LET'S CREATE IT

Multimedia in Mobile Phones

Architectures and Trends Lund 091124

Presentation

- Henrik Ohlsson
- Contact: henrik.h.ohlsson@stericsson.com
- Working with multimedia hardware (graphics and displays) at ST-Ericsson (former Ericsson Mobile Platforms) since 2005.
- Worked with low power implementation of digital signal processing algorithms as PhD student at Linköping University. Graduated in 2005.

Outline

- Some perspective on mobile phone development
- Silicon technology development
- Mobile platform architectures
- Multimedia hardware components
- Conclusions

Some perspective on mobile phone development

Some perspective

- Speech (Fixed Telephony) 1876-•
- Speech (Wireless Telephony) 1985-
- Text messaging 1995 -
- Image messaging 2001-
- Video Telephony 2003 -
- Graphics Hardware 2006 -

'richness"

Graphics Development in Mobile Phones

• Ericsson/Sony Ericsson phones used as examples

• This can be mapped to, more or less, all phone vendors

Silicon Technology

Moore's Law

 "The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years"
 Gordon E. Moore, 1965

- Today we have enough silicon area to develop complex System-on-Chip (SoC) for mobile platforms.
 - Several CPUs/DSPs, access hardware (Edge, WCDMA, LTE), hardware accelerators for various multimedia functionality (graphics, video, imaging).

Can we take full advantage of new silicon technologies?

- The development costs/times increases as the technology develops
 - Time-to-market critical
 - Cost is a major driving force. 1 dollar saved on each silicon die is a lot of money on a market where total yearly sales are in the order of 1 billion units
- What about power consumption?
 - For example, QVGA->VGA display resolutions increases the fill rate requirements by a factor 4
 - End-user expects, at least, the same battery life-time as in previous products
 - No fan for cooling the mobile phone...
 - More power efficient technologies must be used!
 - Power-efficient software is one key factor to reduced power consumption

Mobile Architectures

Mobile Architectures – History and Trends 1(2)

- Step 1 Multimedia centric DSPs
 - Mainly for audio, also used for video, imaging
 - Register based (load-store), cached, VLIW (static superscalar), SIMD, smarter DMA, ..
- Step 2 Generic (embedded) CPUs
 - More advanced architectures (similar to PC CPU evolution)
 - Support for higher frequencies
 - Getting more done per cycle (e.g. deeper pipelines, branch prediction, SIMD, ..)
 - Improved support for multimedia (DSP ext., SIMD, floating point)
 - Larger register banks (enables larger loops at max performance -> good for multimedia)

Mobile Architectures – History and Trends 1(2)

- Step 3 Dedicated hardware accelerators
 - Increasingly important the coming years (as long as CPUs/DSPs does not provide enough performance)
 - Graphics, video, audio, display, camera
 - Pros: silicon efficient, performance, more power efficient
 - Cons: less flexible, often "fixed" functionality
- Step 4 Memory sub-systems increasingly optimized for multimedia
 - When processing power increases, memory bandwidth becomes bottleneck
 - Multimedia processing is bandwidth hungry (especially graphics and video)
 - More advanced caches and on-chip RAM structures (L2, L3)
 - More advanced bus-systems and associated components (e.g. memoryand DMA-controllers)
 - Wider and faster internal and external data busses

Hardware block diagram for a mobile platform

• U8500 - coming mobile platform from ST-Ericsson

Multimedia Performance in U8500

- Dual camera support with Integrated ISP (18 Mpixel and 5 Mpixel)
- Full HD 1080p camcorder, multiple codecs supported (H264 HP, VC-1, MPEG-4)
 - HD 1080p 1920×1080 i.e. 2,073,600 pixels/frame. At 30 fps this means 62 Mpix/s. If 16 bpp is assumed, the memory bandwidth for video record only is 124 MB/s.
- Dual display support up to XGA. Simultaneous dual display support
 - XGA 1024×768 i.e. 786432 pixels/frame. For a 16 bpp frame buffer and 30 fps refresh rate the memory bandwidth required to refresh the display 47 MB/s
 - With two XGA displays the bandwidth is 94 MB/s
 - The two displays can be a complex UI or a 3D game. Then the bandwidth numbers increases dramatically
- High performance 3D graphics, support for OpenVG 1.1 and OpenGL ES 2.0

• ARM Mali 400 GPU 12/03/2009

14

Multimedia Hardware Components

Mobile CPU development

- ARM dominates the mobile phone market
 - ARM9
 - Most common processor in mobile phones today.
 - Clock frequencies up to 400 MHz.
 - ARM Cortex A8
 - New CPU architecture
 - Increased clock frequency compared to ARM9 600 MHz to 1GHz
 - Currently used in many smartphones on the market.
 - Includes a SIMD vector processing unit NEON
 - Mainly aimed at multimedia processing
 - ARM Cortex A9
 - Evolution of A8
 - Can be used as a multicore CPU using up to 4 cores
- Intel targets the mobile domain with the Atom CPU
 - What will happen in the smartphone segment (dominated by ARM) and in the netbook segment (dominated by Intel)?

Phone memory systems

Shared RAM configuration

Memory trends

- On-Chip Level-2 caches are often used
 - Make sense when the CPUs process data faster than external RAMs can deliver
- Larger and faster on-chip RAMs
 - However, every byte of on-chip memory comes with a silicon cost.
- Larger and faster external RAM
 - 16 -> 32 bit wide data bus
 - Mobile DDR, Mobile DDR2 interfaces
 - Memory bandwidths will go up
 - Mobile SDR SDRAM 100 300 MB/s
 - Mobile DDR SDRAM 400 1600 MB/s
 - Mobile DDR2 1.6 4 GB/s
- Latency for external memory accesses will increase
 - More complex bus structures -> higher latency
 - Latency tolerant processing subsystems are required
- Burst accesses important
 - Make sure you read and write bursts, i.e. several bytes of data,
 e.g. 8 32 bytes at once^{2/03/2009}

18

Mobile phone graphics 1(3)

- 3D graphics in the PC world
 - "OK" to burn power
 - Wired power supply
 - Efficient cooling
 - "Extreme" memory systems
 - Dedicated graphics memories with high bandwidth interfaces
 - "Extreme" parallellism and chip sizes
 - 4.3 billion 40nm transistors, 3200 processong units (ATI Radeon™ HD 5970)
 - GPUs (Graphics processors)
 - Programmable graphics
 - Well established now
 - General purpose computing
- How is this mapped to the mobile space?

Mobile phone graphics trends 2(3)

- Mobile phone graphics heavily influenced by PC graphics
 - Possibility to leapfrog several evolutionary steps
 - About 4 years from fixed function pixel pipelines to programmable pixel pipelines in mobile phones.
- Actually, the latest mobile graphics IP cores have feature set similar to ~2 year old "Best-in-class" PC GPUs
 - Not (by far) as much parallelism (high-end PC graphics chips are way larger than our entire BB chip)
 - Not (by far) the same (extreme) memory systems
 - Not (by far) the same performance levels
- Programmable mobile GPUs (OpenGL ES 2.0) are available in phones on the market today (for example Sony Ericsson Satio, IPhone 3GS)
 - Learn how to program shaders!
 - Many effects and tricks from PC graphics can be used
 - General purpose computing on GPU (GPGPU)
 - OpenCL is a new Khronos API for parallel programming. Will probably end up in the mobile world as well
 ST

Mobile phone graphics trends 3(3)

- Memory bandwidth is the #1 gating factor for performance
 - Memory bandwidth is a shared resource
- Improved bandwidth efficiency key concern
 - Texture compression
 - Z-buffer compression
 - Color buffer compression
 - Zmin/Zmax culling
 - Deferred shading (shade only visible primitives)
 - Tiling architecures are popular
- In general for mobile graphics
 - Save bandwidth!!!
 - Apply compression whenever possible
 - Render only visible stuff
 - Do it smarter and more efficient
 - Room for new innovative algorithms and architectures

Software platforms

- Traditionally the mobile OS has been proprietary and not easily available for developers
 - The application development has more or less been controlled by the hand-set manufactures
- Today there is a strong drive towards open operating systems for mobile phones
 - Open in terms of that they are available for application developers
 - Android from Google, iPhone OSX, Symbian, Windows Mobile
 - A great opportunity for application development!

Conclusions

- Multimedia is one of the driving forces for mobile phone development today
 - The feature and performance requirements are closing in on the PC market
- Two major hardware challenges moving forward
 - How do we obtain enough performance with the memory bandwidth availible?
 - How do we manage the power consumption with increasing performance?
- The growing mobile OpenOS market gives you the opportunity to develop applications for your mobile phone

LET'S CREATE IT

THANK YOU

