are based on the Transmission Control Pro-
tocol (TCP). TCP is a transport-layer protocol1 designed for reliable data
communications on low-bandwidth, high-error-rate networks. When a
packet is lost or corrupted, itÕs retransmitted. The overhead of guarantee-
ing reliable data transfer slows the overall transmission rate.

For this reason, underlying protocols other than TCP are typically used for
streaming media. One thatÕs commonly used is the User Datagram Proto-
col (UDP). UDP is an unreliable protocol; it does not guarantee that each
packet will reach its destination. ThereÕs also no guarantee that the pack-
ets will arrive in the order that they were sent. The receiver has to be able
to compensate for lost data, duplicate packets, and packets that arrive out
of order.

Like TCP, UDP is a general transport-layer protocolÑa lower-level net-
working protocol on top of which more application-speciÞc protocols are
built. The Internet standard for transporting real-time data such as audio
and video is the Real-Time Transport Protocol (RTP).

RTP is deÞned in IETF RFC 1889, a product of the AVT working group of
the Internet Engineering Task Force (IETF).

Real-Time Transport Protocol

RTP provides end-to-end network delivery services for the transmission
of real-time data. RTP is network and transport-protocol independent,
though it is often used over UDP.

1. In the seven layer ISO/OSI data communications model, the transport layer is level
four. For more information about the ISO/OSI model, see Understanding OSI.
Larmouth, John. International Thompson Computer Press, 1996. ISBN 1850321760.

Working with Real-Time Media Streams 111
Figure 7-1: RTP architecture.

RTP can be used over both unicast and multicast network services. Over a
unicast network service, separate copies of the data are sent from the
source to each destination. Over a multicast network service, the data is
sent from the source only once and the network is responsible for trans-
mitting the data to multiple locations. Multicasting is more efÞcient for
many multimedia applications, such as video conferences. The standard
Internet Protocol (IP) supports multicasting.

RTP Services

RTP enables you to identify the type of data being transmitted, determine
what order the packets of data should be presented in, and synchronize
media streams from different sources.

RTP data packets are not guaranteed to arrive in the order that they were
sentÑin fact, theyÕre not guaranteed to arrive at all. ItÕs up to the receiver
to reconstruct the senderÕs packet sequence and detect lost packets using
the information provided in the packet header.

While RTP does not provide any mechanism to ensure timely delivery or
provide other quality of service guarantees, it is augmented by a control
protocol (RTCP) that enables you to monitor the quality of the data distri-
bution. RTCP also provides control and identiÞcation mechanisms for
RTP transmissions.

If quality of service is essential for a particular application, RTP can be
used over a resource reservation protocol that provides connection-ori-
ented services.

Real-Time Media Frameworks and Applications

Real-Time Transport Protocol (RTP)

Real-Time Control Protocol (RTCP)

Other Network and
Transport Protocols

(TCP, ATM, ST-II, etc.) IP

UDP

JMF API Guide112
RTP Architecture

An RTP session is an association among a set of applications communicat-
ing with RTP. A session is identiÞed by a network address and a pair of
ports. One port is used for the media data and the other is used for control
(RTCP) data.

A participant is a single machine, host, or user participating in the session.
Participation in a session can consist of passive reception of data
(receiver), active transmission of data (sender), or both.

Each media type is transmitted in a different session. For example, if both
audio and video are used in a conference, one session is used to transmit
the audio data and a separate session is used to transmit the video data.
This enables participants to choose which media types they want to
receiveÑfor example, someone who has a low-bandwidth network con-
nection might only want to receive the audio portion of a conference.

Data Packets

The media data for a session is transmitted as a series of packets. A series
of data packets that originate from a particular source is referred to as an
RTP stream. Each RTP data packet in a stream contains two parts, a struc-
tured header and the actual data (the packetÕs payload).

Figure 7-2: RTP data-packet header format.

The header of an RTP data packet contains:

¥ The RTP version number (V): 2 bits. The version defined by the cur-
rent specification is 2.

V P X CC M PT Sequence Number

Timestamp

Synchronization Source (SSRC)

Content Source (CSRC)
(0-15)

Bit 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 16 7 8 9 0 1 2 3 4 5 6 7 8 9 0 31

Working with Real-Time Media Streams 113
¥ Padding (P): 1 bit. If the padding bit is set, there are one or more bytes
at the end of the packet that are not part of the payload. The very last
byte in the packet indicates the number of bytes of padding. The
padding is used by some encryption algorithms.

¥ Extension (X): 1 bit. If the extension bit is set, the fixed header is fol-
lowed by one header extension. This extension mechanism enables
implementations to add information to the RTP Header.

¥ CSRC Count (CC): 4 bits. The number of CSRC identifiers that follow
the fixed header. If the CSRC count is zero, the synchronization source
is the source of the payload.

¥ Marker (M): 1 bit. A marker bit defined by the particular media
profile.

¥ Payload Type (PT): 7 bits. An index into a media profile table that
describes the payload format. The payload mappings for audio and
video are specified in RFC 1890.

¥ Sequence Number: 16 bits. A unique packet number that identifies
this packetÕs position in the sequence of packets. The packet number
is incremented by one for each packet sent.

¥ Timestamp: 32 bits. Reflects the sampling instant of the first byte in
the payload. Several consecutive packets can have the same
timestamp if they are logically generated at the same timeÑfor
example, if they are all part of the same video frame.

¥ SSRC: 32 bits. Identifies the synchronization source. If the CSRC count
is zero, the payload source is the synchronization source. If the CSRC
count is nonzero, the SSRC identifies the mixer.

¥ CSRC: 32 bits each. Identifies the contributing sources for the payload.
The number of contributing sources is indicated by the CSRC count
field; there can be up to 16 contributing sources. If there are multiple
contributing sources, the payload is the mixed data from those
sources.

Control Packets

In addition to the media data for a session, control data (RTCP) packets
are sent periodically to all of the participants in the session. RTCP packets
can contain information about the quality of service for the session partic-
ipants, information about the source of the media being transmitted on the
data port, and statistics pertaining to the data that has been transmitted so
far.

JMF API Guide114
There are several types of RTCP packets:

¥ Sender Report

¥ Receiver Report

¥ Source Description

¥ Bye

¥ Application-specific

RTCP packets are ÒstackableÓ and are sent as a compound packet that con-
tains at least two packets, a report packet and a source description packet.

All participants in a session send RTCP packets. A participant that has
recently sent data packets issues a sender report. The sender report (SR)
contains the total number of packets and bytes sent as well as information
that can be used to synchronize media streams from different sessions.

Session participants periodically issue receiver reports for all of the sources
from which they are receiving data packets. A receiver report (RR) con-
tains information about the number of packets lost, the highest sequence
number received, and a timestamp that can be used to estimate the round-
trip delay between a sender and the receiver.

The Þrst packet in a compound RTCP packet has to be a report packet,
even if no data has been sent or receivedÑin which case, an empty
receiver report is sent.

All compound RTCP packets must include a source description (SDES)
element that contains the canonical name (CNAME) that identiÞes the
source. Additional information might be included in the source descrip-
tion, such as the sourceÕs name, email address, phone number, geographic
location, application name, or a message describing the current state of the
source.

When a source is no longer active, it sends an RTCP BYE packet. The BYE
notice can include the reason that the source is leaving the session.

RTCP APP packets provide a mechanism for applications to deÞne and
send custom information via the RTP control port.

RTP Applications

RTP applications are often divided into those that need to be able to
receive data from the network (RTP Clients) and those that need to be able

Working with Real-Time Media Streams 115
to transmit data across the network (RTP Servers). Some applications do
bothÑfor example, conferencing applications capture and transmit data
at the same time that theyÕre receiving data from the network.

Receiving Media Streams From the Network

Being able to receive RTP streams is necessary for several types of applica-
tions. For example:

¥ Conferencing applications need to be able to receive a media stream
from an RTP session and render it on the console.

¥ A telephone answering machine application needs to be able to
receive a media stream from an RTP session and store it in a file.

¥ An application that records a conversation or conference must be able
to receive a media stream from an RTP session and both render it on
the console and store it in a file.

Transmitting Media Streams Across the Network

RTP server applications transmit captured or stored media streams across
the network.

For example, in a conferencing application, a media stream might be cap-
tured from a video camera and sent out on one or more RTP sessions. The
media streams might be encoded in multiple media formats and sent out
on several RTP sessions for conferencing with heterogeneous receivers.
Multiparty conferencing could be implemented without IP multicast by
using multiple unicast RTP sessions.

References

The RTP speciÞcation is a product of the Audio Video Transport (AVT)
working group of the Internet Engineering Task Force (IETF). For addi-
tional information about the IETF, see http://www.ietf.org. The AVT
working group charter and proceedings are available at
http://www.ietf.org/html.charters/avt-charter.html.

IETF RFC 1889, RTP: A Transport Protocol for Real Time Applications
Current revision: http://www.ietf.org.internet-drafts/draft-ietf-
avt-rtp-new-04.txt

JMF API Guide116
IETF RFC 1890: RTP ProÞle for Audio and Video Conferences with Minimal
Control
Current revision: http://www.ietf.org.internet-drafts/draft-ietf-
avt-profile-new-06.txt

Note: These RFCs are undergoing revisions in preparation for advance-
ment from Proposed Standard to Draft Standard and the URLs listed here
are for the Internet Drafts of the revisions available at the time of publica-
tion.

In addition to these RFCs, separate payload speciÞcation documents
deÞne how particular payloads are to be carried in RTP. For a list of all of
the RTP-related speciÞcations, see the AVT working group charter at:
http://www.ietf.org/html.charters/avt-charter.html.

8

Understanding the JMF

RTP API

JMF enables the playback and transmission of RTP streams through the
APIs deÞned in the javax.media.rtp, javax.media.rtp.event, and
javax.media.rtp.rtcp packages. JMF can be extended to support addi-
tional RTP-speciÞc formats and dynamic payloads through the standard
JMF plug-in mechanism.

Note: JMF-compliant implementations are not required to support the
RTP APIs in javax.media.rtp, javax.media.rtp.event, and
javax.media.rtp.rtcp. The reference implementations of JMF provided by
Sun Microsystems, Inc. and IBM Corporation fully support these APIs.

You can play incoming RTP streams locally, save them to a Þle, or both.

Figure 8-1: RTP reception.

For example, the RTP APIs could be used to implement a telephony appli-
cation that answers calls and records messages like an answering machine.

Similarly, you can use the RTP APIs to transmit captured or stored media
streams across the network. Outgoing RTP streams can originate from a
Þle or a capture device. The outgoing streams can also be played locally,
saved to a Þle, or both.

Network Session Manager Data Source

Data Source

Data Source

Player

Data Source Data Sink

Data Sink

File

File

Console

Processor
117

JMF API Guide118

Figure 8-2: RTP transmission.

For example, you could implement a video conferencing application that
captures live audio and video and transmits it across the network using a
separate RTP session for each media type.

Similarly, you might record a conference for later broadcast or use a prere-
corded audio stream as Òhold musicÓ in a conferencing application.

RTP Architecture

The JMF RTP APIs are designed to work seamlessly with the capture, pre-
sentation, and processing capabilities of JMF. Players and processors are
used to present and manipulate RTP media streams just like any other
media content. You can transmit media streams that have been captured
from a local capture device using a capture DataSource or that have been
stored to a Þle using a DataSink. Similarly, JMF can be extended to support
additional RTP formats and payloads through the standard plug-in mech-
anism.

Figure 8-3: High-level JMF RTP architecture.

Session Manager

Data Source

Data Source

DataSink

File

Network

Data Source Processor

File

Capture
Device

Java Applications, Applets, Beans

RTP APIs

JMF Plug-In API

Packetizer
Codecs

Depacketizer
Codecs

JMF API

Understanding the JMF RTP API 119
Session Manager

In JMF, a SessionManager is used to coordinate an RTP session. The session
manager keeps track of the session participants and the streams that are
being transmitted.

The session manager maintains the state of the session as viewed from the
local participant. In effect, a session manager is a local representation of a
distributed entity, the RTP session. The session manager also handles the
RTCP control channel, and supports RTCP for both senders and receivers.

The SessionManager interface deÞnes methods that enable an application
to initialize and start participating in a session, remove individual streams
created by the application, and close the entire session.

Session Statistics

The session manager maintains statistics on all of the RTP and RTCP pack-
ets sent and received in the session. Statistics are tracked for the entire ses-
sion on a per-stream basis. The session manager provides access to global
reception and transmission statistics:

¥ GlobalReceptionStats: Maintains global reception statistics for the
session.

¥ GlobalTransmissionStats: Maintains cumulative transmission statis-
tics for all local senders.

Statistics for a particular recipient or outgoing stream are available from
the stream:

¥ ReceptionStats: Maintains source reception statistics for an individu-
al participant.

¥ TransmissionStats: Maintains transmission statistics for an individual
send stream.

Session Participants

The session manager keeps track of all of the participants in a session.
Each participant is represented by an instance of a class that implements
the Participant interface. SessionManagers create a Participant when-
ever an RTCP packet arrives that contains a source description (SDES)
with a canonical name(CNAME) that has not been seen before in the session
(or has timed-out since its last use). Participants can be passive (sending

JMF API Guide120
control packets only) or active (also sending one or more RTP data
streams).

There is exactly one local participant that represents the local client/server
participant. A local participant indicates that it will begin sending RTCP
control messages or data and maintain state on incoming data and control
messages by starting a session.

A participant can own more than one stream, each of which is identiÞed
by the synchronization source identiÞer (SSRC) used by the source of the
stream.

Session Streams

The SessionManager maintains an RTPStream object for each stream of RTP
data packets in the session. There are two types of RTP streams:

¥ ReceiveStream represents a stream thatÕs being received from a remote
participant.

¥ SendStream represents a stream of data coming from the Processor or
input DataSource that is being sent over the network.

A ReceiveStream is constructed automatically whenever the session man-
ager detects a new source of RTP data. To create a new SendStream, you
call the SessionManager createSendStream method.

RTP Events

Several RTP-speciÞc events are deÞned in javax.media.rtp.event. These
events are used to report on the state of the RTP session and streams.

Understanding the JMF RTP API 121
Figure 8-4: RTP events.

To receive notiÞcation of RTP events, you implement the appropriate RTP
listener and register it with the session manager:

¥ SessionListener: Receives notification of changes in the state of the
session.

ReceiverReportEvent

StreamMappedEvent

NewReceiveStreamEvent

 MediaEvent

ReceiveStreamEvent

ActiveReceiveStreamEvent

ApplicationEvent

TimeoutEvent

InactiveReceiveStreamEvent

RemotePayloadChangeEvent

RTPEvent

RemoteEvent

SendStreamEvent

SenderReportEvent

RemoteCollisionEvent

NewSendStreamEvent

ActiveSendStreamEvent

InactiveSendStreamEvent

LocalPayloadChangeEvent

LocalCollisionEvent

SessionEvent

NewParticipantEvent

JMF API Guide122
¥ SendStreamListener: Receives notification of changes in the state of an
RTP stream thatÕs being transmitted.

¥ ReceiveStreamListener: Receives notification of changes in the state of
an RTP stream thatÕs being received.

¥ RemoteListener: Receives notification of events or RTP control mes-
sages received from a remote participant.

Session Listener

You can implement SessionListener to receive notiÞcation about events
that pertain to the RTP session as a whole, such as the addition of new
participants.

There are two types of session-wide events:

¥ NewParticipantEvent: Indicates that a new participant has joined the
session.

¥ LocalCollisionEvent: Indicates that the participantÕs synchronization
source is already in use.

Send Stream Listener

You can implement SendStreamListener to receive notiÞcation whenever:

¥ New send streams are created by the local participant.

¥ The transfer of data from the DataSource used to create the send
stream has started or stopped.

¥ The send streamÕs format or payload changes.

There are Þve types of events associated with a SendStream:

¥ NewSendStreamEvent: Indicates that a new send stream has been creat-
ed by the local participant.

¥ ActiveSendStreamEvent: Indicates that the transfer of data from the
DataSource used to create the send stream has started.

¥ InactiveSendStreamEvent: Indicates that the transfer of data from the
DataSource used to create the send stream has stopped.

¥ LocalPayloadChangeEvent: Indicates that the streamÕs format or pay-
load has changed.

Understanding the JMF RTP API 123
¥ StreamClosedEvent: Indicates that the stream has been closed.

Receive Stream Listener

You can implement ReceiveStreamListener to receive notiÞcation when-
ever:

¥ New receive streams are created.

¥ The transfer of data starts or stops.

¥ The data transfer times out.

¥ A previously orphaned ReceiveStream has been associated with a Par-
ticipant.

¥ An RTCP APP packet is received.

¥ The receive streamÕs format or payload changes.

You can also use this interface to get a handle on the stream and access the
RTP DataSource so that you can create a MediaHandler.

There are seven types of events associated with a ReceiveStream:

¥ NewReceiveStreamEvent: Indicates that the session manager has creat-
ed a new receive stream for a newly-detected source.

¥ ActiveReceiveStreamEvent: Indicates that the transfer of data has
started.

¥ InactiveReceiveStreamEvent: Indicates that the transfer of data has
stopped.

¥ TimeoutEvent: Indicates that the data transfer has timed out.

¥ RemotePayloadChangeEvent: Indicates that the format or payload of the
receive stream has changed.

¥ StreamMappedEvent: Indicates that a previously orphaned receive
stream has been associated with a participant.

¥ ApplicationEvent: Indicates that an RTCP APP packet has been
received.

Remote Listener

You can implement RemoteListener to receive notiÞcation of events or
RTP control messages received from a remote participants. You might
want to implement RemoteListener in an application used to monitor the

JMF API Guide124
sessionÑit enables you to receive RTCP reports and monitor the quality of
the session reception without having to receive data or information on
each stream.

There are three types of events associated with a remote participant:

¥ ReceiverReportEvent: Indicates that an RTP receiver report has been
received.

¥ SenderReportEvent: Indicates that an RTP sender report has been re-
ceived.

¥ RemoteCollisionEvent: Indicates that two remote participants are
using the same synchronization source ID (SSRC).

RTP Data

The streams within an RTP session are represented by RTPStream objects.
There are two types of RTPStreams: ReceiveStream and SendStream. Each
RTP stream has a buffer data source associated with it. For ReceiveS-
treams, this DataSource is always a PushBufferDataSource.

The session manager automatically constructs new receive streams as it
detects additional streams arriving from remote participants. You con-
struct new send streams by calling createSendStream on the session man-
ager.

Data Handlers

The JMF RTP APIs are designed to be transport-protocol independent. A
custom RTP data handler can be created to enable JMF to work over a spe-
ciÞc transport protocol. The data handler is a DataSource that can be used
as the media source for a Player.

The abstract class RTPPushDataSource deÞnes the basic elements of a JMF
RTP data handler. A data handler has both an input data stream (Push-
SourceStream) and an output data stream (OuputDataStream). A data han-
dler can be used for either the data channel or the control channel of an
RTP session. If it is used for the data channel, the data handler implements
the DataChannel interface.

An RTPSocket is an RTPPushDataSource has both a data and control chan-
nel. Each channel has an input and output stream to stream data to and
from the underlying network. An RTPSocket can export RTPControls to
add dynamic payload information to the session manager.

Understanding the JMF RTP API 125
Because a custom RTPSocket can be used to construct a Player through the
Manager, JMF deÞnes the name and location for custom RTPSocket imple-
mentations:

<protocol package-prefix>.media.protocol.rtpraw.DataSource

RTP Data Formats

All RTP-speciÞc data uses an RTP-speciÞc format encoding as deÞned in
the AudioFormat and VideoFormat classes. For example, gsm RTP encapsu-
lated packets have the encoding set to AudioFormat.GSM_RTP, while jpeg-
encoded video formats have the encoding set to VideoFormat.JPEG_RTP.

AudioFormat deÞnes four standard RTP-speciÞc encoding strings:

public static final String ULAW_RTP = "JAUDIO_G711_ULAW/rtp";
public static final String DVI_RTP = "dvi/rtp";
public static final String G723_RTP = "g723/rtp";
public static final String GSM_RTP = "gsm/rtp";

VideoFormat deÞnes three standard RTP-speciÞc encoding strings:

public static final String JPEG_RTP = "jpeg/rtp";
public static final String H261_RTP = "h261/rtp";
public static final String H263_RTP = "h263/rtp";

RTP Controls

The RTP API deÞnes one RTP-speciÞc control, RTPControl. RTPControl is
typically implemented by RTP-speciÞc DataSources. It provides a mecha-
nism to add a mapping between a dynamic payload and a Format. RTPCon-
trol also provides methods for accessing session statistics and getting the
current payload Format.

SessionManager also extends the Controls interface, enabling a session
manager to export additional Controls through the getControl and get-
Controls methods. For example, the session manager can export a Buffer-
Control to enable you to specify the buffer length and threshold.

Reception

The presentation of an incoming RTP stream is handled by a Player. To
receive and present a single stream from an RTP session, you can use a

JMF API Guide126
MediaLocator that describes the session to construct a Player. A media
locator for an RTP session is of the form:

rtp://address:port[:ssrc]/content-type/[ttl]

The Player is constructed and connected to the Þrst stream in the session.

If there are multiple streams in the session that you want to present, you
need to use a session manager. You can receive notiÞcation from the ses-
sion manager whenever a stream is added to the session and construct a
Player for each new stream. Using a session manager also enables you to
directly monitor and control the session.

Transmission

A session manager can also be used to initialize and control a session so
that you can stream data across the network. The data to be streamed is
acquired from a Processor.

For example, to create a send stream to transmit data from a live capture
source, you would:

1. Create, initialize, and start a SessionManager for the session.

2. Construct a Processor using the appropriate capture DataSource.

3. Set the output format of the Processor to an RTP-specific format. An
appropriate RTP packetizer codec must be available for the data format
you want to transmit.

4. Retrieve the output DataSource from the Processor.

5. Call createSendStream on the session manager and pass in the Data-
Source.

You control the transmission through the SendStream start and stop
methods.

When it is Þrst started, the SessionManager behaves as a receiver (sends
out RTCP receiver reports). As soon as a SendStream is created, it begins to
send out RTCP sender reports and behaves as a sender host as long as one
or more send streams exist. If all SendStreams are closed (not just stopped),
the session manager reverts to being a passive receiver.

Understanding the JMF RTP API 127
Extensibility

Like the other parts of JMF, the RTP capabilities can be enhanced and
extended. The RTP APIs support a basic set of RTP formats and payloads.
Advanced developers and technology providers can implement JMF
plug-ins to support dynamic payloads and additional RTP formats.

Implementing Custom Packetizers and Depacketizers

To implement a custom packetizer or depacketizer, you implement the
JMF Codec interface. (For general information about JMF plug-ins, see
ÒImplementing JMF Plug-InsÓ on page 85.)

JMF API Guide128

9

Receiving and Presenting

RTP Media Streams

JMF Players and Processors provide the presentation, capture, and data
conversion mechanisms for RTP streams.

Figure 9-1: RTP reception data ßow.

A separate player is used for each stream received by the session manager.
You construct a Player for an RTP stream through the standard Manager
createPlayer mechanism. You can either:

¥ Use a MediaLocator that has the parameters of the RTP session and
construct a Player by calling Manager.createPlayer(MediaLocator)

¥ Construct a Player for a particular ReceiveStream by retrieving the
DataSource from the stream and passing it to Manager.createPlay-
er(DataSource).

If you use a MediaLocator to construct a Player, you can only present the
first RTP stream thatÕs detected in the session. If you want to play back
multiple RTP streams in a session, you need to use the SessionManager
directly and construct a Player for each ReceiveStream.

Network Session Manager

PlayerData Source

PlayerData Source
129

JMF API Guide130
Creating a Player for an RTP Session

When you use a MediaLocator to construct a Player for an RTP session,
the Manager creates a Player for the Þrst stream detected in the session.
This Player posts a RealizeCompleteEvent once data has been detected in
the session.

By listening for the RealizeCompleteEvent, you can determine whether or
not any data has arrived and if the Player is capable of presenting any
data. Once the Player posts this event, you can retrieve its visual and con-
trol components.

Note: Because a Player for an RTP media stream doesnÕt Þnish realizing
until data is detected in the session, you shouldnÕt try to use Manager.cre-
ateRealizedPlayer to construct a Player for an RTP media stream. No
Player would be returned until data arrives and if no data is detected, at-
tempting to create a Realized Player would block indeÞnitely.

A Player can export one RTP-speciÞc control, RTPControl, which provides
overall session statistics and can be used for registering dynamic payloads
with the SessionManager.

Example 9-1: Creating a Player for an RTP session (1 of 2)

 String url= "rtp://224.144.251.104:49150/audio/1";

 MediaLocator mrl= new MediaLocator(url);

 if (mrl == null) {
 System.err.println("Can't build MRL for RTP");
 return false;
 }

 // Create a player for this rtp session
 try {
 player = Manager.createPlayer(mrl);
 } catch (NoPlayerException e) {
 System.err.println("Error:" + e);
 return false;
 } catch (MalformedURLException e) {
 System.err.println("Error:" + e);
 return false;
 } catch (IOException e) {
 System.err.println("Error:" + e);
 return false;
 }

 if (player != null) {
 if (this.player == null) {

Receiving and Presenting RTP Media Streams 131
Listening for Format Changes

When a Player posts a FormatChangeEvent, it might indicate that a payload
change has occurred. Players constructed with a MediaLocator automati-
cally process payload changes. In most cases, this processing involves con-
structing a new Player to handle the new format. Applications that
present RTP media streams need to listen for FormatChangeEvents so that
they can respond if a new Player is created.

When a FormatChangeEvent is posted, check whether or not the Player
objectÕs control and visual components have changed. If they have, a new
Player has been constructed and you need to remove references to the old
Player objectÕs components and get the new Player objectÕs components.

 this.player = player;
 player.addControllerListener(this);
 player.realize();
 }
 }

Example 9-2: Listening for RTP format changes (1 of 2)

 public synchronized void controllerUpdate(ControllerEvent ce) {
 if (ce instanceof FormatChangeEvent) {
 Dimension vSize = new Dimension(320,0);
 Component oldVisualComp = visualComp;

 if ((visualComp = player.getVisualComponent()) != null) {
 if (oldVisualComp != visualComp) {
 if (oldVisualComp != null) {
 oldVisualComp.remove(zoomMenu);
 }

 framePanel.remove(oldVisualComp);

 vSize = visualComp.getPreferredSize();
 vSize.width = (int)(vSize.width * defaultScale);
 vSize.height = (int)(vSize.height * defaultScale);

 framePanel.add(visualComp);

 visualComp.setBounds(0,
 0,
 vSize.width,
 vSize.height);
 addPopupMenu(visualComp);
 }

Example 9-1: Creating a Player for an RTP session (2 of 2)

JMF API Guide132
Creating an RTP Player for Each New Receive Stream

To play all of the ReceiveStreams in a session, you need to create a sepa-
rate Player for each stream. When a new stream is created, the session
manager posts a NewReceiveStreamEvent. Generally, you register as a
ReceiveStreamListener and construct a Player for each new ReceiveS-
tream. To construct the Player, you retrieve the DataSource from the
ReceiveStream and pass it to Manager.createPlayer.

To create a Player for each new receive stream in a session:

1. Set up the RTP session:

a. Create a SessionManager. For example, construct an instance of
com.sun.media.rtp.RTPSessionMgr. (RTPSessionMgr is an imple-
mentation of SessionManager provided with the JMF reference
implementation.)

 }

 Component oldComp = controlComp;

 controlComp = player.getControlPanelComponent();

 if (controlComp != null)
 {
 if (oldComp != controlComp)
 {
 framePanel.remove(oldComp);
 framePanel.add(controlComp);

 if (controlComp != null) {
 int prefHeight = controlComp
 .getPreferredSize()
 .height;

 controlComp.setBounds(0,
 vSize.height,
 vSize.width,
 prefHeight);
 }
 }
 }
 }
 }

Example 9-2: Listening for RTP format changes (2 of 2)

Receiving and Presenting RTP Media Streams 133
b. Call RTPSessionMgr addReceiveStreamListener to register as a lis-
tener.

c. Initialize the RTP session by calling RTPSessionMgr initSession.

d. Start the RTP session by calling RTPSessionMgr startSession.

Example 9-3: Setting up an RTP session (1 of 2)

 public SessionManager createManager(String address,
 int port,
 int ttl,
 boolean listener,
 boolean sendlistener)
 {
 mgr = (SessionManager)new com.sun.media.rtp.RTPSessionMgr();

 if (mgr == null) return null;

 mgr.addFormat(new AudioFormat(AudioFormat.DVI_RTP,
 44100,
 4,
 1),
 18);

 if (listener) mgr.addReceiveStreamListener(this);
 if (sendlistener) new RTPSendStreamWindow(mgr);

 // ask session mgr to generate the local participant’s CNAME
 String cname = mgr.generateCNAME();
 String username = null;

 try {
 username = System.getProperty("user.name");
 } catch (SecurityException e){
 username = "jmf-user";
 }

 // create our local Session Address
 SessionAddress localaddr = new SessionAddress();

 try{
 InetAddress destaddr = InetAddress.getByName(address);

 SessionAddress sessaddr = new SessionAddress(destaddr,
 port,
 destaddr,
 port + 1);
 SourceDescription[] userdesclist= new SourceDescription[]
 {
 new SourceDescription(SourceDescription
 .SOURCE_DESC_EMAIL,
 "jmf-user@sun.com",

JMF API Guide134
2. In your ReceiveStreamListener update method, watch for NewRe-
ceiveStreamEvent, which indicates that a new data stream has been de-
tected.

3. When a NewReceiveStreamEvent is detected, retrieve the ReceiveStream
from the NewReceiveStreamEvent by calling getReceiveStream.

4. Retrieve the RTP DataSource from the ReceiveStream by calling get-
DataSource. This is a PushBufferDataSource with an RTP-speciÞc For-
mat. For example, the encoding for a DVI audio player will be DVI_RTP.

5. Pass the DataSource to Manager.createPlayer to construct a Player. For
the Player to be successfully constructed, the necessary plug-ins for de-
coding and depacketizing the RTP-formatted data must be available.
(For more information, see ÒCreating Custom Packetizers and Depack-
etizersÓ on page 167).

 1,
 false),

 new SourceDescription(SourceDescription
 .SOURCE_DESC_CNAME,
 cname,
 1,
 false),

 new SourceDescription(SourceDescription
 .SOURCE_DESC_TOOL,
 "JMF RTP Player v2.0",
 1,
 false)
 };

 mgr.initSession(localaddr,
 userdesclist,
 0.05,
 0.25);

 mgr.startSession(sessaddr,ttl,null);
 } catch (Exception e) {
 System.err.println(e.getMessage());
 return null;
 }

 return mgr;
 }

Example 9-3: Setting up an RTP session (2 of 2)

Receiving and Presenting RTP Media Streams 135
See RTPUtil in ÒRTPUtilÓ on page 223 for a complete example.

Example 9-4: Listening for NewReceiveStreamEvents

 public void update(ReceiveStreamEvent event)
 {
 Player newplayer = null;
 RTPPlayerWindow playerWindow = null;

 // find the sourceRTPSM for this event
 SessionManager source = (SessionManager)event.getSource();

 // create a new player if a new recvstream is detected
 if (event instanceof NewReceiveStreamEvent)
 {
 String cname = "Java Media Player";
 ReceiveStream stream = null;

 try
 {
 // get a handle over the ReceiveStream
 stream =((NewReceiveStreamEvent)event)
 .getReceiveStream();

 Participant part = stream.getParticipant();

 if (part != null) cname = part.getCNAME();

 // get a handle over the ReceiveStream datasource
 DataSource dsource = stream.getDataSource();

 // create a player by passing datasource to the
 // Media Manager
 newplayer = Manager.createPlayer(dsource);
 System.out.println("created player " + newplayer);
 } catch (Exception e) {
 System.err.println("NewReceiveStreamEvent exception "
 + e.getMessage());
 return;
 }

 if (newplayer == null) return;

 playerlist.addElement(newplayer);
 newplayer.addControllerListener(this);

 // send this player to player GUI
 playerWindow = new RTPPlayerWindow(newplayer, cname);
 }
 }

JMF API Guide136
Handling RTP Payload Changes

If the payload of a stream in the RTP session changes, the ReceiveStream
posts a RemotePayloadChangeEvent. Generally, when the payload changes,
the existing Player will not be able to handle the new format and JMF will
throw an error if you attempt to present the new payload. To avoid this,
your ReceiveStreamListener needs to watch for RemotePayloadChan-
geEvents. When a RemotePayloadChangeEvent is detected, you need to:

1. Close the existing Player.

2. Remove all listeners for the removed Player.

3. Create a new Player with the same RTP DataSource.

4. Get the visual and control Components for the new Player.

5. Add the necessary listeners to the new Player.

Example 9-5: Handling RTP payload changes (1 of 2)

 public void update(ReceiveStreamEvent event) {
 if (event instanceof RemotePayloadChangeEvent) {
 // payload has changed. we need to close the old player
 // and create a new player

 if (newplayer != null) {
 // stop player and wait for stop event
 newplayer.stop();

 // block until StopEvent received...

 // remove controllerlistener
 newplayer.removeControllerListener(listener);

 // remove any visual and control components
 // attached to this application
 // close the player and wait for close event
 newplayer.close();

 // block until ControllerClosedEvent received...

 try {
 // when the player was closed, its datasource was
 // disconnected. Now we must reconnect the data-
 // source before a player can be created for it.

Receiving and Presenting RTP Media Streams 137
Controlling Buffering of Incoming RTP Streams

You can control the RTP receiver buffer through the BufferControl
exported by the SessionManager. This control enables you to set two
parameters, buffer length and threshold.

The buffer length is the size of the buffer maintained by the receiver. The
threshold is the minimum amount of data that is to be buffered by the con-
trol before pushing data out or allowing data to be pulled out (jitter
buffer). Data will only be available from this object when this minimum
threshold has been reached. If the amount of data buffered falls below this
threshold, data will again be buffered until the threshold is reached.

The buffer length and threshold values are speciÞed in milliseconds. The
number of audio packets or video frames buffered depends on the format
of the incoming stream. Each receive stream maintains its own default and
maximum values for both the buffer length and minimum threshold. (The
default and maximum buffer lengths are implementation dependent.)

To get the BufferControl for a session, you call getControl on the Ses-
sionManager. You can retrieve a GUI Component for the BufferControl by
calling getControlComponent.

 // This is the same datasource received from
 // NewReceiveStreamEvent and used to create the
 // initial rtp player

 rtpsource.connect();
 newplayer = Manager.createPlayer(rtpsource);

 if (newplayer == null) {
 System.err.println("Could not create player");
 return;
 }

 newplayer.addControllerListener(listener);
 newplayer.realize();

 // when the new player is realized, retrieve its
 // visual and control components
 } catch (Exception e) {
 System.err.println("could not create player");
 }
 }
 }
 }

Example 9-5: Handling RTP payload changes (2 of 2)

JMF API Guide138
Presenting RTP Streams with RTPSocket

RTP is transport-protocol independent. By using RTPSocket, you can
stream RTP from any underlying network. The format of the RTP socket is
designed to have both a data and a control channel. Each channel has an
input and output stream to stream data into and out of the underlying net-
work.

SessionManager expects to receive individual RTP packets from the RTP-
Socket. Users are responsible for streaming individual RTP packets to the
RTPSocket.

To play an RTP stream from the RTPSocket, you pass the socket to Man-
ager.createPlayer to construct the Player. Alternatively, you could con-
struct a Player by calling createPlayer(MediaLocator) and passing in a
MediaLocator with a new protocol that is a variant of RTP, “rtpraw”. For
example:

Manager.createPlayer(new MediaLocator("rtpraw://"));

According to the JMF Player creation mechanism, Manager will attempt to
construct the DataSource defined in:

<protocol package-prefix>.media.protocol.rtpraw.DataSource

This must be the RTPSocket. The content of the RTPsocket should be set to
rtpraw. Manager will then attempt to create a player of type <content-
prefix>.media.content.rptraw.Handler and set the RTPSocket on it.

Note: The RTPSocket created at <protocol package-prefix>.media.proto-
col.rtpraw.DataSource is your own implementation of RTPSocket. The
JMF API does not deÞne a default implementation of RTPSocket. The im-
plementation of RTPSocket is dependent on the underlying transport pro-
tocol that you are using. Your RTPSocket class must be located at
<protocol package-prefix>.media.protocol.rtpraw.DataSource and its
control and data channel streams must be set as shown in the following
example.

RTPControl interfaces for the RTPSocket can be used to add dynamic pay-
load information to the RTP session manager.

The following example implements an RTP over UDP player that can
receive RTP UDP packets and stream them to the Player or session man-
ager, which is not aware of the underlying network/transport protocol.

Receiving and Presenting RTP Media Streams 139
This sample uses the interfaces deÞned in javax.media.rtp.RTPSocket
and its related classes.

Example 9-6: RTPSocketPlayer (1 of 6)

import java.io.*;
import java.net.*;
import java.util.*;

import javax.media.*;
import javax.media.format.*;
import javax.media.protocol.*;
import javax.media.rtp.*;
import javax.media.rtp.event.*;
import javax.media.rtp.rtcp.*;

public class RTPSocketPlayer implements ControllerListener {
 // ENTER THE FOLLOWING SESSION PARAMETERS FOR YOUR RTP SESSION

 // RTP Session address, multicast, unicast or broadcast address
 String address = "224.144.251.245";

 // RTP Session port
 int port = 49150;

 // Media Type i.e. one of audio or video
 String media = "audio";

 // DO NOT MODIFY ANYTHING BELOW THIS LINE

 // The main rtpsocket abstraction which we will create and send
 // to the Manager for appropriate handler creation
 RTPSocket rtpsocket = null;

 // The control RTPPushDataSource of the above RTPSocket
 RTPPushDataSource rtcpsource = null;

 // The GUI to handle the player
 // PlayerWindow playerWindow;

 // The handler created for the RTP session,
 // as returned by the Manager
 Player player;

 // maximum size of buffer for UDP receive from the sockets
 private int maxsize = 2000;

 UDPHandler rtp = null;
 UDPHandler rtcp = null;

 public RTPSocketPlayer() {
 // create the RTPSocket
 rtpsocket = new RTPSocket();

JMF API Guide140
 // set its content type :
 // rtpraw/video for a video session
 // rtpraw/audio for an audio session
 String content = "rtpraw/" + media;
 rtpsocket.setContentType(content);

 // set the RTP Session address and port of the RTP data
 rtp = new UDPHandler(address, port);

 // set the above UDP Handler to be the
 // sourcestream of the rtpsocket
 rtpsocket.setOutputStream(rtp);

 // set the RTP Session address and port of the RTCP data
 rtcp = new UDPHandler(address, port +1);

 // get a handle over the RTCP Datasource so that we can
 // set the sourcestream and deststream of this source
 // to the rtcp udp handler we created above.
 rtcpsource = rtpsocket.getControlChannel();

 // Since we intend to send RTCP packets from the
 // network to the session manager and vice-versa, we need
 // to set the RTCP UDP handler as both the input and output
 // stream of the rtcpsource.
 rtcpsource.setOutputStream(rtcp);
 rtcpsource.setInputStream(rtcp);

 // connect the RTP socket data source before
 // creating the player
 try {
 rtpsocket.connect();
 player = Manager.createPlayer(rtpsocket);
 rtpsocket.start();
 } catch (NoPlayerException e) {
 System.err.println(e.getMessage());
 e.printStackTrace();
 return;
 }
 catch (IOException e) {
 System.err.println(e.getMessage());
 e.printStackTrace();
 return;
 }

 if (player != null) {
 player.addControllerListener(this);
 // send this player to out playerwindow
 // playerWindow = new PlayerWindow(player);
 }
 }

Example 9-6: RTPSocketPlayer (2 of 6)

Receiving and Presenting RTP Media Streams 141
 public synchronized void controllerUpdate(ControllerEvent ce) {
 if ((ce instanceof DeallocateEvent) ||
 (ce instanceof ControllerErrorEvent)) {

 // stop udp handlers
 if (rtp != null) rtp.close();

 if (rtcp != null) rtcp.close();
 }
 }

 // method used by inner class UDPHandler to open a datagram or
 // multicast socket as the case maybe

 private DatagramSocket InitSocket(String sockaddress,
 int sockport)
 {
 InetAddress addr = null;
 DatagramSocket sock = null;

 try {
 addr = InetAddress.getByName(sockaddress);

 if (addr.isMulticastAddress()) {
 MulticastSocket msock;

 msock = new MulticastSocket(sockport);

 msock.joinGroup(addr);

 sock = (DatagramSocket)msock;
 }
 else {
 sock = new DatagramSocket(sockport,addr);
 }

 return sock;
 }
 catch (SocketException e) {
 e.printStackTrace();
 return null;
 }
 catch (UnknownHostException e) {
 e.printStackTrace();
 return null;
 }
 catch (IOException e) {
 e.printStackTrace();
 return null;
 }
 }

Example 9-6: RTPSocketPlayer (3 of 6)

JMF API Guide142
 // INNER CLASS UDP Handler which will receive UDP RTP Packets and
 // stream them to the handler of the sources stream. IN case of
 // RTCP, it will also accept RTCP packets and send them on the
 // underlying network.

 public class UDPHandler extends Thread implements PushSourceStream,
 OutputDataStream
 {
 DatagramSocket mysock;
 DatagramPacket dp;
 SourceTransferHandler outputHandler;
 String myAddress;
 int myport;
 boolean closed = false;

 // in the constructor we open the socket and create the main
 // UDPHandler thread.

 public UDPHandler(String haddress, int hport) {
 myAddress = haddress;
 myport = hport;
 mysock = InitSocket(myAddress,myport);
 setDaemon(true);
 start();
 }

 // the main thread receives RTP data packets from the
 // network and transfer's this data to the output handler of
 // this stream.

 public void run() {
 int len;

 while(true) {
 if (closed) {
 cleanup();
 return;
 }
 try {
 do {
 dp = new DatagramPacket(new byte[maxsize],
 maxsize);

 mysock.receive(dp);

 if (closed){
 cleanup();
 return;
 }

 len = dp.getLength();

Example 9-6: RTPSocketPlayer (4 of 6)

Receiving and Presenting RTP Media Streams 143
 if (len > (maxsize >> 1)) maxsize = len << 1;
 }
 while (len >= dp.getData().length);
 }catch (Exception e){
 cleanup();
 return;
 }

 if (outputHandler != null) {
 outputHandler.transferData(this);
 }
 }
 }

 public void close() {
 closed = true;
 }

 private void cleanup() {
 mysock.close();
 stop();
 }

 // methods of PushSourceStream
 public Object[] getControls() {
 return new Object[0];
 }

 public Object getControl(String controlName) {
 return null;
 }

 public ContentDescriptor getContentDescriptor() {
 return null;
 }

 public long getContentLength() {
 return SourceStream.LENGTH_UNKNOWN;
 }

 public boolean endOfStream() {
 return false;
 }

 // method by which data is transferred from the underlying
 // network to the session manager.

 public int read(byte buffer[],
 int offset,
 int length)
 {

Example 9-6: RTPSocketPlayer (5 of 6)

JMF API Guide144
 System.arraycopy(dp.getData(),
 0,
 buffer,
 offset,
 dp.getLength());

 return dp.getData().length;
 }

 public int getMinimumTransferSize(){
 return dp.getLength();
 }

 public void setTransferHandler(SourceTransferHandler
 transferHandler)
 {
 this.outputHandler = transferHandler;
 }

 // methods of OutputDataStream used by the session manager to
 // transfer data to the underlying network.

 public int write(byte[] buffer,
 int offset,
 int length)
 {
 InetAddress addr = null;

 try {
 addr = InetAddress.getByName(myAddress);
 } catch (UnknownHostException e) {
 e.printStackTrace();
 }

 DatagramPacket dp = new DatagramPacket(buffer,
 length,
 addr,
 myport);
 try {
 mysock.send(dp);
 } catch (IOException e){
 e.printStackTrace();
 }

 return dp.getLength();
 }
 }

 public static void main(String[] args) {
 new RTPSocketPlayer();
 }
}

Example 9-6: RTPSocketPlayer (6 of 6)

10

Transmitting RTP Media

Streams

To transmit an RTP stream, you use a Processor to produce an RTP-
encoded DataSource and construct either a SessionManager or DataSink
to control the transmission.

The input to the Processor can be either stored or live captured data. For
stored data, you can use a MediaLocator to identify the Þle when you cre-
ate the Processor. For captured data, a capture DataSource is used as the
input to the Processor, as described in ÒCapturing Media DataÓ on
page 78.

There are two ways to transmit RTP streams:

¥ Use a MediaLocator that has the parameters of the RTP session to con-
struct an RTP DataSink by calling Manager.createDataSink.

¥ Use a session manager to create send streams for the content and con-
trol the transmission.

If you use a MediaLocator to construct an RTP DataSink, you can only
transmit the first stream in the DataSource. If you want to transmit multi-
ple RTP streams in a session or need to monitor session statistics, you need
to use the SessionManager directly.

Regardless of how you choose to transmit the RTP stream, you need to:
1. Create a Processor with a DataSource that represents the data you want

to transmit.

2. Configure the Processor to output RTP-encoded data.

3. Get the output from the Processor as a DataSource.
145

JMF API Guide146
Configuring the Processor

To conÞgure the Processor to generate RTP-encoded data, you set RTP-
speciÞc formats for each track and specify the output content descriptor
you want.

The track formats are set by getting the TrackControl for each track and
calling setFormat to specify an RTP-speciÞc format. An RTP-speciÞc for-
mat is selected by setting the encoding string of the format to an RTP-spe-
ciÞc string such as ÒAudioFormat.GSM_RTPÓ. The Processor attempts to
load a plug-in that supports this format. If no appropriate plug-in is
installed, that particular RTP format cannot be supported and an UnSup-
portedFormatException is thrown.

The output format is set with the setOutputContentDescriptor method. If
no special multiplexing is required, the output content descriptor can be
set to “ContentDescriptor.RAW”. Audio and video streams should not be
interleaved. If the Processor's tracks are of different media types, each
media stream is transmitted in a separate RTP session.

Retrieving the Processor Output

Once the format of a Processor's track has been set and the Processor has
been realized, the output DataSource of the Processor can be retrieved.
You retrieve the output of the Processor as a DataSource by calling get-
DataOutput. The returned DataSource can be either a PushBufferData-
Source or a PullBufferDataSource, depending on the source of the data.

The output DataSource is connected to the SessionManager using the crea-
teSendStream method. The session manager must be initialized before you
can create the send stream.

If the DataSource contains multiple SourceStreams, each SourceStream is
sent out as a separate RTP stream, either in the same session or a different
session. If the DataSource contains both audio and video streams, separate
RTP sessions must be created for audio and video. You can also clone the
DataSource and send the clones out as different RTP streams in either the
same session or different sessions.

Controlling the Packet Delay

The packet delay, also known as the packetization interval, is the time rep-
resented by each RTP packet as it is transmitted over the network. The
packetization interval determines the minimum end-to-end delay; longer

Transmitting RTP Media Streams 147
packets introduce less header overhead but higher delay and make packet
loss more noticeable. For non-interactive applications such as lectures, or
for links with severe bandwidth constraints, a higher packetization delay
might be appropriate.

A receiver should accept packets representing between 0 and 200 ms of
audio data. (For framed audio encodings, a receiver should accept packets
with 200 ms divided by the frame duration, rounded up.) This restriction
allows reasonable buffer sizing for the receiver. Each packetizer codec has
a default packetization interval appropriate for its encoding.

If the codec allows modiÞcation of this interval, it exports a corresponding
PacketSizeControl. The packetization interval can be changed or set by
through the setPacketSize method.

For video streams, a single video frame is transmitted in multiple RTP
packets. The size of each packet is limited by the Maximum Transmission
Unit (MTU) of the underlying network. This parameter is also set using
the setPacketSize method of the packetizer codec's PacketSizeControl.

Transmitting RTP Data With a Data Sink

The simplest way to transmit RTP data is to construct an RTP DataSink
using the Manager.createDataSink method. You pass in the output Data-
Source from the Processor and a MediaLocator that describes the RTP ses-
sion to which the DataSource is to be streamed. (The MediaLocator
provides the address and port of the RTP session.)

To control the transmission, you call start and stop on the DataSink. Only
the Þrst stream in the DataSource is transmitted.

In Example 10-1, live audio is captured and then transmitted using a
DataSink.

JMF API Guide148
Example 10-1: Transmitting RTP Data using a DataSink (1 of 2)

 // First find a capture device that will capture linear audio
 // data at 8bit 8Khz

 AudioFormat format= new AudioFormat(AudioFormat.LINEAR,
 8000,
 8,
 1);

 Vector devices= CaptureDeviceManager.getDeviceList(format);

 CaptureDeviceInfo di= null;

 if (devices.size() > 0) {
 di = (CaptureDeviceInfo) devices.elementAt(0);
 }
 else {
 // exit if we could not find the relevant capturedevice.
 System.exit(-1);
 }

 // Create a processor for this capturedevice & exit if we
 // cannot create it
 try {
 Processor p = Manager.createProcessor(di.getLocator());
 } catch (IOException e) {
 System.exit(-1);
 } catch (NoProcessorException e) {
 System.exit(-1);
 }

 // configure the processor
 processor.configure();

 // block until it has been configured

 processor.setContentDescriptor(
 new ContentDescriptor(ContentDescriptor.RAW));

 TrackControl track[] = processor.getTrackControls();

 boolean encodingOk = false;

 // Go through the tracks and try to program one of them to
 // output gsm data.

 for (int i = 0; i < track.length; i++) {
 if (!encodingOk && track[i] instanceof FormatControl) {

Transmitting RTP Media Streams 149
 if (((FormatControl)track[i]).
 setFormat(new AudioFormat(AudioFormat.GSM_RTP,
 8000,
 8,
 1)) == null) {

 track[i].setEnabled(false);
 }
 else {
 encodingOk = true;
 }
 } else {
 // we could not set this track to gsm, so disable it
 track[i].setEnabled(false);
 }
 }

 // At this point, we have determined where we can send out
 // gsm data or not.
 // realize the processor
 if (encodingOk) {
 processor.realize();
 // block until realized.
 // get the output datasource of the processor and exit
 // if we fail
 DataSource ds = null;

 try {
 ds = processor.getDataOutput();
 } catch (NotRealizedError e) {
 System.exit(-1);
 }

 // hand this datasource to manager for creating an RTP
 // datasink our RTP datasimnk will multicast the audio
 try {
 String url= "rtp://224.144.251.104:49150/audio/1";

 MediaLocator m = new MediaLocator(url);

 DataSink d = Manager.createDataSink(ds, m);

 d.open();
 d.start();
 } catch (Exception e) {
 System.exit(-1);
 }
 }

Example 10-1: Transmitting RTP Data using a DataSink (2 of 2)

JMF API Guide150
Transmitting RTP Data with the Session Manager

The basic process for transmitting RTP data with the session manager is:

1. Create a JMF Processor and set each track format to an RTP-specific
format.

2. Retrieve the output DataSource from the Processor.

3. Call createSendStream on a previously created and initialized Session-
Manager, passing in the DataSource and a stream index. The session
manager creates a SendStream for the specified SourceStream.

4. Start the session manager by calling SessionManager startSession.

5. Control the transmission through the SendStream methods. A Send-
StreamListener can be registered to listen to events on the SendStream.

Creating a Send Stream

Before the session manager can transmit data, it needs to know where to
get the data to transmit. When you construct a new SendStream, you hand
the SessionManager the DataSource from which it will acquire the data.
Since a DataSource can contain multiple streams, you also need to specify
the index of the stream to be sent in this session. You can create multiple
send streams by passing different DataSources to createSendStream or by
specifying different stream indexes.

The session manager queries the format of the SourceStream to determine
if it has a registered payload type for this format. If the format of the data
is not an RTP format or a payload type cannot be located for the RTP for-
mat, an UnSupportedFormatException is thrown with the appropriate mes-
sage. Dynamic payloads can be associated with an RTP format using the
SessionManager addFormat method

Using Cloneable Data Sources

Many RTP usage scenarios involve sending a stream over multiple RTP
sessions or encoding a stream into multiple formats and sending them
over multiple RTP sessions. When a stream encoded in a single format has
to be sent over multiple RTP sessions, you need to clone the DataSource
output from the Processor from which data is being captured. This is
done by creating a cloneable DataSource through the Manager and calling
getClone on the cloneable DataSource. A new Processor can be created

Transmitting RTP Media Streams 151
from each cloned DataSource, its tracks encoded in the desired format,
and the stream sent out over an RTP session.

Using Merging Data Sources

If you want to mix multiple media streams of the same type (such as
audio) into a single stream going out from one source, you need to use an
RTP mixer. If the streams to be mixed originate from multiple DataSources,
you can create a MergingDataSource from the separate DataSources and
hand it to the SessionManager to create the stream.

Controlling a Send Stream

You use the RTPStream start and stop methods to control a SendStream.
Starting a SendStream begins data transfer over the network and stopping
a SendStream indicates halts the data transmission. To begin an RTP trans-
mission, each SendStream needs to be started.

Starting or stopping a send stream triggers the corresponding action on its
DataSource. However, if the DataSource is started independently while the
SendStream is stopped, data will be dropped (PushBufferDataSource) or
not pulled (PullBufferDataSource) by the session manager. During this
time, no data will be transmitted over the network.

Sending Captured Audio Out in a Single Session

Example 10-2 captures mono audio data and sends it out on an RTP ses-
sion.

Example 10-2: Sending captured audio out on a single session (1 of 3)

 // First, we'll need a DataSource that captures live audio:

 AudioFormat format = new AudioFormat(AudioFormat.ULAW,
 8000,
 8,
 1);

 Vector devices= CaptureDeviceManager.getDeviceList(format);

 CaptureDeviceInfo di= null;
 if (devices.size() > 0) {
 di = (CaptureDeviceInfo) devices.elementAt(0);
 }

JMF API Guide152
 else {
 // exit if we could not find the relevant capture device.
 System.exit(-1);
 }
 // Create a processor for this capture device & exit if we
 // cannot create it
 try {
 Processor p = Manager.createProcessor(di.getLocator());
 } catch (IOException e) {
 System.exit(-1);
 } catch (NoProcessorException e) {
 System.exit(-1);
 }

 // at this point, we have succesfully created the processor.
 // Realize it and block until it is configured.

 processor.configure();

 // block until it has been configured

 processor.setContentDescriptor(
 new ContentDescriptor(ContentDescriptor.RAW));

 TrackControl track[] = processor.getTrackControls();

 boolean encodingOk = false;

 // Go through the tracks and try to program one of them to
 // output ULAW_RTP data.
 for (int i = 0; i < track.length; i++) {
 if (!encodingOk && track[i] instanceof FormatControl) {

 if (((FormatControl)track[i]).
 setFormat(new AudioFormat(AudioFormat.ULAW_RTP,
 8000,
 8,
 1)) == null) {

 track[i].setEnabled(false);
 }
 else {
 encodingOk = true;
 }
 }
 else {
 // we could not set this track to gsm, so disable it
 track[i].setEnabled(false);
 }
 }

Example 10-2: Sending captured audio out on a single session (2 of 3)

Transmitting RTP Media Streams 153
Sending Captured Audio Out in Multiple Sessions

Example 10-3 and Example 10-4 both encode the captured audio and send
it out in multiple RTP sessions. In Example 10-3, the data is encoded in
gsm; in Example 10-4, the data is encoded in several different formats.

 // Realize it and block until it is realized.
 processor.realize();

 // block until realized.
 // get the output datasource of the processor and exit
 // if we fail

 DataSource ds = null;

 try {
 ds = processor.getDataOutput();
 } catch (NotRealizedError e){
 System.exit(-1);
 }

 // Create a SessionManager and hand over the
 // datasource for SendStream creation.

 SessionManager rtpsm = new com.sun.media.rtp.RTPSessionMgr();

 // The session manager then needs to be initialized and started:
 // rtpsm.initSession(...);
 // rtpsm.startSession(...);

 try {
 rtpsm.createSendStream(ds, 0);
 } catch (IOException e){
 e.printStackTrace();
 } catch(UnsupportedFormatException e) {
 e.printStackTrace();
 }

Example 10-3: Sending RTP data out in multiple sessions (1 of 4)

 // First find a capture device that will capture linear audio
 // data at 8bit 8Khz

 AudioFormat format= new AudioFormat(AudioFormat.LINEAR,
 8000,
 8,
 1);

Example 10-2: Sending captured audio out on a single session (3 of 3)

JMF API Guide154
 Vector devices= CaptureDeviceManager.getDeviceList(format);

 CaptureDeviceInfo di= null;

 if (devices.size() > 0) {
 di = (CaptureDeviceInfo) devices.elementAt(0);
 }
 else {
 // exit if we could not find the relevant capturedevice.
 System.exit(-1);
 }

 // Now create a processor for this capturedevice & exit if we
 // cannot create it
 try {
 Processor p = Manager.createProcessor(di.getLocator());
 } catch (IOException e) {
 System.exit(-1);
 } catch (NoProcessorException e) {
 System.exit(-1);
 }

 // configure the processor
 processor.configure();

 // block until it has been configured

 processor.setContentDescriptor(
 new ContentDescriptor(ContentDescriptor.RAW));

 TrackControl track[] = processor.getTrackControls();

 boolean encodingOk = false;

 // Go through the tracks and try to program one of them to
 // output gsm data.

 for (int i = 0; i < track.length; i++) {
 if (!encodingOk && track[i] instanceof FormatControl) {

 if (((FormatControl)track[i]).
 setFormat(new AudioFormat(AudioFormat.GSM_RTP,
 8000,
 8,
 1)) == null) {

 track[i].setEnabled(false);
 }
 else {
 encodingOk = true;
 }
 }

Example 10-3: Sending RTP data out in multiple sessions (2 of 4)

Transmitting RTP Media Streams 155
 else {
 // we could not set this track to gsm, so disable it
 track[i].setEnabled(false);
 }
 }

 // At this point, we have determined where we can send out
 // gsm data or not.
 // realize the processor

 if (encodingOk) {
 processor.realize();

 // block until realized.

 // get the output datasource of the processor and exit
 // if we fail

 DataSource origDataSource = null;

 try {
 origDataSource = processor.getDataOutput();
 } catch (NotRealizedError e) {
 System.exit(-1);
 }

 // We want to send the stream of this datasource over two
 // RTP sessions.

 // So we need to clone the output datasource of the
 // processor and hand the clone over to the second
 // SessionManager

 DataSource cloneableDataSource = null;
 DataSource clonedDataSource = null;

 cloneableDataSource
 = Manager.createCloneableDataSource(origDataSource);

 clonedDataSource
 = ((SourceCloneable)cloneableDataSource).createClone();

 // Now create the first SessionManager and hand over the
 // first datasource for SendStream creation.

 SessionManager rtpsm1
 = new com.sun.media.rtp.RTPSessionMgr();

 // The session manager then needs to be
 // initialized and started:
 // rtpsm1.initSession(...);
 // rtpsm1.startSession(...);

Example 10-3: Sending RTP data out in multiple sessions (3 of 4)

JMF API Guide156
Example 10-4 encodes captured audio in several formats and then sends it
out in multiple RTP sessions. It assumes that there is one stream in the
input DataSource.

The input DataSource is cloned and a second processor is created from the
clone. The tracks in the two Processors are individually set to gsm and
dvi and the output DataSources are sent to two different RTP session man-

 try {
 rtpsm1.createSendStream(cloneableDataSource, // Datasource 1
 0);

 } catch (IOException e) {
 e.printStackTrace();
 } catch(UnsupportedFormatException e) {
 e.printStackTrace();
 }

 try {
 cloneableDataSource.connect();
 cloneableDataSource.start();
 } catch (IOException e) {
 e.printStackTrace();
 }

 // create the second RTPSessionMgr and hand over the
 // cloned datasource
 if (clonedDataSource != null) {
 SessionManager rtpsm2
 = new com.sun.media.rtp.RTPSessionMgr();

 // rtpsm2.initSession(...);
 // rtpsm2.startSession(...);

 try {
 rtpsm2.createSendStream(clonedDataSource,0);
 } catch (IOException e) {
 e.printStackTrace();
 } catch(UnsupportedFormatException e) {
 e.printStackTrace();
 }
 }
 }
 else {
 // we failed to set the encoding to gsm. So deallocate
 // and close the processor before we leave.

 processor.deallocate();
 processor.close();
 }

Example 10-3: Sending RTP data out in multiple sessions (4 of 4)

Transmitting RTP Media Streams 157
agers. If the number of tracks is greater than 1, this example attempts to
set the encoding of one track to gsm and the other to dvi. The same Data-
Source is handed to two separate RTP session managers with the index of
the Þrst stream set to 0 and the index of the second stream set to 1 (for het-
erogeneous receivers).

Example 10-4: Encoding and sending data in multiple formats (1 of 3)

 // Find a capture device that will capture linear 8bit 8Khz
 // audio

 AudioFormat format = new AudioFormat(AudioFormat.LINEAR,
 8000,
 8,
 1);

 Vector devices= CaptureDeviceManager.getDeviceList(format);

 CaptureDeviceInfo di= null;

 if (devices.size() > 0) {
 di = (CaptureDeviceInfo) devices.elementAt(0);
 }
 else {
 // exit if we could not find the relevant capture device.
 System.exit(-1);
 }

 // Since we have located a capturedevice, create a data
 // source for it.

 DataSource origDataSource= null;

 try {
 origDataSource = Manager.createDataSource(di.getLocator());
 } catch (IOException e) {
 System.exit(-1);
 } catch (NoDataSourceException e) {
 System.exit(-1);
 }

 SourceStream streams[] = ((PushDataSource)origDataSource)
 .getStreams();

 DataSource cloneableDataSource = null;
 DataSource clonedDataSource = null;

 if (streams.length == 1) {
 cloneableDataSource
 = Manager.createCloneableDataSource(origDataSource);

JMF API Guide158
 clonedDataSource
 = ((SourceCloneable)cloneableDataSource).createClone();
 }
 else {
 // DataSource has more than 1 stream and we should try to
 // set the encodings of these streams to dvi and gsm
 }

 // at this point, we have a cloneable data source and its clone,
 // Create one processor from each of these datasources.

 Processor p1 = null;

 try {
 p1 = Manager.createProcessor(cloneableDataSource);
 } catch (IOException e) {
 System.exit(-1);
 } catch (NoProcessorException e) {
 System.exit(-1);
 }

 p1.configure();

 // block until configured.

 TrackControl track[] = p1.getTrackControls();
 boolean encodingOk = false;

 // Go through the tracks and try to program one of them
 // to output gsm data
 for (int i = 0; i < track.length; i++) {
 if (!encodingOk && track[i] instanceof FormatControl) {
 if (((FormatControl)track[i]).
 setFormat(new AudioFormat(AudioFormat.GSM_RTP,
 8000,
 8,
 1)) == null) {

 track[i].setEnabled(false);
 }
 else {
 encodingOk = true;
 }
 }
 else {
 track[i].setEnabled(false);
 }
 }

Example 10-4: Encoding and sending data in multiple formats (2 of 3)

Transmitting RTP Media Streams 159
Transmitting RTP Streams with RTPSocket

You can also use RTPSocket to transmit RTP media streams. To use RTP-
Socket for transmission, you create an RTP DataSink with createDataSink
by passing in a a MediaLocator with a new protocol that is a variant of
RTP, “Ratibor”. Manager attempts to construct a DataSink from:

<protocol package-prefix>.media.datasink.rtpraw.Handler

 if (encodingOk) {
 processor.realize();
 // block until realized.
 // ...
 // get the output datasource of the processor
 DataSource ds = null;

 try {
 ds = processor.getDataOutput();
 } catch (NotRealizedError e) {
 System.exit(-1);
 }

 // Now create the first SessionManager and hand over the
 // first datasource for SendStream creation .

 SessionManager rtpsm1
 = new com.sun.media.rtp.RTPSessionMgr();

 // rtpsm1.initSession(...);
 // rtpsm1.startSession(...);

 try {
 rtpsm1.createSendStream(ds, // first datasource
 0); // first sourcestream of
 // first datasource
 } catch (IOException e) {
 e.printStackTrace();
 } catch(UnsupportedFormatException e) {
 e.printStackTrace();
 }
 }

 // Now repeat the above with the cloned data source and
 // set the encoding to dvi. i.e create a processor with
 // inputdatasource clonedDataSource
 // and set encoding of one of its tracks to dvi.
 // create SessionManager giving it the output datasource of
 // this processor.

Example 10-4: Encoding and sending data in multiple formats (3 of 3)

JMF API Guide160
The session manager prepares individual RTP packets that are ready to be
transmitted across the network and sends them to the RTPSocket created
from:

<protocol package-prefix>.media.protocol.rtpraw.DataSource

The RTPSocket created at <protocol-prefix>.media.proto-
col.rtpraw.DataSource is your own implementation of RTPSocket. The
JMF API does not deÞne a default implementation of RTPSocket. The
implementation of RTPSocket is dependent on the underlying transport
protocol that you are using. Your RTPSocket class must be located at <pro-
tocol-prefix>.media.protocol.rtpraw.DataSource.

YouÕre responsible for transmitting the RTP packets out on the underlying
network

In the following example, an RTPSocket is used to transmitting captured
audio:

Example 10-5: Transmitting RTP data with RTPSocket (1 of 3)

 // Find a capture device that will capture linear audio
 // data at 8bit 8Khz

 AudioFormat format = new AudioFormat(AudioFormat.LINEAR,
 8000,
 8,
 1);

 Vector devices= CaptureDeviceManager.getDeviceList(format);

 CaptureDeviceInfo di= null;
 if (devices.size() > 0) {
 di = (CaptureDeviceInfo) devices.elementAt(0);
 }
 else {
 // exit if we could not find the relevant capture device.
 System.exit(-1);
 }

 // Create a processor for this capturedevice & exit if we
 // cannot create it

 try {
 processor = Manager.createProcessor(di.getLocator());
 } catch (IOException e) {
 System.exit(-1);
 } catch (NoProcessorException e) {
 System.exit(-1);
 }

Transmitting RTP Media Streams 161
 // configure the processor
 processor.configure();

 // block until it has been configured

 processor.setContentDescriptor(
 new ContentDescriptor(ContentDescriptor.RAW));

 TrackControl track[] = processor.getTrackControls();
 boolean encodingOk = false;

 // Go through the tracks and try to program one of them to
 // output gsm data.
 for (int i = 0; i < track.length; i++) {
 if (!encodingOk && track[i] instanceof FormatControl) {

 if (((FormatControl)track[i]).
 setFormat(new AudioFormat(AudioFormat.GSM_RTP,
 8000,
 8,
 1)) == null) {

 track[i].setEnabled(false);
 }
 else {
 encodingOk = true;
 }
 }
 else {
 // we could not set this track to gsm, so disable it
 track[i].setEnabled(false);
 }
 }

 // At this point, we have determined where we can send out
 // gsm data or not.
 // realize the processor
 if (encodingOk) {
 processor.realize();
 // block until realized.
 // get the output datasource of the processor and exit
 // if we fail
 DataSource ds = null;
 try {
 ds = processor.getDataOutput();
 } catch (NotRealizedError e) {
 System.exit(-1);
 }

 // hand this datasource to manager for creating an RTP
 // datasink
 // our RTP datasimnk will multicast the audio

Example 10-5: Transmitting RTP data with RTPSocket (2 of 3)

JMF API Guide162
 try {
 MediaLocator m = new MediaLocator("rtpraw://");
 // here, manager will look for a datasink in
 // <protocol.prefix>.media.protocol.rtpraw.DataSink
 // the datasink will create an RTPSocket at
 // <protocol.prefix>.media.protocol.rtpraw.DataSource
 // and sink all RTP data to this socket.

 DataSink d = Manager.createDataSink(ds, m);

 d.open();
 d.start();
 } catch (Exception e) {
 System.exit(-1);
 }
 }

Example 10-5: Transmitting RTP data with RTPSocket (3 of 3)

11

Importing and Exporting

RTP Media Streams

Many applications need to be able to read and write RTP streams. For
example, conferencing application might record a conference and broad-
cast it at a later time, or telephony applications might transmit stored
audio streams for announcement messages or hold music.

You can save RTP streams received from the network to a file using an
RTP file writer DataSink. Similarly, you can read saved files and either
present them locally or transmit them across the network.

Reading RTP Media Streams from a File

To read data from a Þle and present or transmit it, you can use a MediaLo-
cator that identiÞes the Þle to construct a DataSource, or use the MediaLo-
cator to directly construct your Processor. The Þle types that can be used
for RTP transmissions depend on what codec plug-ins you have available
to transcode and packetize the data into an RTP-speciÞc format.

Example 11-1: Reading RTP streams from a Þle (1 of 3)

 // Create a Processor for the selected file. Exit if the
 // Processor cannot be created.
 try {
 String url= "file:/home/foo/foo.au";

 processor
 = Manager.createProcessor(new MediaLocator(url));
 } catch (IOException e) {
 System.exit(-1);
163

JMF API Guide164
 } catch (NoProcessorException e) {
 System.exit(-1);
 }

 // configure the processor
 processor.configure();

 // Block until the Processor has been configured

 TrackControl track[] = processor.getTrackControls();

 boolean encodingOk = false;

 // Go through the tracks and try to program one of them to
 // output ulaw data.
 for (int i = 0; i < track.length; i++) {
 if (!encodingOk && track[i] instanceof FormatControl) {

 if (((FormatControl)track[i]).
 setFormat(new AudioFormat(AudioFormat.ULAW_RTP,
 8000,
 8,
 1)) == null) {

 track[i].setEnabled(false);
 }
 else {
 encodingOk = true;
 }
 }
 else {
 // we could not set this track to ulaw, so disable it
 track[i].setEnabled(false);
 }
 }

 // At this point, we have determined where we can send out
 // ulaw data or not.
 // realize the processor

 if (encodingOk) {
 processor.realize();

 // block until realized.
 // get the output datasource of the processor and exit
 // if we fail
 DataSource ds = null;

 try {
 ds = processor.getDataOutput();
 } catch (NotRealizedError e) {
 System.exit(-1);
 }

Example 11-1: Reading RTP streams from a Þle (2 of 3)

Importing and Exporting RTP Media Streams 165
Exporting RTP Media Streams

RTP streams received from the network can be stored as well as presented.
To write the data to a Þle, you retrieve the DataSource from the ReceiveS-
tream and use it to create a Þle writing DataSink through the Manager.

If you want to transcode the data before storing it, you can use the Data-
Source retrieved from the ReceiveStream to construct a Processor. You
then:

1. Set the track formats to perform the desired encoding.

2. Get the output DataSource from the Processor.

3. Construct an RTP file writer with the DataSource.

In the following example, whenever a new stream is created in the session:

1. The stream is retrieved from NewReceiveStreamEvent.

2. The DataSource is acquired from the ReceiveStream.

3. The DataSource is passed to the Manager.createDataSink method along
with a MediaLocator that identifies the file where we want to store the
data.

 // hand this datasource to manager for creating an RTP
 // datasink.
 // our RTP datasink will multicast the audio

 try {
 String url= "rtp://224.144.251.104:49150/audio/1";

 MediaLocator m = new MediaLocator(url);

 DataSink d = Manager.createDataSink(ds, m);

 d.open();
 d.start();
 } catch (Exception e) {
 System.exit(-1);
 }
 }

Example 11-1: Reading RTP streams from a Þle (3 of 3)

JMF API Guide166
This example handles a single track. To write a Þle that contains both
audio and video tracks, you need to retrieve the audio and video streams
from the separate session managers and create a merging DataSource that
carries both of the streams. Then you hand the merged DataSource to Man-
ager.createDataSink.

Example 11-2: Writing an RTP stream to a Þle

 public void update(ReceiveStreamEvent event) {
 // find the source session manager for this event
 SessionManager source = (SessionManager)event.getSource();

 // create a filewriter datasink if a new ReceiveStream
 // is detected
 if (event instanceof NewReceiveStreamEvent) {
 String cname = "Java Media Player";
 ReceiveStream stream = null;

 try {
 // get the ReceiveStream
 stream =((NewReceiveStreamEvent)event)
 .getReceiveStream();

 Participant part = stream.getParticipant();

 // get the ReceiveStream datasource
 DataSource dsource = stream.getDataSource();

 // hand this datasource over to a file datasink
 MediaLocator f = new MediaLocator("file://foo.au");

 Manager.createDataSink(dsource, f);
 } catch (Exception e) {
 System.err.println("newReceiveStreamEvent exception "
 + e.getMessage());
 return;
 }
 }
 }

12

Creating Custom

Packetizers and
Depacketizers

Note: The RTP 1.0 API supported custom packetizers and depacketizers through
RTP-speciÞc APIs. These APIs have been replaced by the generic JMF plug-in
API and any custom packetizers or depacketizers created for RTP 1.0 will need to
be ported to the new architecture.

RTP packetizers are responsible for taking entire video frames or multiple
audio samples and distributing them into packets of a particular size that
can be streamed over the underlying network. Video frames are divided
into smaller chunks, while audio samples are typically grouped together.
RTP depacketizers reverse the process and reconstruct complete video
frames or extract individual audio samples from a stream of RTP packets.
The RTP session manager itself does not perform any packetization or
depacketization. These operations are performed by the Processor using
specialized Codec plug-ins.
167

JMF API Guide168

Figure 12-1: JMF RTP architecture.

To determine what RTP packetizer and depacketizer plug-ins are avail-
able, you can query the PlugInManager by calling getPlugInList(CODEC).
The input and output formats of a particular plug-in can be determined
through the getSupportedInputFormats and getSupportedOutputFormats
methods.

To receive or transmit any format not supported by one of the standard
plug-ins, you need to implement a custom plug-in to perform the neces-
sary conversions. The formats of the data streamed by the DataSource cre-
ated by the session manager are well-deÞned to facilitate packetization
and depacketization of the formatted data.

For a custom plug-in to work, there must be either a standard or custom
plug-in available that can handle the output format it generates. In some
cases, if the necessary encoder or decoder is available, you might only
need to write a packetizer or depacketizer. In other cases, you might need
to provide both the encoder/decoder and packetizer/depacketizer.

Custom packetizers and depacketizers can be combined with custom
encoders and decoders, or you can implement independent packetizer
and depacketizer plug-ins. For example, a depacketizer-only plug-in
might advertise DVI_RTP as its input format and DVI as its output for-
mat.

Java Applications, Applets, Beans

RTP APIs

JMF Plug-In API

Packetizer
Codecs

Depacketizer
Codecs

JMF API

Creating Custom Packetizers and Depacketizers 169

Figure 12-2: Data ßow with a custom depacketizer plug-in.

A combined depacketizer-decoder plug-in that decompressed DVI to lin-
ear audio would advertise DVI_RTP as its input format and
AUDIO_LINEAR as its output format.

Figure 12-3: Data ßow with combined depacketizer/decoder plug-in.

JPEG RTP Transmission

Codec/
Packetizer

Demux MUX
a b c

Raw RGB Videoa

Raw RGB Video output from Demultiplexer and input to Codec/Packetizer
(Demultiplexer doesn't change format)

b

Packetized JPEG_RTP encoded data output from Codec/Packetizer
and input to Multiplexer

c

JPEG_RTP

Buffer Format = JPEG_RTP
Buffer Header = RTPHeader (javax.media.rtp.RTPHeader)
Buffer Data = JPEG Payload header + JPEG Payload

DVI RTP Player

Demux
a b d

MUXPacketizerCodec
c

Packetized JPEG_RTP encoded data output from Packetizer and input to Multiplexerd

Raw RGB Videoa

Raw RGB Video output from Demultiplexer and input to Encoder
(Demultiplexer doesn't change format)

b

JPEG encoded data output from Encoder and input to Packetizerc

JPEG_RTP

Buffer Format = JPEG_RTP
Buffer Header = RTPHeader (javax.media.rtp.RTPHeader)
Buffer Data = JPEG Payload header + JPEG Payload

JMF API Guide170
RTP Data Handling1

Data is transferred between the session manager and a Player or Proces-
sor using the Buffer object. Therefore, all DataSources created by the Pro-
cessor with an RTP-speciÞc format are buffer DataSources. Similarly, all
DataSources created by the session manager and handed over to the Man-
ager for Player creation are buffer DataSources.

All RTP-speciÞc data uses an RTP-speciÞc format encoding as deÞned in
the AudioFormat and VideoFormat classes. For example, gsm RTP encapsu-
lated packets have the encoding set to AudioFormat.GSM_RTP, while jpeg-
encoded video formats have the encoding set to VideoFormat.JPEG_RTP.

AudioFormat deÞnes four standard RTP-speciÞc encoding strings:

public static final String ULAW_RTP = "JAUDIO_G711_ULAW/rtp";
public static final String DVI_RTP = "dvi/rtp";
public static final String G723_RTP = "g723/rtp";
public static final String GSM_RTP = "gsm/rtp";

VideoFormat deÞnes three standard RTP-speciÞc encoding strings:

public static final String JPEG_RTP = "jpeg/rtp";
public static final String H261_RTP = "h261/rtp";
public static final String H263_RTP = "h263/rtp";

Buffers that have an RTP-speciÞc encoding might have a non-null header
deÞned in javax.media.rtp.RTPHeader. Payload-speciÞc headers are not
part of the RTPHeader. Instead, payload headers are part of the data object
in the Buffers transferred between the Player or Processor and the ses-
sion manager. The packetÕs actual RTP header is also included as part of
the Buffer objectÕs data. The Buffer objectÕs offset points to the end of this
header.

For packets received from the network by the SessionManager, all available
Þelds from the RTP Header (as deÞned in RFC 1890) are translated to
appropriate Þelds in the Buffer object: timestamp and sequence number.
The marker bit from the RTP header is sent over as ßags on the Buffer
object, which you can access by calling the Buffer getFlags method. The
ßag used to indicate the marker bit is Buffer.FLAG_RTP_MARKER. If there is

1. See the IETF RTP payload specifications for more information about how particular
payloads are to be carried in RTP.

Creating Custom Packetizers and Depacketizers 171
an extension header, it is sent over in the header of be Buffer, which is a
RTPHeader object. The format of the Buffer is set to AudioFormat.GSM_RTP.

All source streams streamed out on RTP DataSources have their content
descriptor set to an empty content descriptor of "" and their format set to
the appropriate RTP-speciÞc format and encoding. To be able to intercept
or depacketize this data, plug-in codecs must advertise this format as one
of their input formats.

For packets being sent over the network, the Processor's format must be
set to one of the RTP-speciÞc formats (encodings). The plug-in codec must
advertise this format as one of its supported output formats. All Buffer
objects passed to the SessionManager through the DataSource sent to crea-
teSendStream must have an RTP-speciÞc format. The header of the Buffer
is as described in javax.media.rtp.RTPHeader.

Dynamic RTP Payloads

The SessionManager has a provision for entering information on dynamic
RTP payloads. For more information about how dynamic payloads are
used in RTP, refer to IETF RFC 1890, the RTP Audio-Video proÞle2 that
accompanies the RTP speciÞcation.

The dynamic RTP-payload information typically contains a mapping from
a predetermined RTP payload ID to a speciÞc encoding. In the JMF RTP
API, this information is passed via the Format object. To enable playback
or transmission of dynamic RTP payloads, you must associate a speciÞc
Format with an RTP payload number. This information can be sent to the
session manager in two ways:

¥ Through the RTPControl addFormat methodÑevery RTP DataSource
exports an RTPControl that can be retrieved through the DataSource
getControl method. A handle for the DataSource is typically obtained
by calling the Processor getDataOutput method or the Manager
createDataSource(MediaLocator) method. The RTPControl's
addFormat method can be used to enter the encoding Information. See
javax.media.rtp.RTPControl for more information.

¥ Through the SessionManager addFormat methodÑif you use the JMF
RTP API but do not use the Manager to create players or send streams,

2. This document is being revised in preparation for advancement from Proposed
Standard to Draft standard. At the time of publication, the most recent draft was
http://www.ietf.org/internet-drafts/draft-ietf-avt-profile-new-06.txt.

JMF API Guide172
the dynamic payload information can be entered using the addFormat
method of the SessionManager interface. For playback, this must be
done prior to calling startSession since the session manager must be
configured with dynamic payload information before data arrives. For
transmission, this must be done prior to calling createSendStream
since the session manager must be configured with dynamic payload
information before attempting to send data out.

Registering Custom Packetizers and Depacketizers

Whenever custom packetizers or depacketizers are used, a new payload
number must be associated with the RTP format in the session managerÕs
registry. For RTP transmission, you need to call addFormat on the Session-
Manager to register new formats. For RTP reception, you can either:

¥ Call addFormat on the RTPControl associated with the DataSource.

¥ Call addFormat on the SessionManager.

A

JMF Applet

This Java Applet demonstrates proper error checking in a Java Media pro-
gram. Like PlayerApplet, it creates a simple media player with a media
event listener.

When this applet is started, it immediately begins to play the media clip.
When the end of media is reached, the clip replays from the beginning.

Example A-1: TypicalPlayerApplet with error handling. (1 of 5)

import java.applet.Applet;
import java.awt.*;
import java.lang.String;
import java.net.URL;
import java.net.MalformedURLException;
import java.io.IOException;
import javax.media.*;

/**
 * This is a Java Applet that demonstrates how to create a simple
 * media player with a media event listener. It will play the
 * media clip right away and continuously loop.
 *
 * <!-- Sample HTML
 * <applet code=TypicalPlayerApplet width=320 height=300>
 * <param name=file value="Astrnmy.avi">
 * </applet>
 * -->

 */

public class TypicalPlayerApplet extends Applet implements

ControllerListener

{

 // media player

 Player player = null;
173

JMF API Guide174
 // component in which video is playing

 Component visualComponent = null;

 // controls gain, position, start, stop

 Component controlComponent = null;

 // displays progress during download

 Component progressBar = null;

 /**
 * Read the applet file parameter and create the media
 * player.
 */

 public void init()
 {
 setLayout(new BorderLayout());
 // input file name from html param
 String mediaFile = null;
 // URL for our media file
 URL url = null;
 // URL for doc containing applet
 URL codeBase = getDocumentBase();

 // Get the media filename info.
 // The applet tag should contain the path to the
 // source media file, relative to the html page.

 if ((mediaFile = getParameter("FILE")) == null)
 Fatal("Invalid media file parameter");
 try
 {
 // Create an url from the file name and the url to the
 // document containing this applet.

 if ((url = new URL(codeBase, mediaFile)) == null)
 Fatal("Can't build URL for " + mediaFile);

 // Create an instance of a player for this media
 if ((player = Manager.createPlayer(url)) == null)
 Fatal("Could not create player for "+url);

 // Add ourselves as a listener for player's events
 player.addControllerListener(this);
 }
 catch (MalformedURLException u)
 {
 Fatal("Invalid media file URL!");
 }

Example A-1: TypicalPlayerApplet with error handling. (2 of 5)

JMF Applet 175
 catch(IOException i)
 {
 Fatal("IO exception creating player for "+url);
 }

 // This applet assumes that its start() calls
 // player.start().This causes the player to become
 // Realized. Once Realized, the Applet will get
 // the visual and control panel components and add
 // them to the Applet. These components are not added
 // during init() because they are long operations that
 // would make us appear unresposive to the user.
 }

 /**
 * Start media file playback. This function is called the
 * first time that the Applet runs and every
 * time the user re-enters the page.
 */

 public void start()
 {
 // Call start() to prefetch and start the player.

 if (player != null) player.start();
 }

 /**
 * Stop media file playback and release resources before
 * leaving the page.
 */

 public void stop()
 {
 if (player != null)
 {
 player.stop();
 player.deallocate();
 }
 }

 /**
 * This controllerUpdate function must be defined in order
 * to implement a ControllerListener interface. This
 * function will be called whenever there is a media event.
 */

 public synchronized void controllerUpdate(ControllerEvent event)
 {
 // If we're getting messages from a dead player,

Example A-1: TypicalPlayerApplet with error handling. (3 of 5)

JMF API Guide176
 // just leave

 if (player == null) return;

 // When the player is Realized, get the visual
 // and control components and add them to the Applet

 if (event instanceof RealizeCompleteEvent)
 {
 if ((visualComponent = player.getVisualComponent()) != null)
 add("Center", visualComponent);
 if ((controlComponent = player.getControlPanelComponent()) != null)
 add("South",controlComponent);
 // force the applet to draw the components
 validate();
 }
 else if (event instanceof CachingControlEvent)
 {

 // Put a progress bar up when downloading starts,
 // take it down when downloading ends.

 CachingControlEvent e = (CachingControlEvent) event;
 CachingControl cc = e.getCachingControl();
 long cc_progress = e.getContentProgress();
 long cc_length = cc.getContentLength();

 // Add the bar if not already there ...

 if (progressBar == null)
 if ((progressBar = cc.getProgressBarComponent()) != null)
 {
 add("North", progressBar);
 validate();
 }

 // Remove bar when finished ownloading
 if (progressBar != null)
 if (cc_progress == cc_length)
 {
 remove (progressBar);
 progressBar = null;
 validate();
 }
 }
 else if (event instanceof EndOfMediaEvent)
 {

Example A-1: TypicalPlayerApplet with error handling. (4 of 5)

JMF Applet 177
 // We've reached the end of the media; rewind and
 // start over

 player.setMediaTime(new Time(0));
 player.start();
 }
 else if (event instanceof ControllerErrorEvent)
 {
 // Tell TypicalPlayerApplet.start() to call it a day

 player = null;
 Fatal (((ControllerErrorEvent)event).getMessage());
 }
 }

 void Fatal (String s)
 {
 // Applications will make various choices about what
 // to do here. We print a message and then exit

 System.err.println("FATAL ERROR: " + s);
 throw new Error(s); // Invoke the uncaught exception
 // handler System.exit() is another
 // choice
 }
}

Example A-1: TypicalPlayerApplet with error handling. (5 of 5)

JMF API Guide178

B

StateHelper

StateHelper is a helper class that implements the ControllerListener
interface and can be used to manage the state of a Processor. This helper
class is used in examples 5-4, 5-5, and 5-6 inÒCapturing Time-Based Media
with JMFÓ on page 77.

Example B-1: StateHelper (1 of 3)

import javax.media.*;

public class StateHelper implements javax.media.ControllerListener {

 Player player = null;

 boolean configured = false;

 boolean realized = false;

 boolean prefetched = false;

 boolean eom = false;

 boolean failed = false;

 boolean closed = false;

 public StateHelper(Player p) {

player = p;

p.addControllerListener(this);
 }

 public boolean configure(int timeOutMillis) {
long startTime = System.currentTimeMillis();
synchronized (this) {
 if (player instanceof Processor)

((Processor)player).configure();
 else

return false;
179

JMF API Guide180
 while (!configured && !failed) {
try {
 wait(timeOutMillis);
} catch (InterruptedException ie) {
}
if (System.currentTimeMillis() - startTime > timeOutMillis)
 break;

 }
}
return configured;

 }

 public boolean realize(int timeOutMillis) {

long startTime = System.currentTimeMillis();
synchronized (this) {
 player.realize();
 while (!realized && !failed) {

try {
 wait(timeOutMillis);
} catch (InterruptedException ie) {
}
if (System.currentTimeMillis() - startTime > timeOutMillis)
 break;

 }
}
return realized;

 }

 public boolean prefetch(int timeOutMillis) {
long startTime = System.currentTimeMillis();
synchronized (this) {
 player.prefetch();
 while (!prefetched && !failed) {

try {
 wait(timeOutMillis);
} catch (InterruptedException ie) {
}
if (System.currentTimeMillis() - startTime > timeOutMillis)
 break;

 }
}
return prefetched && !failed;

 }
 public boolean playToEndOfMedia(int timeOutMillis) {

long startTime = System.currentTimeMillis();
eom = false;
synchronized (this) {
 player.start();

Example B-1: StateHelper (2 of 3)

StateHelper 181
 while (!eom && !failed) {
try {
 wait(timeOutMillis);
} catch (InterruptedException ie) {
}
if (System.currentTimeMillis() - startTime > timeOutMillis)
 break;

 }
}
return eom && !failed;

 }

 public void close() {
synchronized (this) {
 player.close();
 while (!closed) {

try {
 wait(100);
} catch (InterruptedException ie) {
}

 }
}
player.removeControllerListener(this);

 }

 public synchronized void controllerUpdate(ControllerEvent ce) {
if (ce instanceof RealizeCompleteEvent) {
 realized = true;
} else if (ce instanceof ConfigureCompleteEvent) {
 configured = true;
} else if (ce instanceof PrefetchCompleteEvent) {
 prefetched = true;
} else if (ce instanceof EndOfMediaEvent) {
 eom = true;
} else if (ce instanceof ControllerErrorEvent) {
 failed = true;
} else if (ce instanceof ControllerClosedEvent) {
 closed = true;
} else {
 return;
}
notifyAll();

 }
}

Example B-1: StateHelper (3 of 3)

JMF API Guide182

C

Demultiplexer Plug-In

This sample demonstrates how to implement a Demultiplexer plug-in to
extract individual tracks from a media Þle. This example processes GSM
Þles.

Example C-1: GSM Demultiplexer plug-in. (1 of 13)

import java.io.IOException;
import javax.media.*;
import javax.media.protocol.*;
import javax.media.format.Format;
import javax.media.format.audio.AudioFormat;

/**
 * Demultiplexer for GSM file format
 */

/**
 * GSM
 * 8000 samples per sec.
 * 160 samples represent 20 milliseconds and GSM represents them
 * in 33 bytes. So frameSize is 33 bytes and there are 50 frames
 * in one second. One second is 1650 bytes.
 */

public class SampleDeMux implements Demultiplexer {
 private Time duration = Duration.DURATION_UNKNOWN;
 private Format format = null;
 private Track[] tracks = new Track[1]; // Only 1 track is there for Gsm
 private int numBuffers = 4;
 private int bufferSize;
 private int dataSize;
 private int encoding;
 private String encodingString;
 private int sampleRate;
 private int samplesPerBlock;
 private int bytesPerSecond = 1650; // 33 * 50
 private int blockSize = 33;
183

JMF API Guide184
 private int maxFrame = Integer.MAX_VALUE;
 private long minLocation;
 private long maxLocation;
 private PullSourceStream stream = null;
 private long currentLocation = 0;

 protected DataSource source;
 protected SourceStream[] streams;
 protected boolean seekable = false;
 protected boolean positionable = false;
 private Object sync = new Object(); // synchronizing variable

 private static ContentDescriptor[] supportedFormat =
 new ContentDescriptor[] {new ContentDescriptor("audio.x_gsm")};

 public ContentDescriptor [] getSupportedInputContentDescriptors() {
 return supportedFormat;
 }

 public void setSource(DataSource source)
 throws IOException, IncompatibleSourceException {

 if (!(source instanceof PullDataSource)) {
 throw new IncompatibleSourceException("DataSource
 not supported: " + source);
 } else {
 streams = ((PullDataSource) source).getStreams();
 }

 if (streams == null) {
 throw new IOException("Got a null stream from the DataSource");
 }

 if (streams.length == 0) {
 throw new IOException("Got a empty stream array
 from the DataSource");
 }
 this.source = source;
 this.streams = streams;

 positionable = (streams[0] instanceof Seekable);
 seekable = positionable && ((Seekable)
 streams[0]).isRandomAccess();

 if (!supports(streams))
 throw new IncompatibleSourceException("DataSource not
 supported: " + source);
 }

 /**
 * A Demultiplexer may support pull only or push only or both
 * pull and push streams.

Example C-1: GSM Demultiplexer plug-in. (2 of 13)

Demultiplexer Plug-In 185
 * Some Demultiplexer may have other requirements.
 * For e.g a quicktime Demultiplexer imposes an additional
 * requirement that
 * isSeekable() and isRandomAccess() be true
 */
 protected boolean supports(SourceStream[] streams) {
 return ((streams[0] != null) &&
 (streams[0] instanceof PullSourceStream));
 }

 public boolean isPositionable() {
 return positionable;
 }

 public boolean isRandomAccess() {
 return seekable;
 }

 /**
 * Opens the plug-in software or hardware component and acquires
 * necessary resources. If all the needed resources could not be
 * acquired, it throws a ResourceUnavailableException. Data should not
 * be passed into the plug-in without first calling this method.
 */
 public void open() {
 // throws ResourceUnavailableException;
 }

 /**
 * Closes the plug-in component and releases resources. No more data
 * will be accepted by the plug-in after a call to this method. The
 * plug-in can be reinstated after being closed by calling
 * <code>open</code>.
 */
 public void close() {
 if (source != null) {
 try {
 source.stop();
 source.disconnect();
 } catch (IOException e) {
 // Internal error?
 }
 source = null;
 }
 }

 /**
 * This get called when the player/processor is started.
 */
 public void start() throws IOException {
 if (source != null)
 source.start();
 }

Example C-1: GSM Demultiplexer plug-in. (3 of 13)

JMF API Guide186
 /**
 * This get called when the player/processor is stopped.
 */
 public void stop() {
 if (source != null) {
 try {
 source.stop();
 } catch (IOException e) {
 // Internal errors?
 }
 }
 }

 /**
 * Resets the state of the plug-in. Typically at end of media
 * or when media is repositioned.
 */
 public void reset() {
 }

 public Track[] getTracks() throws IOException, BadHeaderException {

 if (tracks[0] != null)
 return tracks;
 stream = (PullSourceStream) streams[0];
 readHeader();
 bufferSize = bytesPerSecond;
 tracks[0] = new GsmTrack((AudioFormat) format,
 /*enabled=*/ true,
 new Time(0),
 numBuffers,
 bufferSize,
 minLocation,
 maxLocation
);
 return tracks;
 }

 public Object[] getControls() {
 return new Object[0];
 }

 public Object getControl(String controlType) {
 return null;
 }
 private void /* for now void */ readHeader()
 throws IOException, BadHeaderException {

 minLocation = getLocation(stream); // Should be zero

 long contentLength = stream.getContentLength();
 if (contentLength != SourceStream.LENGTH_UNKNOWN) {
 double durationSeconds = contentLength / bytesPerSecond;

Example C-1: GSM Demultiplexer plug-in. (4 of 13)

Demultiplexer Plug-In 187
 duration = new Time(durationSeconds);
 maxLocation = contentLength;

 } else {
 maxLocation = Long.MAX_VALUE;
 }

 boolean signed = true;
 boolean bigEndian = false;
 format = new AudioFormat(AudioFormat.GSM,
 8000, // sampleRate,
 16, // sampleSizeInBits,
 1, // channels,
 bigEndian ? AudioFormat.BIG_ENDIAN :
 AudioFormat.LITTLE_ENDIAN,
 signed ? AudioFormat.SIGNED :
 AudioFormat.UNSIGNED,
 (blockSize * 8), // frameSizeInBits
 Format.NOT_SPECIFIED,
 Format.byteArray);
 }

 // Contains 1 audio track
 public String getTrackLayout() {
 return "A";
 }

 public Time setPosition(Time where, int rounding) {
 if (! seekable) {
 return getMediaTime();
 }

 long time = where.getNanoseconds();
 long newPos;

 if (time < 0)
 time = 0;

 double newPosd = time * bytesPerSecond / 1000000000.0;
 double remainder = (newPosd % blockSize);

 newPos = (long) (newPosd - remainder);

 if (remainder > 0) {
 switch (rounding) {
 case Positionable.RoundUp:
 newPos += blockSize;
 break;
 case Positionable.RoundNearest:
 if (remainder > (blockSize / 2.0))
 newPos += blockSize;

Example C-1: GSM Demultiplexer plug-in. (5 of 13)

JMF API Guide188
 break;
 }
 }

 if (newPos > maxLocation)
 newPos = maxLocation;

 newPos += minLocation;
 ((BasicTrack) tracks[0]).setSeekLocation(newPos);
 return where;
 }

 public Time getMediaTime() {
 long location;
 long seekLocation = ((BasicTrack) tracks[0]).getSeekLocation();
 if (seekLocation != -1)
 location = seekLocation - minLocation;
 else
 location = getLocation(stream) - minLocation;

 return new Time(location / (double) bytesPerSecond);
 }

 public Time getDuration() {
 if (duration.equals(Duration.DURATION_UNKNOWN) &&
 (tracks[0] != null)) {
 long mediaSizeAtEOM = ((BasicTrack)
 tracks[0]).getMediaSizeAtEOM();
 if (mediaSizeAtEOM > 0) {
 double durationSeconds = mediaSizeAtEOM / bytesPerSecond;
 duration = new Time(durationSeconds);
 }
 }
 return duration;
 }

 /**
 * Returns a descriptive name for the plug-in.
 * This is a user readable string.
 */
 public String getName() {
 return "Parser for raw GSM";
 }

 /**
 * Read numBytes from offset 0
 */
 public int readBytes(PullSourceStream pss, byte[] array,
 int numBytes) throws IOException {

 return readBytes(pss, array, 0, numBytes);
 }

Example C-1: GSM Demultiplexer plug-in. (6 of 13)

Demultiplexer Plug-In 189
 public int readBytes(PullSourceStream pss, byte[] array,
 int offset,
 int numBytes) throws IOException {
 if (array == null) {
 throw new NullPointerException();
 } else if ((offset < 0) || (offset > array.length) ||
 (numBytes < 0) ||
 ((offset + numBytes) > array.length) ||
 ((offset + numBytes) < 0)) {
 throw new IndexOutOfBoundsException();
 } else if (numBytes == 0) {
 return 0;
 }

 int remainingLength = numBytes;
 int actualRead = 0;

 remainingLength = numBytes;
 while (remainingLength > 0) {

 actualRead = pss.read(array, offset, remainingLength);
 if (actualRead == -1) {// End of stream
 if (offset == 0) {
 throw new IOException("SampleDeMux: readBytes():
 Reached end of stream while trying to read " +
 numBytes + " bytes");
 } else {
 return offset;
 }
 } else if (actualRead ==
 com.sun.media.protocol.BasicSourceStream.LENGTH_DISCARD) {
 return
 com.sun.media.protocol.BasicSourceStream.LENGTH_DISCARD;
 } else if (actualRead < 0) {
 throw new IOException("SampleDeMux: readBytes()
 read returned " + actualRead);
 }
 remainingLength -= actualRead;
 offset += actualRead;
 synchronized(sync) {
 currentLocation += actualRead;
 }
 }
 return numBytes;
 }

 protected final long getLocation(PullSourceStream pss) {
 synchronized(sync) {
 if ((pss instanceof Seekable))
 return ((Seekable)pss).tell();

Example C-1: GSM Demultiplexer plug-in. (7 of 13)

JMF API Guide190
 else
 return currentLocation;
 }
 }

 //
 // Inner classes begin
 abstract private class BasicTrack implements Track {

 private Format format;
 private boolean enabled = true;
 protected Time duration;
 private Time startTime;
 private int numBuffers;
 private int dataSize;
 private PullSourceStream stream;
 private long minLocation;
 private long maxLocation;
 private long maxStartLocation;
 private SampleDeMux parser;
 private long sequenceNumber = 0;
 private TrackListener listener;
 private long seekLocation = -1L;
 private long mediaSizeAtEOM = -1L; // update when EOM
 // implied by IOException occurs

 BasicTrack(SampleDeMux parser,
 Format format, boolean enabled,
 Time duration, Time startTime,
 int numBuffers, int dataSize,
 PullSourceStream stream) {
 this(parser, format, enabled, duration, startTime,
 numBuffers, dataSize, stream,
 0L, Long.MAX_VALUE);
 }

 /**
 * Note to implementors who want to use this class.
 * If the maxLocation is not known, then
 * specify Long.MAX_VALUE for this parameter
 */
 public BasicTrack(SampleDeMux parser,
 Format format, boolean enabled,
 Time duration, Time startTime,
 int numBuffers, int dataSize,
 PullSourceStream stream,
 long minLocation, long maxLocation) {

 this.parser = parser;

Example C-1: GSM Demultiplexer plug-in. (8 of 13)

Demultiplexer Plug-In 191
 this.format = format;
 this.enabled = enabled;
 this.duration = duration;
 this.startTime = startTime;
 this.numBuffers = numBuffers;
 this.dataSize = dataSize;
 this.stream = stream;
 this.minLocation = minLocation;
 this.maxLocation = maxLocation;
 maxStartLocation = maxLocation - dataSize;
 }

 public Format getFormat() {
 return format;
 }

 public void setEnabled(boolean t) {
 enabled = t;
 }

 public boolean isEnabled() {
 return enabled;
 }

 public Time getDuration() {
 return duration;
 }

 public Time getStartTime() {
 return startTime;
 }

 public int getNumberOfBuffers() {
 return numBuffers;
 }

 public void setTrackListener(TrackListener l) {
 listener = l;
 }

 public synchronized void setSeekLocation(long location) {
 seekLocation = location;
 }
 public synchronized long getSeekLocation() {
 return seekLocation;
 }

 public void readFrame(Buffer buffer) {
 if (buffer == null)
 return;

Example C-1: GSM Demultiplexer plug-in. (9 of 13)

JMF API Guide192
 if (!enabled) {
 buffer.setDiscard(true);
 return;
 }

 buffer.setFormat(format);
 Object obj = buffer.getData();
 byte[] data;
 long location;
 boolean needToSeek;

 synchronized(this) {
 if (seekLocation != -1) {
 location = seekLocation;
 seekLocation = -1;
 needToSeek = true;
 } else {
 location = parser.getLocation(stream);
 needToSeek = false;
 }
 }

 int needDataSize;

 if (location < minLocation) {
 buffer.setDiscard(true);
 return;
 } else if (location >= maxLocation) {
 buffer.setLength(0);
 buffer.setEOM(true);
 return;
 } else if (location > maxStartLocation) {
 needDataSize = dataSize - (int) (location -
 maxStartLocation);
 } else {
 needDataSize = dataSize;
 }

 if ((obj == null) ||
 (! (obj instanceof byte[])) ||
 (((byte[])obj).length < needDataSize)) {
 data = new byte[needDataSize];
 buffer.setData(data);
 } else {
 data = (byte[]) obj;
 }
 try {
 if (needToSeek) {
 long pos =
 ((javax.media.protocol.Seekable)stream).seek(location);

Example C-1: GSM Demultiplexer plug-in. (10 of 13)

Demultiplexer Plug-In 193
 if (pos ==
 com.sun.media.protocol.BasicSourceStream.LENGTH_DISCARD) {
 buffer.setDiscard(true);
 return;
 }
 }
 int actualBytesRead = parser.readBytes(stream,
 data, needDataSize);
 buffer.setOffset(0);
 buffer.setLength(actualBytesRead);
 buffer.setSequenceNumber(++sequenceNumber);
 buffer.setTimeStamp(parser.getMediaTime().getNanoseconds());
 } catch (IOException e) {
 if (maxLocation != Long.MAX_VALUE) {
 // Known maxLocation. So, this is a case of
 // deliberately reading past EOM
 System.err.println("readFrame: EOM " + e);
 buffer.setLength(0); // Need this??
 buffer.setEOM(true);
 } else {
 // Unknown maxLocation, due to unknown content length
 // EOM reached before the required bytes could be read.
 long length = parser.streams[0].getContentLength();
 if (length != SourceStream.LENGTH_UNKNOWN) {
 // If content-length is known, discard this buffer,
 // updatemaxLocation, maxStartLocation and
 // mediaSizeAtEOM. The next readFrame will read
 // the remaining data till EOM.
 maxLocation = length;
 maxStartLocation = maxLocation - dataSize;
 mediaSizeAtEOM = maxLocation - minLocation;
 buffer.setLength(0); // Need this??
 buffer.setDiscard(true);
 } else {
 // Content Length is still unknown after an
 // IOException.
 // We can still discard this buffer and keep discarding
 // until content length is known. But this may go into
 // into an infinite loop, if there are real IO errors
 // So, return EOM
 maxLocation = parser.getLocation(stream);
 maxStartLocation = maxLocation - dataSize;
 mediaSizeAtEOM = maxLocation - minLocation;
 buffer.setLength(0); // Need this??
 buffer.setEOM(true);
 }
 }
 }
 }

 public void readKeyFrame(Buffer buffer) {
 readFrame(buffer);
 }

Example C-1: GSM Demultiplexer plug-in. (11 of 13)

JMF API Guide194
 public boolean willReadFrameBlock() {
 return false;
 }

 public long getMediaSizeAtEOM() {
 return mediaSizeAtEOM; // updated when EOM implied by
 // IOException occurs
 }
 }

 private class GsmTrack extends BasicTrack {
 private double sampleRate;
 private float timePerFrame = 0.020F; // 20 milliseconds

 GsmTrack(AudioFormat format, boolean enabled, Time startTime,
 int numBuffers, int bufferSize,
 long minLocation, long maxLocation) {
 super(SampleDeMux.this,
 format, enabled, SampleDeMux.this.duration,
 startTime, numBuffers, bufferSize,
 SampleDeMux.this.stream, minLocation, maxLocation);

 double sampleRate = format.getSampleRate();
 int channels = format.getChannels();
 int sampleSizeInBits = format.getSampleSizeInBits();

 float bytesPerSecond;
 float bytesPerFrame;
 float samplesPerFrame;

 long durationNano = this.duration.getNanoseconds();
 if (!((durationNano ==
 Duration.DURATION_UNKNOWN.getNanoseconds()) ||
 (durationNano ==
 Duration.DURATION_UNBOUNDED.getNanoseconds()))) {
 maxFrame = mapTimeToFrame(this.duration.getSeconds());
 }
 }

 GsmTrack(AudioFormat format, boolean enabled, Time startTime,
 int numBuffers, int bufferSize) {
 this(format, enabled,
 startTime, numBuffers, bufferSize,
 0L, Long.MAX_VALUE);

 }

 // Frame numbers start from 0
 private int mapTimeToFrame(double time) {
 double frameNumber = time / timePerFrame;
 return (int) frameNumber;
 }

Example C-1: GSM Demultiplexer plug-in. (12 of 13)

Demultiplexer Plug-In 195
 // Frame numbers start from 0
 // 0-1 ==> 0, 1-2 ==> 1
 public int mapTimeToFrame(Time t) {
 double time = t.getSeconds();
 int frameNumber = mapTimeToFrame(time);

 if (frameNumber > maxFrame)
 frameNumber = maxFrame; // Do we clamp it or return error
 System.out.println("mapTimeToFrame: " + (int) time + " ==> " +
 frameNumber + " (" + frameNumber + ")");
 return frameNumber;
 }
 public Time mapFrameToTime(int frameNumber) {
 if (frameNumber > maxFrame)
 frameNumber = maxFrame; // Do we clamp it or return error
 double time = timePerFrame * frameNumber;
 System.out.println("mapFrameToTime: " + frameNumber + " ==> " +
 time);
 return new Time(time);
 }
 }
}

Example C-1: GSM Demultiplexer plug-in. (13 of 13)

JMF API Guide196

D

Sample Data Source

Implementation

This sample demonstrates how to implement a new DataSource to support
an additional protocol, the FTP protocol. There are two classes:

¥ DataSource extends PullDataSource and implements
intel.media.protocol.PullProtocolHandler.

¥ FTPSourceStream implements PullSourceStream.

Example D-1: FTP Data Source. (1 of 8)

package COM.intel.media.protocol.ftp;

import javax.media.protocol.PullDataSource;
import javax.media.protocol.SourceStream;
import javax.media.protocol.PullSourceStream;
import javax.media.Time;
import javax.media.Duration;
import java.io.*;
import java.net.*;
import java.util.Vector;

public class DataSource extends PullDataSource
{
 public static final int FTP_PORT = 21;
 public static final int FTP_SUCCESS = 1;
 public static final int FTP_TRY_AGAIN = 2;
 public static final int FTP_ERROR = 3;

 // used to send commands to server
 protected Socket controlSocket;
197

JMF API Guide198

 // used to receive file
 protected Socket dataSocket;
 // wraps controlSocket's output stream
 protected PrintStream controlOut;

 // wraps controlSocket's input stream
 protected InputStream controlIn;

 // hold (possibly multi-line) server response
 protected Vector response = new Vector(1);

 // reply code from previous command
 protected int previousReplyCode;

 // are we waiting for command reply?
 protected boolean replyPending;

 // user login name
 protected String user = "anonymous";

 // user login password
 protected String password = "anonymous";

 // FTP server name
 protected String hostString;

 // file to retrieve
 protected String fileString;

 public void connect() throws IOException
 {
 initCheck(); // make sure the locator is set
 if (controlSocket != null)
 {
 disconnect();
 }
 // extract FTP server name and target filename from locator
 parseLocator();
 controlSocket = new Socket(hostString, FTP_PORT);
 controlOut = new PrintStream(new BufferedOutputStream(
 controlSocket.getOutputStream()), true);
 controlIn = new
 BufferedInputStream(controlSocket.getInputStream());

 if (readReply() == FTP_ERROR)
 {
 throw new IOException("connection failed");
 }

 if (issueCommand("USER " + user) == FTP_ERROR)
 {
 controlSocket.close();

Example D-1: FTP Data Source. (2 of 8)

Sample Data Source Implementation 199

 throw new IOException("USER command failed");
 }

 if (issueCommand("PASS " + password) == FTP_ERROR)
 {
 controlSocket.close();
 throw new IOException("PASS command failed");
 }
 }

 public void disconnect()
 {
 if (controlSocket == null)
 {
 return;
 }

 try
 {
 issueCommand("QUIT");
 controlSocket.close();
 }

 catch (IOException e)
 {
 // do nothing, we just want to shutdown
 }

 controlSocket = null;
 controlIn = null;
 controlOut = null;
 }

 public void start() throws IOException
 {
 ServerSocket serverSocket;
 InetAddress myAddress = InetAddress.getLocalHost();
 byte[] address = myAddress.getAddress();

 String portCommand = "PORT ";
 serverSocket = new ServerSocket(0, 1);

 // append each byte of our address (comma-separated)

 for (int i = 0; i < address.length; i++)
 {
 portCommand = portCommand + (address[i] & 0xFF) + ",";
 }

 // append our server socket's port as two comma-separated
 // hex bytes

Example D-1: FTP Data Source. (3 of 8)

JMF API Guide200
 portCommand = portCommand +
 ((serverSocket.getLocalPort() >>> 8)
 & 0xFF) + "," + (serverSocket.getLocalPort() & 0xFF);

 // issue PORT command
 if (issueCommand(portCommand) == FTP_ERROR)
 {
 serverSocket.close();
 throw new IOException("PORT");
 }

 // issue RETRieve command
 if (issueCommand("RETR " + fileString) == FTP_ERROR)
 {
 serverSocket.close();
 throw new IOException("RETR");
 }

 dataSocket = serverSocket.accept();
 serverSocket.close();
 }
 public void stop()
 {
 try
 {
 // issue ABORt command
 issueCommand("ABOR");
 dataSocket.close();
 }
 catch(IOException e) {}
 }

 public String getContentType()
 {
 // We don't get MIME info from FTP server. This
 // implementation makes an attempt guess the type using
 // the File name and returns "unknown" in the default case.
 // A more robust mechanisms should
 // be supported for real-world applications.

 String locatorString = getLocator().toExternalForm();
 int dotPos = locatorString.lastIndexOf(".");
 String extension = locatorString.substring(dotPos + 1);
 String typeString = "unknown";

 if (extension.equals("avi"))
 typeString = "video.x-msvideo";
 else if (extension.equals("mpg") ||
 extension.equals("mpeg"))
 typeString = "video.mpeg";
 else if (extension.equals("mov"))
 typeString = "video.quicktime";

Example D-1: FTP Data Source. (4 of 8)

Sample Data Source Implementation 201
 else if (extension.equals("wav"))
 typeString = "audio.x-wav";
 else if (extension.equals("au"))
 typeString = "audio.basic";
 return typeString;
 }

 public PullSourceStream[] getStreams()
 {
 PullSourceStream[] streams = new PullSourceStream[1];
 try
 {
 streams[0] = new FTPSourceStream(dataSocket.getInputStream());
 }

 catch(IOException e)
 {
 System.out.println("error getting streams");
 }
 return streams;
 }

 public Time getDuration()
 {
 return Duration.DURATION_UNKNOWN;
 }

 public void setUser(String user)

 {
 this.user = user;
 }

 public String getUser()
 {
 return user;
 }

 public void setPassword(String password)
 {
 this.password = password;
 }

 public String getPassword()
 {
 return password;
 }

Example D-1: FTP Data Source. (5 of 8)

JMF API Guide202
 private int readReply() throws IOException
 {
 previousReplyCode = readResponse();
 System.out.println(previousReplyCode);
 switch (previousReplyCode / 100)
 {
 case 1:
 replyPending = true;
 // fall through
 case 2:
 case 3:
 return FTP_SUCCESS;
 case 5:
 if (previousReplyCode == 530)
 {
 if (user == null)
 {
 throw new IOException("Not logged in");
 }
 return FTP_ERROR;
 }
 if (previousReplyCode == 550)
 {
 throw new FileNotFoundException();
 }
 }
 return FTP_ERROR;
 }

 /**
 * Pulls the response from the server and returns the code as a
 * number. Returns -1 on failure.
 */

 private int readResponse() throws IOException
 {
 StringBuffer buff = new StringBuffer(32);
 String responseStr;
 int c;
 int continuingCode = -1;
 int code = 0;

 response.setSize(0);

 while (true)
 {
 while ((c = controlIn.read()) != -1)
 {
 if (c == '\r')
 {
 if ((c = controlIn.read()) != '\n')
 {
 buff.append('\r');

Example D-1: FTP Data Source. (6 of 8)

Sample Data Source Implementation 203
 }
 }
 buff.append((char)c);

 if (c == '\n')
 {
 break;
 }
 }
 responseStr = buff.toString();
 buff.setLength(0);
 try
 {
 code = Integer.parseInt(responseStr.substring(0, 3));
 }
 catch (NumberFormatException e)
 {
 code = -1;
 }
 catch (StringIndexOutOfBoundsException e)
 {
 /* this line doesn't contain a response code, so
 * we just completely ignore it
 */
 continue;
 }
 response.addElement(responseStr);
 if (continuingCode != -1)
 {
 /* we've seen a XXX- sequence */
 if (code != continuingCode ||
 (responseStr.length() >= 4 &&
 responseStr.charAt(3) == '-'))
 {
 continue;
 }
 else
 {
 /* seen the end of code sequence */
 continuingCode = -1;
 break;
 }
 }
 else if (responseStr.length() >= 4 &&
 responseStr.charAt(3) == '-')
 {
 continuingCode = code;
 continue;
 }
 else
 {

Example D-1: FTP Data Source. (7 of 8)

JMF API Guide204
 break;
 }
 }

 previousReplyCode = code;
 return code;
 }

 private int issueCommand(String cmd) throws IOException
 {
 int reply;
 if (replyPending)
 {
 if (readReply() == FTP_ERROR)
 {
 System.out.print("Error reading pending reply\n");
 }
 }
 replyPending = false;
 do
 {
 System.out.println(cmd);
 controlOut.print(cmd + "\r\n");
 reply = readReply();
 } while (reply == FTP_TRY_AGAIN);
 return reply;
 }
 /**
 * Parses the mediaLocator field into host and file strings
 */

 protected void parseLocator()
 {
 initCheck();
 String rest = getLocator().getRemainder();
 System.out.println("Begin parsing of: " + rest);
 int p1, p2 = 0;
 p1 = rest.indexOf("//");
 p2 = rest.indexOf("/", p1+2);
 hostString = rest.substring(p1 + 2, p2);
 fileString = rest.substring(p2);
 System.out.println("host: " + hostString + " file: "
 + fileString);
 }
}

Example D-1: FTP Data Source. (8 of 8)

Sample Data Source Implementation 205
Source Stream

Example D-2:

 package intel.media.protocol.ftp;

 import java.io.*;
import javax.media.protocol.ContentDescriptor;
import javax.media.protocol.PullSourceStream;
import javax.media.protocol.SourceStream;

public class FTPSourceStream implements PullSourceStream
{
 protected InputStream dataIn;
 protected boolean eofMarker;
 protected ContentDescriptor cd;

 public FTPSourceStream(InputStream in)
 {
 this.dataIn = in;
 eofMarker = false;
 cd = new ContentDescriptor("unknown");
 }

 // SourceSteam methods

 public ContentDescriptor getContentDescriptor()
 {
 return cd;
 }

 public void close() throws IOException
 {
 dataIn.close();
 }

 public boolean endOfStream()
 {
 return eofMarker;
 }

 // PullSourceStream methods

 public int available() throws IOException
 {
 return dataIn.available();
 }

JMF API Guide206
 public int read(byte[] buffer, int offset, int length) throws
IOException
 {
 int n = dataIn.read(buffer, offset, length);
 if (n == -1)
 {
 eofMarker = true;
 }
 return n;
 }

 public boolean willReadBlock() throws IOException
 {
 if(eofMarker)
 {
 return true;
 }
 else
 {
 return dataIn.available() == 0;
 }
 }

 public long getContentLength()
 {
 return SourceStream.LENGTH_UNKNOWN;
 }

}

Example D-2:

E

Sample Controller

Implementation

This sample illustrates how a simple time-line Controller can be imple-
mented in JMF. This sample is provided as a reference for developers who
are implementing their own Controllers. Please note that it has not been
tested or optimized for production use.

This sample consists of four classes:

• TimeLineController.java

The Controller. You give it an array of time values (representing a
time line) and it keeps track of which segment in the time line you are
in.

• TimeLineEvent.java

An event posted by the TimeLineController when the segment in the
time line changes.

• EventPostingBase.java

A base class used by TimeLineController that handles the Controller
methods addControllerListener and removeControllerListener. It
also provides a postEvent method that can be used by the subclass to
post events.

• ListenerList.java

A class used to maintain a list of ControllerListener objects that the
TimeLineController needs to post events to.

This implementation also uses two additional classes whose implementa-
tions are not shown here.

¥ EventPoster
207

JMF API Guide208
A class that spins a thread to post events to a ControllerListener.

• BasicClock

A simple Clock implementation that implements all of the Clock
methods.

TimeLineController

Example E-1: TimeLineController.java (1 of 11)

import javax.media.*;
import com.sun.media.MediaClock;

// This Controller uses two custom classes:
// The base class is EventPostingBase. It has three methods:
// public void addControllerListener (ControllerListener
// observer);
// public void removeControllerListener (ControllerListener
// observer);
// protected void postEvent (ControllerEvent event);
//

// This Controller posts TimeLineEvents. TimeLineEvent has
// two methods:
// public TimeLineEvent (Controller who, int
// segmentEntered);
// public final int getSegment ();

public class TimeLineController extends EventPostingBase
 implements Controller, Runnable
{
 Clock ourClock;

 // This simple controller really only has two states:
 // Prefetched and Started.

 int ourState;
 long timeLine[];
 int currentSegment = -1;
 long duration;
 Thread myThread;

 // Create a TimeLineController giving it a sorted time line.
 // The TimeLineController will post events indicating when
 // it has passed to different parts of the time line.

 public TimeLineController (long timeLine[])
 {
 this.timeLine = timeLine;
 ourClock = new MediaClock ();

Sample Controller Implementation 209
 duration = timeLine[timeLine.length-1];
 myThread = null;
 // We always start off ready to go!
 ourState = Controller.Prefetched;
 }

 // Binary search for which segment we are now in. Segment
 // 0 is considered to start at 0 and end at timeLine[0].
 // Segment timeLine.length is considered to start at
 // timeLine[timeLine.length-1] and end at infinity. At the
 // points of 0 and timeLine[timeLine.length-1] the
 // Controller will stop (and post an EndOfMedia event).

 int computeSegment (long time)
 {
 int max = timeLine.length;
 int min = 0;

 for (;;)
 {
 if (min == max) return min;
 int current = min + ((max - min) >> 1);

 if (time < timeLine[current])
 {
 max = current;
 }

 else
 {
 min = current + 1;
 }
 }
 }
 // These are all simple...

 public float setRate (float factor)
 {
 // We don't support a rate of 0.0. Not worth the extra math
 // to handle something the user should do with the stop()
 // method!

 if (factor == 0.0f)
 {
 factor = 1.0f;
 }

 float newRate = ourClock.setRate (factor);

Example E-1: TimeLineController.java (2 of 11)

JMF API Guide210
 postEvent (new RateChangeEvent (this, newRate));
 return newRate;
 }

 public void setTimeBase (TimeBase master)
 throws IncompatibleTimeBaseException
 {
 ourClock.setTimeBase (master);
 }

 public Time getStopTime ()
 {
 return ourClock.getStopTime ();
 }

 public Time getSyncTime ()
 {
 return ourClock.getSyncTime ();
 }

 public Time mapToTimeBase (Time t) throws ClockStoppedException
 {
 return ourClock.mapToTimeBase (t);
 }

 public Time getMediaTime ()
 {
 return ourClock.getMediaTime ();
 }

 public TimeBase getTimeBase ()
 {
 return ourClock.getTimeBase ();
 }
 public float getRate ()
 {
 return ourClock.getRate ();
 }

 // From Controller

 public int getState ()
 {
 return ourState;
 }

Example E-1: TimeLineController.java (3 of 11)

Sample Controller Implementation 211
 public int getTargetState ()
 {
 return ourState;
 }

 public void realize ()
 {
 postEvent (new RealizeCompleteEvent (this, ourState,
 ourState, ourState));
 }

 public void prefetch ()
 {
 postEvent (new PrefetchCompleteEvent (this, ourState,
 ourState, ourState));
 }

 public void deallocate ()
 {
 postEvent (new DeallocateEvent (this, ourState,
 ourState, ourState, ourClock.getMediaTime ()));
 }

 public Time getStartLatency ()
 {
 // We can start immediately, of course!

 return new Time(0);
 }

 public Control[] getControls ()
 {
 return new Control[0];
 }
 public Time getDuration ()
 {
 return new Time(duration);
 }

 // This one takes a little work as we need to compute if we
 // changed segments.

 public void setMediaTime (Time now)
 {
 ourClock.setMediaTime (now);
 postEvent (new MediaTimeSetEvent (this, now));

Example E-1: TimeLineController.java (4 of 11)

JMF API Guide212
 checkSegmentChange (now.getNanoseconds());
 }

 // We now need to spin a thread to compute/observe the
 // passage of time.

 public synchronized void syncStart (Time tbTime)
 {
 long startTime = ourClock.getMediaTime().getNanoseconds();

 // We may actually have to stop immediately with an
 // EndOfMediaEvent. We compute that now. If we are already
 // past end of media, then we
 // first post the StartEvent then we post a EndOfMediaEvent

 boolean endOfMedia;
 float rate = ourClock.getRate ();

 if ((startTime > duration && rate >= 0.0f) ||
 (startTime < 0 && rate <= 0.0f))
 {
 endOfMedia = true;
 }

 else
 {
 endOfMedia = false;
 }

 // We face the same possible problem with being past the stop
 // time. If so, we stop immediately.

 boolean pastStopTime;
 long stopTime = ourClock.getStopTime().getNanoseconds();
 if ((stopTime != Long.MAX_VALUE) &&
 ((startTime >= stopTime && rate >= 0.0f) ||
 (startTime <= stopTime && rate <= 0.0f)))
 {
 pastStopTime = true;
 }

 else
 {
 pastStopTime = false;
 }

 if (!endOfMedia && !pastStopTime)
 {

Example E-1: TimeLineController.java (5 of 11)

Sample Controller Implementation 213
 ourClock.syncStart (tbTime);
 ourState = Controller.Started;
 }

 postEvent (new StartEvent (this, Controller.Prefetched,
 Controller.Started, Controller.Started,
 new Time(startTime), tbTime));

 if (endOfMedia)
 {
 postEvent (new EndOfMediaEvent (this,
 Controller.Started,
 Controller.Prefetched, Controller.Prefetched,
 new Time(startTime)));
 }

 else if (pastStopTime)
 {
 postEvent (new StopAtTimeEvent (this, Controller.Started,
 Controller.Prefetched, Controller.Prefetched,
 new Time(startTime)));
 }

 else
 {
 myThread = new Thread (this, "TimeLineController");

 // Set thread to appopriate priority...
 myThread.start ();
 }
 }

 // Nothing really special here except that we need to notify
 // the thread that we may have.

 public synchronized void setStopTime (Time stopTime)
 {
 ourClock.setStopTime (stopTime);
 postEvent (new StopTimeChangeEvent (this, stopTime));
 notifyAll ();
 }

 // This one is also pretty easy. We stop and tell the running
 // thread to exit.

Example E-1: TimeLineController.java (6 of 11)

JMF API Guide214
 public synchronized void stop ()
 {
 int previousState = ourState;
 ourClock.stop ();
 ourState = Controller.Prefetched;
 postEvent (new StopByRequestEvent (this, previousState,
 Controller.Prefetched, Controller.Prefetched,
 ourClock.getMediaTime ()));
 notifyAll ();

 // Wait for thread to shut down.

 while (myThread != null)
 {
 try
 {
 wait ();
 }
 catch (InterruptedException e)
 {
 // NOT REACHED
 }
 }
 }

 protected void checkSegmentChange (long timeNow)
 {
 int segment = computeSegment (timeNow);
 if (segment != currentSegment)
 {
 currentSegment = segment;
 postEvent (new TimeLineEvent (this, currentSegment));
 }
 }

 // Most of the real work goes here. We have to decide when
 // to post events like EndOfMediaEvent and StopAtTimeEvent
 // and TimeLineEvent.

 public synchronized void run ()
 {
 long timeToNextSegment = 0;
 long mediaTimeToWait = 0;

 float ourRate = 1.0f;

Example E-1: TimeLineController.java (7 of 11)

Sample Controller Implementation 215
 for (;;)
 {
 // First, have we changed segments? If so, post an event!

 long timeNow = ourClock.getMediaTime ().getNanoseconds ();
 checkSegmentChange (timeNow);

 // Second, have we already been stopped? If so, stop
 // the thread.

 if (ourState == Controller.Prefetched)
 {
 myThread = null;

 // If someone is waiting for the thread to die, let them
 // know.

 notifyAll ();
 break;
 }

 // Current rate. Our setRate() method prevents the value
 // 0 so we don't check for that here.

 ourRate = ourClock.getRate ();

 // How long in clock time do we need to wait before doing
 // something?

 long endOfMediaTime;

 // Next, are we past end of media?

 if (ourRate > 0.0f)
 {
 mediaTimeToWait = duration - timeNow;
 endOfMediaTime = duration;
 }
 else
 {
 mediaTimeToWait = timeNow;
 endOfMediaTime = 0;
 }

 // If we are at (or past) time to stop due to EndOfMedia,
 // we do that now!

Example E-1: TimeLineController.java (8 of 11)

JMF API Guide216
 if (mediaTimeToWait <= 0)
 {
 ourClock.stop ();
 ourClock.setMediaTime (new Time(endOfMediaTime));
 ourState = Controller.Prefetched;
 postEvent (new EndOfMediaEvent (this, Controller.Started,
 Controller.Prefetched, Controller.Prefetched,
 new Time(endOfMediaTime)));
 continue;
 }

 // How long until we hit our stop time?

 long stopTime = ourClock.getStopTime ().getNanoseconds();
 if (stopTime != Long.MAX_VALUE)
 {
 long timeToStop;
 if (ourRate > 0.0f)
 {
 timeToStop = stopTime - timeNow;
 }
 else
 {
 timeToStop = timeNow - stopTime;
 }

 // If we are at (or past) time to stop due to the stop
 // time, we stop now!
 if (timeToStop <= 0)
 {
 ourClock.stop ();
 ourClock.setMediaTime (new Time(stopTime));
 ourState = Controller.Prefetched;
 postEvent (new StopAtTimeEvent (this,
 Controller.Started,
 Controller.Prefetched, Controller.Prefetched,
 new Time(stopTime)));
 continue;
 }
 else if (timeToStop < mediaTimeToWait)
 {
 mediaTimeToWait = timeToStop;
 }
 }

Example E-1: TimeLineController.java (9 of 11)

Sample Controller Implementation 217
 // How long until we pass into the next time line segment?

 if (ourRate > 0.0f)
 {
 timeToNextSegment = timeLine[currentSegment] - timeNow;
 }

 else if (currentSegment == 0)
 {
 timeToNextSegment = timeNow;
 }

 else
 {
 timeToNextSegment = timeNow - timeLine[currentSegment-1];
 }
 }

 if (timeToNextSegment < mediaTimeToWait)
 {
 mediaTimeToWait = timeToNextSegment;
 }

 // Do the ugly math to compute what value to pass to
 // wait():

 long waitTime;
 if (ourRate > 0)
 {
 waitTime = (long) ((float) mediaTimeToWait / ourRate) /
 1000000;
 }
 else
 {
 waitTime = (long) ((float) mediaTimeToWait / -ourRate) /
 1000000;
 }
 // Add one because we just rounded down and we don't
 // really want to waste CPU being woken up early.

 waitTime++;

 if (waitTime > 0)
 {
 // Bug in some systems deals poorly with really large
 // numbers. We will cap our wait() to 1000 seconds
 // which point we will probably decide to wait again.

Example E-1: TimeLineController.java (10 of 11)

JMF API Guide218
 if (waitTime > 1000000) waitTime = 1000000;
 try
 {
 wait (waitTime);
 }
 catch (InterruptedException e)
 {
 // NOT REACHED
 }
 }
 }

 public void close()
 {

 }

 public Control getControl(String type)
 {
 return null;
 }

 public long getMediaNanoseconds()
 {
 return 0;
 }
}

Example E-1: TimeLineController.java (11 of 11)

Sample Controller Implementation 219
TimeLineEvent

EventPostingBase

Example E-2: TimeLineEvent.java

import javax.media.*;

// TimeLineEvent is posted by TimeLineController when we have
// switched segments in the time line.

public class TimeLineEvent extends ControllerEvent
{
 protected int segment;

 public TimeLineEvent (Controller source, int currentSegment)
 {
 super (source);
 segment = currentSegment;
 }

 public final int getSegment ()
 {
 return segment;
 }
}

Example E-3: EventPostingBase.java (1 of 3)

import javax.media.*;

// import COM.yourbiz.media.EventPoster;

// The implementation of the EventPoster class is not included as part
// of this example. EventPoster supports two methods:
// public EventPoster ();
// public void postEvent (ControllerListener who, ControllerEvent
// what);

public class EventPostingBase
{
 protected ListenerList olist;
 protected Object olistLock;
 protected EventPoster eventPoster;
 // We sync around a new object so that we don't mess with
 // the super class synchronization.

JMF API Guide220
 EventPostingBase ()
 {
 olistLock = new Object ();
 }

 public void addControllerListener (ControllerListener observer)
 {
 synchronized (olistLock)
 {
 if (eventPoster == null)
 {
 eventPoster = new EventPoster ();
 }

 ListenerList iter;
 for (iter = olist; iter != null; iter = iter.next)
 {
 if (iter.observer == observer) return;
 }

 iter = new ListenerList ();
 iter.next = olist;
 iter.observer = observer;
 olist = iter;
 }
 }

 public void removeControllerListener (ControllerListener observer)
 {
 synchronized (olistLock)
 {
 if (olist == null)
 {
 return;
 }
 else if (olist.observer == observer)
 {
 olist = olist.next;
 }
 else
 {
 ListenerList iter;
 for (iter = olist; iter.next != null; iter = iter.next)
 {
 if (iter.next.observer == observer)
 {
 iter.next = iter.next.next;

Example E-3: EventPostingBase.java (2 of 3)

Sample Controller Implementation 221
ListenerList

EventPoster

 return;
 }
 }
 }
 }
 }

 protected void postEvent (ControllerEvent event)
 {
 synchronized (olistLock)
 {
 ListenerList iter;
 for (iter = olist; iter != null; iter = iter.next)
 {
 eventPoster.postEvent (iter.observer, event);
 }
 }
 }
}

Example E-4: ListenerList.java

// A list of controller listeners that we are supposed to send
// events to.

class ListenerList
{
 ControllerListener observer;
 ListenerList next;
}

Example E-5: EventPoster.java

class EventPoster
{
 void postEvent(Object object, ControllerEvent evt)
 {
 // Post event.
 }
}

Example E-3: EventPostingBase.java (3 of 3)

JMF API Guide222

F

RTPUtil

RTPUtil demonstrates how to create separate RTP players for each stream
in a session so that you can play the streams. To do this, you need to listen
for NewRecvStreamEvents and retrieve the DataSource from each new
stream. (See ÒCreating an RTP Player for Each New Receive StreamÓ on
page 132 for more information about this example.)

Example F-1: RTPUtil (1 of 5)

import javax.media.rtp.*;
import javax.media.rtp.rtcp.*;
import javax.media.rtp.event.*;
import javax.media.*;
import javax.media.protocol.*;
import java.net.InetAddress;
import javax.media.format.AudioFormat;
// for PlayerWindow
import java.awt.*;
import com.sun.media.ui.*;

import java.util.Vector;

public class RTPUtil implements ReceiveStreamListener,
 ControllerListener
{

 Vector playerlist = new Vector();
 SessionManager mgr = null;
 boolean terminatedbyClose = false;

 public SessionManager createManager(String address,
 String sport,
 String sttl,
 boolean listener,
 boolean sendlistener)
 {
223

JMF API Guide224
 return createManager(address,
 new Integer(sport).intValue(),
 new Integer(sttl).intValue(),
 listener,
 sendlistener);
 }
 public SessionManager createManager(String address,
 int port,
 int ttl,
 boolean listener,
 boolean sendlistener)
 {
 mgr = (SessionManager)new com.sun.media.rtp.RTPSessionMgr();

 if (mgr == null) return null;

 mgr.addFormat(new AudioFormat(AudioFormat.DVI_RTP,
 44100,
 4,
 1),
 18);
 if (listener) mgr.addReceiveStreamListener(this);
 if (sendlistener) new RTPSendStreamWindow(mgr);

 // ask RTPSM to generate the local participants CNAME
 String cname = mgr.generateCNAME();
 String username = null;

 try {
 username = System.getProperty("user.name");
 } catch (SecurityException e){
 username = "jmf-user";
 }

 // create our local Session Address
 SessionAddress localaddr = new SessionAddress();

 try{
 InetAddress destaddr = InetAddress.getByName(address);

 SessionAddress sessaddr = new SessionAddress(destaddr,
 port,
 destaddr,
 port + 1);

 SourceDescription[] userdesclist= new SourceDescription[]
 {
 new SourceDescription(SourceDescription
 .SOURCE_DESC_EMAIL,
 "jmf-user@sun.com",
 1,
 false),

Example F-1: RTPUtil (2 of 5)

RTPUtil 225
 new SourceDescription(SourceDescription
 .SOURCE_DESC_CNAME,
 cname,
 1,
 false),

 new SourceDescription(SourceDescription
 .SOURCE_DESC_TOOL,
 "JMF RTP Player v2.0",
 1,
 false)
 };

 mgr.initSession(localaddr,
 userdesclist,
 0.05,
 0.25);

 mgr.startSession(sessaddr,ttl,null);
 } catch (Exception e) {
 System.err.println(e.getMessage());
 return null;
 }

 return mgr;
 }
 public void update(ReceiveStreamEvent event)
 {
 Player newplayer = null;
 RTPPlayerWindow playerWindow = null;

 // find the sourceRTPSM for this event
 SessionManager source = (SessionManager)event.getSource();

 // create a new player if a new recvstream is detected
 if (event instanceof NewReceiveStreamEvent)
 {
 String cname = "Java Media Player";
 ReceiveStream stream = null;

 try
 {
 // get a handle over the ReceiveStream
 stream =((NewReceiveStreamEvent)event)
 .getReceiveStream();

 Participant part = stream.getParticipant();

 if (part != null) cname = part.getCNAME();

 // get a handle over the ReceiveStream datasource
 DataSource dsource = stream.getDataSource();

Example F-1: RTPUtil (3 of 5)

JMF API Guide226
 // create a player by passing datasource to the
 // Media Manager
 newplayer = Manager.createPlayer(dsource);
 System.out.println("created player " + newplayer);
 } catch (Exception e) {
 System.err.println("NewReceiveStreamEvent exception "
 + e.getMessage());
 return;
 }

 if (newplayer == null) return;

 playerlist.addElement(newplayer);
 newplayer.addControllerListener(this);

 // send this player to player GUI
 playerWindow = new RTPPlayerWindow(newplayer, cname);
 }
 }
 public void controllerUpdate(ControllerEvent evt)
 {
 // get a handle over controller, remove it from the player
 // list.
 // if player list is empty, close the sesssion manager.

 if ((evt instanceof ControllerClosedEvent) ||
 (evt instanceof ControllerErrorEvent) ||
 (evt instanceof DeallocateEvent)){
 Player p = (Player)evt.getSourceController();

 if (!terminatedbyClose){
 if (playerlist.contains(p))
 playerlist.removeElement(p);
 if ((playerlist.size() == 0) && (mgr != null))
 mgr.closeSession("All players are closed");
 }
 }
 }

 public void closeManager()
 {
 terminatedbyClose = true;

 // first close all the players
 for (int i = 0; i < playerlist.size(); i++) {
 ((Player)playerlist.elementAt(i)).close();
 }
 if (mgr != null) {
 mgr.closeSession("RTP Session Terminated");
 mgr = null;
 }
 }

Example F-1: RTPUtil (4 of 5)

RTPUtil 227
 class RTPPlayerWindow extends PlayerWindow
 {
 public RTPPlayerWindow(Player player, String title)
 {
 super(player);
 setTitle(title);
 }
 public void Name(String title){
 setTitle(title);
 }
 }
}

Example F-1: RTPUtil (5 of 5)

JMF API Guide228

Glossary

broadcast
Transmit a data stream that multiple clients can receive if they choose
to.

Buffer
The container for a chunk of media data.

CachingControl
A media control that is used to monitor and display download
progress. information.

capture device
A microphone, video capture board, or other source that generates or
provides time-based media data. A capture device is represented by a
DataSource.

CaptureDeviceControl
A media control that enables the user to control a capture device.

CaptureDeviceInfo
An information object that maintains information about a capture
device, such as its name, the formats it supports, and the MediaLoca-
tor needed to construct a DataSource for the device.

CaptureDeviceManager
The manager that provides access to the capture devices available to
JMF.

Clock
A media object that deÞnes a transformation on a TimeBase.

close
Release all of the resources associated with a Controller.
229

JMF API Guide230
codec
A compression/decompression engine used to convert media data
between compressed and raw formats. The JMF plug-in architecture
enables technology providers to supply codecs that can be seamlessly
integrated into JMFÕs media processing.

compositing
Combining multiple sources of media data to form a single Þnished
product.

conÞgured
A Processor state that indicates that the Processor has been con-
nected to its data source and the data format has been determined.

conÞguring
A Processor state that indicates that configure has been called and
the Processor is connecting to the DataSource, demultiplexing the
input stream, and accessing information about the data format.

content name
A string that identiÞes a content type.

content package-preÞx
A package preÞx in the list of package preÞxes that the PackageMan-
ager maintains for content extensions such as new DataSource imple-
mentations.

content package-preÞx list
The list of content package preÞxes maintained by the PackageMan-
ager.

content type
A multiplexed media data format such as MPEG-1, MPEG-2, Quick-
Time, AVI, WAV, AU, or MIDI. Content types are usually identiÞed by
MIME types.

Control
A JMF construct that can provide access to a user interface compo-
nent to supports user interaction. JMF controls implement the Con-
trol interface.

control-panel component
The user interface component that enables the user to control the
media presentation.

Glossary 231
Controller
The key construct in the JMF Player/Processor API. The Controller
interface deÞnes the basic state and control mechanism for an object
that controls, presents, or captures time-based media.

ControllerAdapter
An event adapter that receives ControllerEvents and dispatches
them to an appropriate stub-method. Classes that extend this adapter
can easily replace only the message handlers they are interested in

ControllerClosedEvent
An event posted by a Controller when it shuts down. A Control-
lerErrorEvent is a special type of ControllerClosedEvent.

ControllerEvent
The ControllerEvent class is the base class for events posted by a Con-
troller object. To receive ControllerEvents, you implement the Con-
trollerListener interface.

ControllerListener
An object that implements the ControllerListener interface to receive
notiÞcation whenever a Controller posts a ControllerEvent. See also
ControllerAdapter.

data
The actual media data contained by a Buffer object.

DataSink
An object that implements the DataSink interface to read media con-
tent from a DataSource and render the media to a destination.

DataSource
An object that implements the DataSource interface to encapsulate
the location of media and the protocol and software used to deliver
the media.

deallocate
Release any exclusive resources and minimize the use of non-exclu-
sive resources.

decode
Convert a data stream from a compressed type to an uncompressed
type.

demultiplex
Extract individual tracks from a multiplexed media stream.

JMF API Guide232
Demultiplexer
A JMF plug-in that parses the input stream. If the stream contains
interleaved tracks, they are extracted and output as separate tracks.

duration
The length of time it takes to play the media at the default rate.

Effect
A JMF plug-in that applies and effect algorithm to a track and outputs
the modiÞed track in the same format.

encode
Convert a data stream from an uncompressed type to a compressed
type.

end of media (eom)
The end of a media stream.

StreamWriterControl
A Control implemented by data sinks and multiplexers that generate
output data. This Control enables users to specify a limit on the
amount of data generated.

format
A structure for describing a media data type.

frame
One unit of data in a track. For example, one image in a video track.

frame rate
The number of frames that are displayed per second.

GainChangeEvent
An event posted by a GainControl whenever the volume changes.

GainChangeListener
An object that implements the GainChangeListener interface to
receive GainChangeEvents from a GainControl.

GainControl
A JMF Control that enables programmatic or interactive control over
the playback volume.

JMF (Java Media Framework)
An application programming interface (API) for incorporating media
data types into Java applications and applets.

Glossary 233
key frame
A frame of video that contains the data for the entire frame rather
than just the differences from the previous frame.

latency
See start latency.

managed controller
A Controller that is synchronized with other Controllers through a
managing Player. The managing Player drives the operation of each
managed ControllerÑwhile a Controller is being managed, you
should not directly manipulate its state.

Manager
The JMF access point for obtaining system dependent resources such
as Players, Processors, DataSources and the system TimeBase.

managing player
A Player that is driving the operation of other Controllers in order to
synchronize them. The addController method is used to place Con-
trollers under the control of a managing Player.

maximum start latency
The maximum length of time before a Player will be ready to present
media data.

media capture
The process of acquiring media data from a source such as a micro-
phone or a video capture card thatÕs connected to a camera.

media data
The media information contained in a media stream.

media event
An event posted by a GainControl, DataSink, or a Controller to
notify listeners that the status of the object posting the event has
changed.

media processing
Manipulating media data to apply effect algorithms, convert the data
to a different format, or present it.

media stream
A data stream that contains time-based media information.

JMF API Guide234
media time
The current position in a media stream.

MediaHandler
An object that implements the MediaHandler interface, which deÞnes
how the media source that the handler uses to obtain content is
selected. There are currently three supported types of MediaHandlers:
Player (including Processor), MediaProxy, and DataSink.

MediaLocator
An object that describes the media that a Player presents. A MediaLo-
cator is similar to a URL and can be constructed from a URL. In the Java
programming language, a URL can only be constructed if the corre-
sponding protocol handler is installed on the system. MediaLocator
doesnÕt have this restriction.

MediaProxy
An object that processes content from one DataSource to create
another. Typically, a MediaProxy reads a text conÞguration Þle that
contains all of the information needed to make a connection to a
server and obtain media data.

MIME type
A standardized content type description based on the Multipurpose
Internet Mail Extensions (MIME) speciÞcation.

MonitorControl
A Control that provides a way to display the capture monitor for a
particular capture device.

multicast
Transmit a data stream to a select group of participants. See also
broadcast, unicast.

multiplex
Merge separate tracks into one multiplexed media stream.

multiplexed media stream
A media stream that contains multiple channels of media data.

Multiplexer
A JMF plug-in that combines multiple tracks of input data into a sin-
gle interleaved output stream and delivers the resulting stream as an
output DataSource.

Glossary 235
output data source
A DataSource that encapsulates a Processor objectÕs output.

package preÞx
An identiÞer for your code that you register with the JMF PackageM-
anager. For example, COM.yourbiz. The PackageManager maintains
separate lists of package preÞxes for content and protocol extensions.
See also content package-preÞx, protocol package-preÞx.

participant
In RTP, an application participating in an RTP session

payload
In RTP, the data transported by RTP in a packet, such as audio sam-
ples or compressed video data.

Player
An object that implements the Player interface to processes a stream
of data as time passes, reading data from a DataSource and rendering
it at a precise time.

Player state
One of the six states that a Player can be in: Unrealized, Realizing, Real-
ized, Prefetching, Prefetched, and Started. In normal operation, a Player
steps through each state until it reaches the Started state.

playback
The process of presenting time-based media to the user.

plug-in
A media processing component that implements the JMF PlugIn
interface.

PlugInManager
A manager object that maintains a registry of installed plug-ins and is
used to search the available plug-ins.

Positionable
An object that supports changing the media position within the
stream and implements the Positionable interface.

post-process

Apply an effect algorithm after the media stream has been decoded.

JMF API Guide236
pre-process
Apply an effect algorithm before the media stream is encoded.

prefetch
Prepare a Player to present its media. During this phase, the Player
preloads its media data, obtains exclusive-use resources, and any-
thing else it needs to do to prepare itself to play.

prefetched
A Player state in which the Player is ready to be started.

prefetching
A Player state in which the Player is in the process of preparing itself
to play.

Processor
A special type of JMF Player that can provide control over how the
media data is processed before it is presented.

Processor state
One of the eight states that a Processor can be in. A Processor has
two more Stopped states than a Player: ConÞguring and ConÞgured. See
also Player state.

ProcessorModel
An object that deÞnes the input and output requirements for a Pro-
cessor. When a Processor is created using a ProcessorModel, the Man-
ager does its best to create a Processor that meets these requirements.

progress bar component
The user interface component that can be retrieved from a Caching-
Control to display download progress to the user.

protocol
A data delivery mechanism such as HTTP, RTP, FILE.

protocol package-preÞx
A package preÞx in the list of package preÞxes that the PackageMan-
ager maintains for protocol extensions such as new MediaHandlers.

protocol package-preÞx list
The list of protocol package preÞxes maintained by the PackageMan-
ager.

Glossary 237
pull
Initiate the data transfer and control the flow of data from the client
side.

PullBufferDataSource
A pull DataSource that uses a Buffer object as its unit of transfer.

PullDataSource
A DataSource that enables the client to initiate the data transfer and
control the flow of data.

PullBufferStream
A SourceStream managed by a PullBufferDataSource.

PullSourceStream
A SourceStream managed by a PullDataSource.

push
Initiate the data transfer and control the flow of data from the server
side.

PushBufferDataSource
A push DataSource that uses a Buffer object as its unit of transfer.

PushDataSource
A DataSource that enables the server to initiate the data transfer and
control the flow of data.

PushBufferStream
A SourceStream managed by a PushBufferDataSource.

PushSourceStream
A SourceStream managed by a PushDataSource.

rate
A temporal scale factor that determines how media time changes
with respect to time-base time. A Player objectÕs rate deÞnes how
many media time units advance for every unit of time-base time.

raw media format
A format that can be directly rendered by standard media rendering
devices without the need for decompression. For audio, a PCM sam-
ple representation is one example of a raw media format.

realize
Determine resource requirements and acquire the resources that the
Player only needs to acquire once.

JMF API Guide238
realized
The Player state in which the Player knows what resources it needs
and information about the type of media it is to present. A Realized
Player knows how to render its data and can provide visual compo-
nents and controls. Its connections to other objects in the system are
in place, but it doesnÕt own any resources that would prevent another
Player from starting.

realizing
The Player state in which the Player is determining what resources it
needs and gathering information about the type of media it is to
present.

render
Deliver media data to some destination, such as a monitor or speaker.

Renderer
A JMF plug-in that delivers media data to some destination, such as a
monitor or speaker.

RTCP
RTP Control Protocol.

RTP
Real-time Transfer Protocol.

session
In RTP, the association among a set of participants communicating
with RTP. A session is deÞned by a network address plus a port pair
for RTP and RTCP.

source
A provider of a stream of media data.

SourceStream
A single stream of media data.

SSRC
See synchronization source.

start
Activate a Player. A Started Player’s time-base time and media time
are mapped and its clock is running, though the Player might be
waiting for a particular time to begin presenting its media data.

Glossary 239
start latency
The time it takes before a Player can begin presenting media data.

started
One of the two fundamental Clock states. (The other is Stopped.) Con-
troller breaks the Started state down into several resource alloca-
tion phases: Unrealized, Realizing, Realized, Prefetching, and Prefetched.

status change events
Controller events such as RateChangeEvent, SizeChangeEvent StopTi-
meChangeEvent that indicate that the status of a Controller has
changed.

stop
Halt a Player’s presentation of media data.

stop time
The media time at which a Player should halt.

synchronization source
The source of a stream of RTP packets, identiÞed by a 32-bit numeric
SSRC identiÞer carried in the RTP header.

synchronize
Coordinate two or more ControllerÕs so that they can present media
data together. Synchronized ControllerÕs use the same TimeBase.

target state
The state that a Player is heading toward. For example, when a
Player is in the Realizing state, its target state is Realized.

time-based media
Media such as audio, video, MIDI, and animations that change with
respect to time.

TimeBase
An object that deÞnes the ßow of time for a Controller. A TimeBase is
a constantly ticking source of time, much like a crystal.

time-base time
The current time returned by a TimeBase.

track
A channel in a multiplexed media stream that contains media or con-
trol data. For example, a multiplexed media stream might contain an
audio track and a video track.

JMF API Guide240
TrackControl
A Control used to query, control and manipulate the data of individ-
ual media tracks.

track format
The format associated with a particular track.

transcode
Convert a data stream from an uncompressed type to a compressed
type or vice-versa.

transition events
ControllerEvents posted by a Controller as its state changes.

unicast
Transmit a data stream to a single recipient.

unrealized
The initial state of a Player. A Player in the Unrealized state has been
instantiated, but does not yet know anything about its media.

URL
Universal Resource Locator.

user-interface component
An instance of a class that implements the Component interface. JMF
Players have two types of default user-interface components, a Con-
trolPanelComponent and a VisualComponent.

visual component
The user interface component that displays the media or information
about the media.

VOD
Video on Demand.

Index

A
addController method 57
adjusting audio gain 29
applet 173
APPLET tag 62
AU 11
AVI 11

B
blocking realize 44
broadcast media 17
Buffer 16

C
CachingControl 46, 47
CachingControlEvent 31, 47
capture controls 78
capture device

registering 106
CaptureDeviceInfo 77, 78
CaptureDeviceManager 77
capturing media data 77, 78
change notifications 30
clearing the stop time 52
Clock 13

getTimeBase 56
setTimeBase 56

close method 52
closed events 30
closing a Player 52
Codec 33

implementing 88
ConfigureCompleteEvent 34
configured state 33
configuring state 33
ConnectionErrorEvent 31
content-type name 41

Control 29
control panel 45
Controller

implementing 104, 207
state

prefetched 27
prefetching 27
realized 27
realizing 27
started 26, 27
stopped 26
unrealized 27

ControllerAdapter 55
ControllerClosedEvent 31
ControllerErrorEvent 31
ControllerEvent 25

getSource method 55
state information 55

ControllerListener 25, 27, 47
implementing 47, 54, 173
registering 54, 66

Controllers
synchronizing multiple 57

controllerUpdate method 56
implementing 55, 66

controlling the media presentation 45
createPlayer method 44, 64
creating a Player 44, 64, 173

D
data format

output 36
data, writing 37
DataSink 37
DataSinkErrorEvent 37
DataSinkEvent 37
DataSource
241

JMF API Guide242
implementing 103, 197
input 78
locating 42
output 36
pull 17
push 17

DataStarvedEvent 31
deallocate method 52, 65
DeallocateEvent 31, 52
default control panel 46
defining a custom user-interface 46
delivering media data 95
Demultiplexer 33

implementing 85
Demultiplexing 32
destroy method 65
display properties 45
Duration 54
DURATION_UNBOUNDED 54
DURATION_UNKNOWN 54
DurationUpdateEvent 31

E
Effect 33

example, 89
implementing 89

EndOfMediaEvent 31
EndOfStreamEvent 37
error handling 62
event

change notifications 30
closed 30
Controller 25
transition 30

example
adding a Controller 58
DataSource 103, 197
displaying a download progress bar

47
integrating a Player 104, 105
managing Player synchronization 60
PlayerApplet 61, 173
removing a Controller 60
starting a Player 50
synchronizing Players 56

exclusive-use resources 27

F
frame 53
frame rate 53
FTP 103, 197

G
GainChangeEvent 29
GainChangeListener 29
GainCodec 89
GainControl 29, 46

setLevel method 46
setMute method 46

getControlPanelComponent method 46
getControls method 29
getDataOutput 36, 75
getMediaTime method 53
getRefTime method 54
getSource method 55
getStartLatency method 50
getTimeBase method 56
getting a PlayerÕs time-base time 54
getting the current time 53
getTrackControl 34
getTrackControls 36
getVisualComponent method 45

H
HTML tag

APPLET 62
PARAM 62

I
implementing

Controller 104, 207
ControllerListener 47, 173
controllerUpdate 55
DataSource 103, 197
PullSourceStream 103, 197

initializing a player applet 64
interleaving 33
InternalErrorEvent 31

J
Java Beans 15

L
layout manager 45

Index 243
locating
DataSource 42

M
malfunctions 30
Manager

createPlayer 64
managing

Player 58
mapToTimeBase method 54
media capture 37
media data

capturing 78
saving to a file 79

media frame 53
media presentation, controlling 45
media types 11
MediaBase 5, 17
MediaHandler 86

integrating 105
MediaLocator 16, 44
MediaTimeSetEvent 31
merging media tracks 9, 94
MIDI 11
MonitorControl 78
MPEG 11, 17
multicast media 17
Multiplexer 33

implementing 94
Multiplexing 33

N
NotRealizedError 58

P
package prefix 105
PARAM tag 62
parsing a media stream 85
Player 25, 26

addController method 57
close method 52
control panel 45
creating 64, 173
display properties 45
getControls method 29
getMediaTime method 53
getRefTime method 54

mapToTimeBase method 54
prefetch method 49
realize method 49
removeController method 57
setRate method 48
setStopTime method 51
start method 50
stop method 50

PlayerApplet 61, 173
destroy method 65
init method 64
start method 65
stop method 65

playing a media clip 173
playing media in reverse 48
plug-in

removing 102
PlugInManager 36, 101
PortControl 78
Positionable 103
post-processing 33
prefetch method 27, 49
PrefetchComplete 61
PrefetchCompleteEvent 31, 49
prefetched state 27, 49
prefetching a Player 49
prefetching state 27
pre-processing 33
Processor 32

connecting 75
Processor states 33
ProcessorModel 36
progress bar

component 47
displaying 47

protocol 16
protocol handler 102
pull data source 17
PullDataSource 103
PullSourceStream 103

implementing 103, 197
push data source 17
PushDataSource 103
PushSourceStream 103

Q
QuickTime 11

JMF API Guide244
R
rate 51
RateChangeEvent 31
realize

blocking on 44
realize method 27, 49
RealizeCompleteEvent 31, 49, 66
realized state 27, 49
realizing 27
realizing a Player 49
realizing state 27
Real-time Transport Protocol (RTP) 5, 17
registering a plug-in, plug-in

registering 101
registering as a ControllerListener 54, 66
releasing resources 65
removeController method 57
Renderer 33

implementing 95
Rendering 33
ResourceUnavailableEvent 31
RestartingEvent 31
reverse, playing in 48
RTP 5, 17

S
sample program, PlayerApplet 61
saving media data to a file 79
Seekable 103
setFormat 73
setLevel method 46
setMute method 46
setOutputContentDescriptor 71
setOutputContentType 33
setRate method 48
setSource method 105
setStopTime method 52
setTimeBase method 56
setting

audio gain 29
stop time 51

shutting down a Player 52
SourceStream 103
start method 27, 50, 65
started state 26, 27
StartEvent 31, 50
starting a Player 50

state
configuring 33
prefetched 27
prefetching 27
realized 27
started 26, 27
stopped 26
unrealized 27

stop method 50, 65
stop time 51

clearing 52
StopAtTimeEvent 31
StopByRequestEvent 31
StopEvent 31
stopped state 26
stopping

Player 50
StopTimeChangeEvent 31
StreamWriterControl 37
synchronization 50
synchronizing Controllers 57
syncStart 50, 60, 61

T
temporal scale factor 47
time

getting 53
time-base time

getting 54
To 78
TrackControl 34, 36
transcoding 33
transition events 30
TransitionEvent 31

U
unit of transfer 16
unrealized state 27
URL 16, 44

instantiating 44
user-interface 66

custom 46

V
validate method 66
video-on-demand (VOD) 17
VOD (video-on-demand) 17

Index 245
W
WAV 11

	Preface
	About JMF
	Design Goals for the JMF API
	About the JMF RTP APIs
	Design Goals for the JMF RTP APIs

	Partners in the Development of the JMF API
	Contact Information

	About this Document
	Guide to Contents
	Change History
	Version JMF 2.0 FCS
	Version 0.9
	Version 0.8
	Version 0.7
	Version 0.6
	Version 0.5
	Version 0.4

	Comments

	Part 1: Java™ Media Framework
	Working with Time-Based Media
	Streaming Media
	Content Type
	Media Streams
	Common Media Formats

	Media Presentation
	Presentation Controls
	Latency
	Presentation Quality

	Media Processing
	Demultiplexers and Multiplexers
	Codecs
	Effect Filters
	Renderers
	Compositing

	Media Capture
	Capture Devices
	Capture Controls

	Understanding JMF
	High-Level Architecture
	Time Model
	Managers
	Event Model
	Data Model
	Push and Pull Data Sources
	Specialty DataSources
	Data Formats

	Controls
	Standard Controls

	User Interface Components
	Extensibility

	Presentation
	Players
	Player States
	Methods Available in Each Player State

	Processors
	Presentation Controls
	Standard User Interface Components

	Controller Events

	Processing
	Processor States
	Methods Available in Each Processor State
	Processing Controls
	Data Output

	Capture
	Media Data Storage and Transmission
	Storage Controls

	Extensibility
	Implementing Plug-Ins
	Implementing MediaHandlers and DataSources
	MediaHandler Construction
	DataSource Construction

	Presenting Time-Based Media with JMF
	Controlling a Player
	Creating a Player
	Blocking Until a Player is Realized
	Using a ProcessorModel to Create a Processor

	Displaying Media Interface Components
	Displaying a Visual Component
	Displaying a Control Panel Component
	Displaying a Gain-Control Component
	Displaying Custom Control Components
	Displaying a Download-Progress Component

	Setting the Playback Rate
	Setting the Start Position
	Frame Positioning

	Preparing to Start
	Realizing and Prefetching a Player
	Determining the Start Latency

	Starting and Stopping the Presentation
	Starting the Presentation
	Stopping the Presentation
	Stopping the Presentation at a Specified Time

	Releasing Player Resources

	Querying a Player
	Getting the Playback Rate
	Getting the Media Time
	Getting the Time-Base Time
	Getting the Duration of the Media Stream

	Responding to Media Events
	Implementing the ControllerListener Interface
	Using ControllerAdapter

	Synchronizing Multiple Media Streams
	Using a Player to Synchronize Controllers
	Adding a Controller
	Controlling Managed Controllers
	Removing a Controller

	Synchronizing Players Directly

	Example: Playing an MPEG Movie in an Applet
	Overview of PlayerApplet
	Initializing the Applet
	Controlling the Player
	Responding to Media Events

	Presenting Media with the MediaPlayer Bean
	Presenting RTP Media Streams
	Listening for RTP Format Changes

	Processing Time-Based Media with JMF
	Selecting Track Processing Options
	Converting Media Data from One Format to Another
	Specifying the Output Data Format

	Specifying the Media Destination
	Selecting a Renderer
	Writing Media Data to a File
	Connecting a Processor to another Player

	Using JMF Plug-Ins as Stand-alone Processing Modules

	Capturing Time-Based Media with JMF
	Accessing Capture Devices
	Capturing Media Data
	Allowing the User to Control the Capture Process
	Storing Captured Media Data
	Example: Capturing and Playing Live Audio Data
	Example: Writing Captured Audio Data to a File
	Example: Encoding Captured Audio Data
	Example: Capturing and Saving Audio and Video Data

	Extending JMF
	Implementing JMF Plug-Ins
	Implementing a Demultiplexer Plug-In
	Implementing a Codec or Effect Plug-In
	Effect Plug-ins
	Example: GainEffect Plug-In

	Implementing a Multiplexer Plug-In
	Implementing a Renderer Plug-In
	Example: AWTRenderer

	Registering a Custom Plug-In With the Plug-In Manager

	Implementing Custom Data Sources and Media Handlers
	Implementing a Protocol Data Source
	Example: Creating an FTP DataSource

	Integrating a Custom Data Source with JMF
	Implementing a Basic Controller
	Example: Creating a Timeline Controller

	Implementing a DataSink
	Integrating a Custom Media Handler with JMF

	Registering a Capture Device with JMF

	Part 2: Real-Time Transport Protocol
	Working with Real-Time Media Streams
	Streaming Media
	Protocols for Streaming Media

	Real-Time Transport Protocol
	RTP Services
	RTP Architecture
	Data Packets
	Control Packets

	RTP Applications
	Receiving Media Streams From the Network
	Transmitting Media Streams Across the Network

	References

	Understanding the JMF RTP API
	RTP Architecture
	Session Manager
	Session Statistics
	Session Participants
	Session Streams

	RTP Events
	Session Listener
	Send Stream Listener
	Receive Stream Listener
	Remote Listener

	RTP Data
	Data Handlers

	RTP Controls

	Reception
	Transmission
	Extensibility
	Implementing Custom Packetizers and Depacketizers

	Receiving and Presenting RTP Media Streams
	Creating a Player for an RTP Session
	Listening for Format Changes

	Creating an RTP Player for Each New Receive Stream
	Handling RTP Payload Changes
	Controlling Buffering of Incoming RTP Streams

	Presenting RTP Streams with RTPSocket

	Transmitting RTP Media Streams
	Configuring the Processor
	Retrieving the Processor Output
	Controlling the Packet Delay
	Transmitting RTP Data With a Data Sink
	Transmitting RTP Data with the Session Manager
	Creating a Send Stream
	Using Cloneable Data Sources
	Using Merging Data Sources

	Controlling a Send Stream
	Sending Captured Audio Out in a Single Session
	Sending Captured Audio Out in Multiple Sessions

	Transmitting RTP Streams with RTPSocket

	Importing and Exporting RTP Media Streams
	Reading RTP Media Streams from a File
	Exporting RTP Media Streams

	Creating Custom Packetizers and Depacketizers
	RTP Data Handling
	Dynamic RTP Payloads

	Registering Custom Packetizers and Depacketizers

	JMF Applet
	StateHelper
	Demultiplexer Plug-In
	Sample Data Source Implementation
	Source Stream

	Sample Controller Implementation
	TimeLineController
	TimeLineEvent
	EventPostingBase
	ListenerList
	EventPoster

	RTPUtil
	Glossary
	Index

