
EDA095
Remote Method Invocation

Pierre Nugues

Lund University
http://www.cs.lth.se/pierre_nugues/

March 31, 2011

Covers: Elliotte Rusty Harold, Java Network Programming, 3rd ed., Chapter 18, pages 610–640, O’Reilly.

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 1 / 57

http://www.cs.lth.se/pierre_nugues/


Are Sockets a Good Programming Paradigm?

To request a service from a server, sockets use explicit input and output
methods:

1 send command

2 receive value

This does not fit well with the paradigm of most programming languages:
functions or methods
In addition, communications take the form of unstructured byte streams
The programmer must manage communication explicitly
The architecture of a distributed system must use different structures in
the networked part and the local part

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 2 / 57



The Remote Procedure Call Model

The remote procedure call (RPC) approach is a unified model to deal with
local as well as with remote services
It allows a program or a class to call a function (a procedure) or a method
running in another process
The other process can be running on the same machine or on a remote one
The location of the procedure is transparent. There is no explicit send or
receive
Instead of:
send(command1, server, params) function1(params)
send(command2, server, params) you have function2(params)
send(command3, server, params) function3(params)

RMI page: http://www.oracle.com/technetwork/java/javase/
tech/index-jsp-136424.html

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 3 / 57

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html


The Remote Procedure Call Architecture

	
  

This model is very simple and very powerful at the same time

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 4 / 57



Parameter Passing with RMI

There is no miracle however
The trick is in a hidden layer called a stub on the client side and a skeleton
on the server side
It converts the remote call method(params) into
send(command, parameters)
The stub encapsulates the function name and the arguments in a network
packet

method(a, b) --> method, a, b

The encapsulation is sometimes a complex operation because it takes into
account local and distant objects and references
This process is called marshaling

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 5 / 57



Parameter Passing with RMI

	
   

Method call Encapsulation 

CLIENT 

Decapsulation 
Method 

implementation 

Return 
Encapsulation 

Decapsulation 
Return 

SERVER 

Stub 
Skeleton 

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 6 / 57



Marshaling

Java methods pass values for primitive types and references for the other
objects
References are addresses and they must be linked to values by the methods
In the call myMethod(myArray), myArray is living in the memory of the
client. The server has no access to it.
The RMI mechanism copies the content of objects and sends it to the
remote party

myMethod, myArray[0], myArray[1], myArray[2], ...,
myArray[n - 1], myArray[n]

Objects are serialized: they are converted into a stream of bytes and
deserialized – reassembled – by the receiver
RMI objects must implement the Serializable interface

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 7 / 57



Serialization

	
  

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 8 / 57



Serialization in Java

Serialization is also used to save/load the state of an object to/from a file
This operation is recursive when fields correspond to other objects or for
vectors
The serialized object must include a version – a key that documents its
version
Otherwise it is computed automatically. May introduce bug with changes
in Java versions

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 9 / 57



Serialization in Java (II)

class MBox extends Object implements Serializable {
private static final long serialVersionUID = 1L;
protected String message;
public MBox() { message = null; }
public MBox(String message) { this.message = message; }
public String getMessage() {
String tempMessage = message;
message = null;
return tempMessage;

}
public void setMessage(String message) {
this.message = message;

}
}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 10 / 57



Serialization in Java (III)

import java.io.*;
public class SerialMBox extends Object {
public static void main (String args[]) {
MBox mBox1 = new MBox("first box");
MBox mBox2 = new MBox("second box");
try {
File file = new File("myObjects");
ObjectOutputStream oos =

new ObjectOutputStream(new FileOutputStream(file));
oos.writeObject(mBox1);
oos.writeObject(mBox2);
oos.close();
ObjectInputStream ois =

new ObjectInputStream(new FileInputStream(file));
MBox mbox3 = (MBox) ois.readObject();
ois.close();

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 11 / 57



Serialization in Java (IV)

System.out.println(mbox3.getMessage());
} catch (Exception e) {
e.printStackTrace();
System.err.println(e);

}
}

}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 12 / 57



Naming Services

Socket services have a port that might be different on different machines.
This might be suitable for services with a limited distribution
Widely used services such as ftp or telnet need to have “well-known” port
numbers reserved on nearly all the machines in the world
This is not very flexible
RPC and RMI used directory services called respectively the port mapper –
or sunrpc – and the registry
Services register to the registry and clients call the registry to know the
address of a service before they request the service

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 13 / 57



The Registry

	
  

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 14 / 57



The RMI URL

A uniform resource locator (URL) identifies RMI services
rmi://hostname/ServiceName
For instance
rmi://torin.cs.lth.se/MyService
The registry is launched with the command
% rmiregistry
The server classes must be accessible through the class path. Many
programs in the labs crash because the CLASSPATH variable is not set
properly.
By default, the registry uses the port number 1099, but you can change it
% rmiregistry 2002
The service address is then:
rmi://torin.cs.lth.se:2002/MyService

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 15 / 57

rmi://hostname/ServiceName
rmi://torin.cs.lth.se/MyService
rmi://torin.cs.lth.se:2002/MyService


The Protocol Stack

The RMI and RPC applications use classical network protocols
The RPCs can use both TCP and UDP and RMIs use TCP for the
transport
On top of TCP, Sun uses the RMI transport protocol by default, but there
are other standards
See http://download.oracle.com/javase/6/docs/platform/rmi/
spec/rmi-protocol.html
This protocol is handled in the stubs and is transparent
A new protocol makes RMI and Corba compatible: RMI-IIOP (Internet
Inter-Orb Protocol)
It is available with Java 1.5 and 6.0 (also 1.3 and 1.4)

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 16 / 57

http://download.oracle.com/javase/6/docs/platform/rmi/spec/rmi-protocol.html
http://download.oracle.com/javase/6/docs/platform/rmi/spec/rmi-protocol.html


Programming with RMI

Although they are widely used, sockets may be considered to be lower level
On the contrary, RMI are closer to classical functional programming
They enable a programmer to build more easily distributed objects and
distributed applications
A disadvantage is that the programmer has to resort more on existing
classes, tools, and the deployment is much more complex
First steps in RMI design resemble the assembly of classes and the
administration of existing software rather than creative programming

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 17 / 57



Parts of a RMI System

A RMI system has several components:

The description of the remote services (methods): a Java interface

The implementation of the remote services (methods): a Java class

The naming service: the registry that is launched by rmiregistry

The server that launches the remote services: a Java class

The client that will use the remote services: a Java class

Before Java 1.5, you also needed to generate stubs and skeletons using the
rmic tool. Now this is automatic
http://download.oracle.com/javase/1.5.0/docs/relnotes/
features.html#rmi
http://download.oracle.com/javase/1.5.0/docs/guide/rmi/
relnotes.html

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 18 / 57

http://download.oracle.com/javase/1.5.0/docs/relnotes/features.html#rmi
http://download.oracle.com/javase/1.5.0/docs/relnotes/features.html#rmi
http://download.oracle.com/javase/1.5.0/docs/guide/rmi/relnotes.html
http://download.oracle.com/javase/1.5.0/docs/guide/rmi/relnotes.html


The Interface and the Implementation

The interface is the description of the methods available to a client
The implementation is the real Java code

	
  

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 19 / 57



Designing the Interface

The interface breaks down the server into services
A service is mapped onto one method
Originally, RPCs were used to carry out heavy computations on
supercomputers and to off-load client machines
A simple example with three arithmetic methods:

double add(double a, double b)

double subtract(double a, double b)

double sqrt(double a)

The interface extends the java.rmi.Remote class
Each method throws a java.rmi.RemoteException

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 20 / 57



The SimpleArith Interface

import java.rmi.*;

public interface SimpleArith extends Remote {
public double add(double a, double b)
throws RemoteException;

public double subtract(double a, double b)
throws RemoteException;

public double sqrt(double a) throws RemoteException;
}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 21 / 57



The SimpleArith Implementation

It is the real method code

import java.rmi.*;
import java.rmi.server.*;
public class SimpleArithImpl extends UnicastRemoteObject

implements SimpleArith {
public SimpleArithImpl() throws RemoteException {}
public double add(double a, double b)

throws RemoteException {
return a + b;

}
public double subtract(double a, double b)

throws RemoteException {
return a - b;

}
public double sqrt(double a) throws RemoteException {
return Math.sqrt(a);

}
} Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 22 / 57



The SimpleArith Implementation

The class must implement all the methods of the interface
It may contain other methods but the client cannot call them directly
It extends the UnicastRemoteObject that enables it to “export” the
methods to the RMI system.
They can be called then.
The server can listen on an anonymous port

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 23 / 57



Stubs and Skeletons

If you use a Java version before 1.5, you need a RMI compiler – rmic – to
produce the stub and the skeleton from the implementation class:

% rmic SimpleArithImpl (or rmic -d . SimpleArtithImpl)
% ls

SimpleArith.class SimpleArithImpl_Stub.class
SimpleArithImpl_Skel.class SimpleArithImpl.java
SimpleArithImpl.class SimpleArith.java

%
From version 1.2, Java has a reflection API that enables to inspect classes.
The skeleton is not necessary if the server and the clients are all running
Java version 1.2 or higher.
The option -keep keeps the Java files and -v1.2 doesn’t generate
skeleton files. (Default in Java 1.5)

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 24 / 57



The Server

The server launches the services

import java.rmi.*;
public class SimpleArithServer {
public static void main(String [] args) {
try {
SimpleArith simple = new SimpleArithImpl();
Naming.rebind("SimpleArith", simple);
System.out.println("RMI server running");

} catch (Exception e) {
e.printStackTrace();

}
}

}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 25 / 57



The Client

import java.rmi.*;
public class SimpleArithClient {
public static void main(String [] args) {
try {
SimpleArith simple = (SimpleArith)
Naming.lookup("rmi://torin.cs.lth.se/SimpleArith");
System.out.println(simple.add(1.0, 2.0));
System.out.println(simple.sqrt(2.0));
System.out.println(simple.sqrt(-2.0));

} catch (Exception e) {
e.printStackTrace();

}
}

}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 26 / 57



Running the Application

Files for the server class loader Files for the client class loader

Remote service interface definitions Remote service interface definitions
Remote service implementations All other client classes
All other server classes

Start the registry on the server: % rmiregistry
Start the server: % java SimpleArithServer
Start the client: % java SimpleArithClient

(The files are in the RMI1 folder)

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 27 / 57



Distributed Applications

Sharing data Sharing applications

	
   

Financial 
Services 

Customer 
Services 

South 

Warehouse 

Printer 

Customer 
File 

Customer 
Services 

South 

	
   

Financial 
Services 

Customer 
Services 

South 

Warehouse 

Printer 

Customer 
File 

Database 
management system 

Customer 
Services 

South 

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 28 / 57



Distributed Applications (II)

Sharing resources Sharing work

	
   

Financial 
Services 

Customer 
Services 

South 

Warehouse 

Printer 

Customer 
Services 

South 

	
  

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 29 / 57



Mounting Files

Before

	
   

/ 

users temp usr 

/ 

proj1 proj2 proj3 

After

	
   

/ 

users temp usr 

proj2 proj3 proj1 

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 30 / 57



NFS: Mounting

program MOUNTPROG {
version MOUNTVERS {
void MOUNTPROC_NULL(void) = 0;
fhstatus MOUNTPROC_MNT(dirpath) = 1;
mountlist MOUNTPROC_DUMP(void) = 2;
void MOUNTPROC_UMNT(dirpath) = 3;
void MOUNTPROC_UMNTALL(void) = 4;
exportlist MOUNTPROC_EXPORT(void) = 5;

} = 1;
} = 100005;

http://www.rfc-editor.org/in-notes/rfc1094.txt with many
revisions

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 31 / 57

http://www.rfc-editor.org/in-notes/rfc1094.txt


NFS: File Services

program NFS_PROGRAM {
version NFS_VERSION {
void NFSPROC_NULL(void) = 0;
attrstat NFSPROC_GETATTR(fhandle) = 1;
attrstat NFSPROC_SETATTR(sattrargs) = 2;
void NFSPROC_ROOT(void) = 3;
diropres NFSPROC_LOOKUP(diropargs) = 4;
readlinkres NFSPROC_READLINK(fhandle) = 5;
readres NFSPROC_READ(readargs) = 6;
void NFSPROC_WRITECACHE(void) = 7;
attrstat NFSPROC_WRITE(writeargs) = 8;
diropres NFSPROC_CREATE(createargs) = 9;
stat NFSPROC_REMOVE(diropargs) = 10;
stat NFSPROC_RENAME(renameargs) = 11;
stat NFSPROC_LINK(linkargs) = 12;
stat NFSPROC_SYMLINK(symlinkargs) = 13;
diropres NFSPROC_MKDIR(createargs) = 14;
stat NFSPROC_RMDIR(diropargs) = 15;
readdirres NFSPROC_READDIR(readdirargs) = 16;
statfsres NFSPROC_STATFS(fhandle) = 17;

} = 2;
} = 100003;

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 32 / 57



NFS: Implementation

	
  

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 33 / 57



File System Tools

df: display the mounted and unmounted disk with the amount of
occupied space

nfsstat: nfs statistics, describes the remote procedures and the
number of calls. Options -c (client), -s (server)

rpcinfo, information on remote procedure calls running on a machine
-m (rpcbind), -s (concise list), -p machine (rpcbind on machine)

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 34 / 57



Remote Objects

In the last example, the program transferred primitive types from a client
to a server
As a natural part of Java, RMI can also transfer objects: data and code
The transferred code is executed by the server virtual machine
It is then possible to implement “mobile code” using RMIs
This resemble applets but in a more general architecture
The older RPC model does not contain this feature
Mobile code also raises new security challenges

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 35 / 57



Sending Objects

Instead of transmitting primitive data types, let us send objects:

public class Operands2 {
private double a;
private double b;
Operands2(double a, double b) {
this.a = a;
this.b = b;

}
public double getFirst() {return a;}
public double getSecond() {return b;}

}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 36 / 57



The SimpleArith2 Interface

import java.rmi.*;

public interface SimpleArith2 extends Remote {
public double add(Operands2 o) throws RemoteException;
public double subtract(Operands2 o) throws RemoteException;
public double sqrt(double a) throws RemoteException;

}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 37 / 57



The Server

import java.rmi.*;
public class SimpleArithServer2 {
public static void main(String [] args) {
try {
SimpleArith2 simple = new SimpleArith2Impl();
Naming.rebind("SimpleArith2", simple);
System.out.println("RMI server running");

} catch (Exception e) {
e.printStackTrace();

}
}

}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 38 / 57



The New Client

And the client is:

Operands2 o = new Operands2(1.0, 2.0);
System.out.println(simple.add(o));
System.out.println(simple.subtract(o));
System.out.println(simple.sqrt(2.0));

Will this work?
(The files are in the RMI2 folder)

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 39 / 57



More on Naming

rebind(String name, Remote obj) rebinds a name to a new
remote object

bind(String name, Remote obj) binds a name to a remote
object. It can’t replace an old object as rebind()

unbind(String name) unbinds a name

String [] list(String name) returns a list of names in the name
service from the URL

The server program normally does not return. In addition to the main
thread, rebind() launches a second thread that blocks in the registry.

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 40 / 57



Moving Code

In this example, in addition to moving data, we will move code
This is a simplified example from a Java tutorial by Sun/Oracle:
http://download.oracle.com/javase/tutorial/rmi/
Let’s use a compute() remote method that will designate some sort of
generic computation
This compute() method will take an addition or a subtraction as
parameter and move the code corresponding to two different classes
This is a toy example but it can be generalized to operations that are more
realistic
The server will not know of the real classes. It will download them from
the client and load them in its VM at runtime

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 41 / 57

http://download.oracle.com/javase/tutorial/rmi/


The Declaration of the Remote Methods

An interface contains the declaration of the remote methods:

import java.rmi.*;

public interface SimpleArith3 extends Remote {
public double compute(Arith3 o) throws RemoteException;

}

The interface uses a generic arithmetic operation Arith3 that it passes to
the server
Arith3 is the superclass of an addition or a subtraction

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 42 / 57



Data Exchange

	
  

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 43 / 57



The Real Objects

This object Arith3 is the ancestor of real objects

	
  

The server only knows of the interface: SimpleArith3

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 44 / 57



The Arith3 Interface

The Arith3 interface describes the possible computations

import java.io.*;

public interface Arith3 extends Serializable {
static final long serialVersionUID = 1L;
double execute();

}

This execute() method could be anything.
It is implemented as an addition in the OperAdd class or a subtraction in
the OperSub class

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 45 / 57



The OperAdd Class

import java.io.*;
public class OperAdd3 implements Arith3 {
private double a;
private double b;
OperAdd3(double a, double b) {
this.a = a;
this.b = b;

}
public double getFirst() {return a;}
public double getSecond() {return b;}
public double execute() {
return a + b;

}
}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 46 / 57



The Implementation of the Remote Method

The compute() remote method runs the execute() method of the
Arith3 interface in the server implementation.

import java.rmi.*;
import java.rmi.server.*;
public class SimpleArith3Impl

extends UnicastRemoteObject implements SimpleArith3 {
public SimpleArith3Impl() throws RemoteException {}
public double compute(Arith3 arith) throws

RemoteException {
return arith.execute();

}
}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 47 / 57



The Server

The server is similar to what we have already seen

public class SimpleArithServer3 {
public static void main(String [] args) {
try {
SimpleArith3 simple = new SimpleArith3Impl();
Naming.rebind("SimpleArith3", simple);
System.out.println("RMI server running");

} catch (Exception e) {
e.printStackTrace();

}
}

}

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 48 / 57



The Client

The client invokes the compute() method in two different classes

public class SimpleArithClient3 {
public static void main(String [] args) {
try {
SimpleArith3 simple = (SimpleArith3)
Naming.lookup("rmi://pierre.cs.lth.se/SimpleArith3");
OperAdd3 operAdd = new OperAdd3(1.0, 2.0);
OperSub3 operSub = new OperSub3(1.0, 2.0);
System.out.println(simple.compute(operAdd));
System.out.println(simple.compute(operSub));

} catch (Exception e) { e.printStackTrace(); }
}

} //(The files are in the RMI3 folder)

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 49 / 57



Security

The client and the server share the code in our example: It is loaded locally
In the case of a distributed application, both the client and the server need
to protect themselves against malicious code
If we remove the OperAdd3 and OperSub3 classes from the server, the
code does not run anymore
Security of RMI is similar to that of applets
However, the RMI model is more flexible and also much more complex to
tune.

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 50 / 57



The Security Manager

Protection is enforced through a “Security Manager”
It controls the loading of external code
The next lines create and install a security manager

if (System.getSecurityManager() == null) {
System.setSecurityManager(new RMISecurityManager());
System.out.println("Security Manager installed");

}

By default, the protection is strict.
Be aware that the security model is different across versions of Java
(The files are in the RMI4 folder)

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 51 / 57



The Security Policy

The security model requires code being granted permissions
The protection policy is described in a file named .java.policy
You can create and edit such files using the policytool command
See http://download.oracle.com/javase/6/docs/technotes/
tools/solaris/policytool.html
Examples:

grant codeBase "file://Users/pierre/classes/-" {
permission java.io.FilePermission "/Users/pierre/files/*",
"read, write";

};

grant {
permission java.net.SocketPermission "*:1024-65535",
connect,accept";

};

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 52 / 57

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/policytool.html
http://download.oracle.com/javase/6/docs/technotes/tools/solaris/policytool.html


The Security Files

The security files are specific to each machine
There is a default one:

${java.home}/jre/lib/security/.java.policy

A user one:

${user.home}/.java.policy

Otherwise, you must specify it when you launch Java

-Djava.security.policy=path/file

like:

java -Djava.security.policy=RMI4/java.policy
RMI4/SimpleArithServer4

In our example, we will grant all the permissions:

grant {
permission java.security.AllPermission;

};

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 53 / 57



Deploying and Running the Client and the Server

Deploying a RMI application can be much more difficult. It sometimes
requires black magic skills.
A key point is to define properly where the client and the server load their
Java code.
The code is loaded from a http or an ftp server.
More details on this architecture and the location of the code base here:
http://download.oracle.com/javase/6/docs/technotes/guides/
rmi/codebase.html
Let’s start a http server on localhost and load the code (files in the
dynamic/client folder from Pierre’s homepage)
Let’s run the server (files in dynamic/engine) and the client (files in
dynamic/client) from Pierre’s machine.
We need also the interface definitions in dynamic/compute on both the
client and server

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 54 / 57

http://download.oracle.com/javase/6/docs/technotes/guides/rmi/codebase.html
http://download.oracle.com/javase/6/docs/technotes/guides/rmi/codebase.html


Parameters

We specify parameters for the client and the server using the -D option of
the Java virtual machine

java.security.manager tells to use a security manager if this has
not been done in the program

java.security.policy tells the files where the policy is described

rmi.server.codebase tells where is the code. It must be a web or
ftp server

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 55 / 57



Examples

Server:

java -Djava.rmi.server.codebase=http://localhost/~pierre/classes/
-Djava.rmi.server.hostname=localhost
-Djava.security.policy=server.policy
dynamic.engine.SimpleArithServer4

Client:

java -Djava.security.policy=client.policy
dynamic.client.SimpleArithClient4 localhost

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 56 / 57



A Word of Caution

Code base parameters can be difficult to adjust and the bugs are often
hard to find
Tools can help deployment as WebLogic from Oracle (formerly BEA)
The page http://download.oracle.com/javase/tutorial/rmi/
contains a chapter on RMI deployment that details RMI parameter setting.

Pierre Nugues EDA095 Remote Method Invocation March 31, 2011 57 / 57

http://download.oracle.com/javase/tutorial/rmi/

