Real-Time Buffer
Compression

Michael Doggett
Department of Computer Science
Lund University

Assignments are over...
Say welcome to THE PROJECT

Everyone needs to do this (2 people/proj)

Every group must write a report, 2-4 pages
— Use the LaTeX-style on course webpage
— Or similar style

Two paths (take only one):
1. iPhone application

2. Graphics hardware optimization
— bandwidth reducing algorithms in our SW framework

Formulated as a non-compulsory competition
— With grand prizes: honor and glory

Should correspond to 3 points (i.e., 2 weeks of work x
2 persons)

Finish by 2009-12-04, 12:00, or you're welcome to try
again when the make-up exam takes place (Jan 2007)

— Can continue to work on it until competition

iIPhone Project

Come up with your own iPhone application that is either:
— Cool

— Beautiful

— Interesting

— Useful

— Or combination of all of the above

Examples:
— Game
— Screensaver (remember though: 2x2 weeks of work)
— New GUI for mobile platforms (might give you a job at TAT ©)
— A useful tool

The performance is not the most important thing right now
— But if you can optimize, that’s good

Formulate project, and clear with me (Mike)!

— A paragraph description of what your app will do

Who wins the iPhone competition?
— Ajury (with participants from industry, | hope) decides ...

IPhone project

* Get latest RenderChimp framework on
Friday
— Mac version soon after
* Running on the iPhone is optional
— Can participate in competition using a PC
— You need to port it to the mac, vc++ vs g++
* IPhone Developer Program
— Need an intel mac

— iPod Touch for overnight use
— Send me an email

iPhone Particles

Graphics Hardware project

* We provide:
— A simple animated scene (in the code at the project
web page)
— Basic rasterizer (the framework you've used)

— 3.0 kB of onchip memory that you can use for BW-
reducing algorithm

— @ 320x240 (QVGA)
* You give us:

— Arasterizer that uses as little BW to external memory
as possible... (lands you a job at ATI/NVIDIA/INTEL?
©)

« Who wins?

— The group that uses least BW to external memory
6

Back to today’s lecture

Memory bandwidth problem

Speed Gap between DRAM and CPU

- Memory Wall -
£ 1000 uPU &
] °
=4 60% /year >
-§. 100 i ° A
2 > g Increasing
§ 10 | . N The Gap
= .
o _—
§ 1 - DRAM?7 %l/year
t 1 1 1 1
S 80 85 90 95 00

Year

Slide courtesy of Mark Horowitz, from Junji Ogawa 1998 presentation

Mini overview: DRAM

* Dynamic Random Access Memory

— Looses its content, unless the charge is refreshed
periodically, i.e., if power is removed, content is lost

— Smaller and less expensive than SRAM (which do not
need periodic refresh)

— Thefore, DRAM used as graphics memory in desktop
GPUs

— Many many different types of DRAM:
« SDRAM, VRAM, SGRAM, PSRAM, etc.

— There are also double data rate (DDR) versions

* Works on both low-to-high clock transitions, and high-to-low
transitions

Memory architectures in a

* GeForce 6800 DRAM DDR memory:

— 550 MHz x 256 bits/clock x 2 transfers/clock=~33-35
Gbytes/s

« Kilgariff and Fernando’s article said 35Gb, | get 33Gb

CPU |

16.4 GB/s

6.4 GB/s Up to
or More 8 GB/s
North Bridge f— GPU — To Display
l ‘Up to 35 GB/s
o

South Bridge

This is not what we

have in mobile systems!
Other Peripherals

Figure 30-2. The Overall System Architecture of a PC

Memory system in mobile

Mobile chip
Bus 16 bits :
_ i.e., maybe 200 MB/s
L1 Cache cPU —— 439"\\"/"3 (peak performance)
L2 Cache _ Can be SRAM or
- 0-100MHZz | 1A,
Video, _— Bus
etc 8-16 bits
~10-30 MB/s
NAND Flash
P Id al
GPU could also be a 32 MB-1GB

separate chip...
NAND flash is used as a

"hard drive”, i.e., data is
move into RAM, and
executed from there.

Flash memory

IPod nano

has 2 or 4 iPod nano
GB Of NAN D— 1 000 latar. Oméjligt liten.
flash

B

|s static: no need for power...

Used in digital cameras, USB memories, MP3
players, mobile phones: i.e., mobiles...

Two types: NAND and NOR

— NAND are cheaper to produce, more silicon-effective
(i.e., smaller), and consume less power, and lasts
longer...

More about flash

Can read at random places

Cannot write randomly

— Must erase a block of memory, and can then update
the content of that block

NOR: much faster read (can "execute in
place” (XIP) without reading into RAM first)

One NAND part can hold 16 Gbit (2 GB)
— From Samsung, September 2005

— This is in the iPod nano

— Even bigger now (2007)?

Back to
Graphics Hardware algorithms

Why depth buffer?

hatdware Thus the only variation of interest
here is Newell et al, an order of magnitude less
"costly” and the brute-force approach which is
already ridiculously expensive.

“A Characterization of Ten Hidden-Surface
Algorithms”, Ivan Sutherland, Robert Sproul, and
Robert Schumacker (ACM Computing Surveys, March
1974)

[Slide courtesy of John Owens]

The "brute-force apprach” is depth buffering (aka Z-buffering):
It won over sorting-polygons-methods because memory became
ridiculously inexpensive...

Depth buffer bandwidth

 Still could be quite expensive!

« Zmin/Zmax-culling helped (previous
lecture)

* Real-Time Buffer Compression can help
reduce

— Depth buffer bandwidth
— Color buffer bandwidth
— Other buffers...

Real-Time Buffer Compression

* Techniques that are or may be used In
mobiles...

» Basic idea:
— Lots of coherency (correlation) between pixels
— Use that to compress buffer info
— Send compressed buffer info over the bus

— Special hardware handles compression and
decompression on-the-fly

— Must be lossless!!

General Compression System

Read and write requests from the pipeline Read Write
data data
Compression System
Cache
Control block D cached || cached || cached || cached || cached | & & & o | cached
block 0} block | || block 2 || block 3 || block 4 block
n-1

N

-

Tile table Compression Decompression
unit unit

4

87 Buffer in external memoryl—l

Tile Tike Tile Tile
data 0 data 1 data 2 eeoe data 7,-1
Tile Tile Seas
datar, |datar +1

C om p ress I on S ySte m [m'::m}:;“

» Works on a tile basis === B
— Eg 8x8 pixels at a time FeRE

» Cache is important! '

— Do not want to decompress tile for every
fragment that need access values in that tile
 Tile table store "per-tile info™:
— E.g., which compression mode is used

— Example: 00 is uncompressed, 01 is
compressed at 25%, 10 is at 50%, 11 is
cleared

— Always needs one uncompressed mode as a
fallback

(GRpPresshn Sistem
[Cache |
T] S T e S Ir n
{ len whod || ot ||
Xal I l e [Comtret ek I:‘,jl{ > i; ISt [aabal) ol) Sti ||
B FapN " vélfé e —— | L;i:_";
I/'_'\\

* Read request - ctrl block | |[== =f===] [===

 Checks cache
— If there, deliver immediately * el i

~fnot i

 Evict one tile from cache by attempting to

compress info, and sending resulting
representation, update tile table for that tile

» Check tile table for requested tile, and

« Read appropriate amount of bytes

« Decompress (or send cleared info without reading,
or in case of data being uncompressed, no
decompression needed)

e Done

Dirty bit

 Each tile in cache has one bit for this

 When new info has been written to a tile in
cache, set dirty bit=1
 When tile in cache need to be evicted, check
dirty bit
— If =0, information in external memory is up to date -
no need to write back!
— If =1, attempt to compress, and send to external
memory
« Saves a lot when no updates
— Example: particle systems — do not write depth!

Depth buffer compression

« Hard to get accurate information about this

* Looking at patents we can extract some
ideas

* Three techniques:
— Depth offset compression
— Layered plane equation compression
— DPCM compression

Depth buffer compression

« Simplest buffer to compress
— Highly coherent info (big triangles wrt tile size)
— Depth is linear in screen space

« Depth cache and depth compression needed for
Zmax-culling

— Zmin culling is more difficult to combine with depth

compression (can avoid depth reads for tiles that are
entirely overlapped by a triangle)

* Depths, d(i,j) per tile,
— 7isin [0, w-1], jis In [0, A-1]
— Min depth value is 00...00, (all zeroes, eg 24 bits)

— Max depth value is 11...11, (all ones)
* i.e., we can use integer math

Depth offset compression (1)

- ldentify a set of reference values, r,,

— and compress each depth as an offset with
respect to one reference value

» Easiest to only use two reference values
— Use Zmin and Zmax of tile!

— Rationale: we have two layers
* One with depths close to Zmin and
» one with depths close to Zmax

Visually, this means...

—-—
— — —

~min Zmin -1 Zmax-I+1 ~max 2 max

* Can encode if all z-values are in the gray
regions

25

Depth offset compression (2)

Use an offset range of =27
Can use offset, o(i,j), per pixel as:

()(,' /) = (l(//) — Zmin: if (/(//) — Zmin < 5
; zmax — d(4,7), if zmax — d(i,5) < t.

If at least one pixel, (i,j), cannot fulfil the
above, the tile cannot be compressed!

Info to store (if compression possible):
—Zmin and Zmax
— Plus wxh p-bit values

Depth offset compression (3)

« Example with following assumptions:
— 8x8 pixels per tile
— t=2% means 8 bits per offset, o
— 24 bits depth - Zmin and Zmax has 24 bits each

e Storage (uncompressed: 8x8x3=192 bytes):

— 1 bit per pixel to indicate whether offset to Zmin or Zmax
- 8x8x1 bits= 8 bytes

— Offsets: 8x8x8 bits= 64 bytes
— Zmin & Zmax: 6 bytes (might be onchip though)

— Total: 8+64+6=78 bytes > 100*78/192=41%
compression

Less expensive implementation

~min :l)llll + I-l :111;|x"+ l :HMX - max

* Only possible to compress if all depths in a
tile are gray regions

* There are some extensions to this that
makes the hardware simpler!

+ Make the offset computation inexpensive!
— Currently costs an adder in HW

Inexpensive offsets...

* Instead of storing exactly Zmin and Zmax,
store only m most significant bits (MSBs)

— Call these truncated values, . and u__

» Offset is now simply the k-m least
significant bits of depth (no add needed)

m bits k-m bits

Ui Offset, o(i,))

min

k bits (eg 24 bits)

Disadvantage of cheap offsets, and a

b solution -
=2¢ =2t h
| | L 1 L] " |
| I I I I
==0 Unin=<P Zmin Umax=<P Zmax T max
* Only values in dark gray area can be coded -
loss of compressibility!
« Simple solution: use one more bit per pixel -
four reference values:
— Upnins umin+1’ Z/lmax_1 and U nax
=2F =2F =2° =2F
] = ‘ . = :
| L1 1 | L I |
I <min L\ /_/ I ~max I

z=() Unin=<pP (2pin™ I)(:(:/) (“ma.\"l){:(::/-7 Umax<<pP - max

Decompression hardware

* Very simple

Umin > k bits
uncompressed depth

7
Upmax-1

aint] ;
L@ - | m bits t !
@

”max »/
2
2-bit per pixel flag v

k-m=p bits

per pixel offset =

Compression ratio with inexpensive
variant

 Slightly worse - 44% instead of 41%

» But, range of offsets is larger!
— Best case: range is twice as large
— Worst case: range is only one depth value larger
— Average case: range is about 50% larger!

— So more tiles can be compressed, but still costs
more

DPCM Compression

* ATI had this in their hardware
— DPCM=differential pulse code modulation

» Basic idea: we usually have linearly varying
values in tile
— Second derivative of linear function is zero!

— However, we have discretized function, so need
discretized "second derivatives”

DPCM: Focus on one column of depths

d, d d,

d, S1 S1

d, S5 As,
d, Compute slopes, s Compute differentifll As,
d,| s=d;-d;, s, slopes, As.= s, -s; , As,
d; Ss As
dg S6 Asg
d, S+ As-

« For linear functions, the As’s will be close to O

« Reconstruction is simple (next slide)

* From definition, we get: d; = d;_ + s;.
« Only s, is known, but: s; = si—1 + As,,

([().
(11
([’_

(13

DPCM reconstruction

..and so on

already known

s1 already known
where sy = s1 + Asy
where s3 = so + Ass

Process each column independently

dld|d\|d|d|d|d|d dld|d\|d|d|d|d|d dld|d|d|d|d|d|d
dldldldld|d|d|d SlelslsIsls]|s]s s|Is]sls|s|s]|s)s
r < dld|d|d|d|d|d|d S|s|s|s|s|s]|s)|s As|As|As|As|As|As|As|As
dld|d|d|d|d\|d|d S|s|s|s]|s]|s|s]|s As|As|As|As|As|As|As|As
) dld|d|d|d|d|d|d - s|s|s|s|s|s]|s]|s - As|As|As|As|As|As|As|As
dld|d|d|d|d|d|d S|S|S)S|S|S|S|S As|As|As|As|As|As|As|As
dld|d|d|d|d|d|d s|s|s|s]|s|s]|s]|s As|As|As|As|As|As|As|As
dld|d\|d|d|d|d|d S|Ss|s|s]|s|s|s]s As|As|As|As|As|As|As|As

* Not ideal: still many d’'s and s’s
* Process first two rows similarly -

dld|d|d|d|d|d|d dls|s|s]|s|s]|s]s d | 5 |As|As|As|As|As|As
S|Is|s|s|s|s]|s|s S |As|As| As]As| As|As|As S |As|As|As|As|As|As|As
e As|AS|ASIAS | As|As]As|As As|As|As|As]As|As|As|As As|As|As|As| As|As|As|As
As|As|AS|As|As|As|As|As As|As|As|As|As| As|As|As As|As|As|As|As|As|As|As
) As|As|As|As|As|As|As|As - As|As|As|As|As|As|As|As - As|As|As|As|As|As|As|As
As|As|AS|As | As|As]As|As As|As|As|As]As| As|As|As As|As|As|As| As|As|As|As
As|As|As|As|As|As|As|As As|As|As|As|As|As|As|As As|As|As|As|As|As|As|As
As|As|As|As|As|As|As|As As|As|As| As|As|As| As|As As|As|As|As| As|As|As|As

DPCM: How to store this?

One depth, d, two slopes, s, and 61 As
The As are small, in [-1,+1] Iinside triangle

Use two extra bits per pixel:

— 00:add 0

— 01: add +1

— 10: add -1

— 11: use as escape code to handle extraordinary
cases...

Best case compression (no escapes at all):
— 24 bits + 25 +25 +8x8x2 ~= 25 bytes (13% ratio)

— If a single triangle covers entire tile
* Do not need the 11-escape case then though...

DPCM: common case

« Single column:
— Depths:1,2,3,4,8,10,12,14
— Slopes: 1,1,1,4,2,2,2
— Diff slopes: 0,0,3,-2,0,0
 Two escape codes needed per column to
change from one plane eq (tri) to another
— Becomes expensive! 40% compression ratio
« Solution: encode from the top & down and from
bottom & up
— Store also where transition happens
— Gives about 20% compression ratio!
— Might be possible to use fewer bits per slope
— Can only handle two plane equations per tile

— Still does not use escape (trinary encoding would be
good!)

DPCM: more complex cases

e Do the common case

— Add real escapes as well, and store, say 16
extra escape codes

— Or change from 2 extra bits per pixel to,
perhaps, 8 bits per pixel

Plane Eq. Compression

« Each triangle is a plane

* For every triangle in a tile store that plane
equation
— Store one depth in center of tile, dz/dx, dz/dy

* For every pixel in the tile store an index to
find the matching plane equation

* Works great for multisample!
« [VanHook07] US Patent 7,242,400

Plane Eqg

0 : Zc, dz/dx, dz/dy
1:Zc, dz/dx, dz/dy
2 : Zc, dz/dx, dz/dy

Plane Equations

- 3x(3+2+2)B=21B
Indexes

— 64 x 2bits = 16B
Compressed

— 37B

Uncompressed

— 64 x 3B =192B
Compression ratio

- 19%

. Compression

N\

110]o]o]ofo]fo
111110]o]o]fo]o
1111110 fofo]o
111]1]1}2M0]o]o
111]1)2]2]21 0
1111222221
112121222 2]2)
Sl2l2]2]2]2]2]2

41

Depth Buffer Compression

 Alittle is known about this topic:

— To pass the course, read this paper:

« Jon Hasselgren and Tomas Akenine-MOdller, “Efficient Depth
Buffer Compression,” in Graphics Hardware 2006

* You can invent your own superior algorithms!

* ATl has reported about 50% compression on a
wide range of benchmarks

Color Buffer Compression

Could use offset compression for R, G,
and B separately (perhaps)

Could use JPG’s non-lossy algorithms

Can do simple color compression for multi-
sample anti-aliasing

Can compress clear color

Is generally very difficult due to restrictions
— Cannot be lossy
— Must decode very fast for alpha blending

Conclusion

 Reduces bandwidth further

— Quite simple for depth

— Harder for color

— Needs cache

— Needs fallback for non-compressed mode

The end

