
Michael Doggett
Department of Computer Science

Lund University

Real-Time Buffer
Compression



© 2009 Tomas Akenine-Möller and Michael Doggett 2

Assignments are over...
Say welcome to THE PROJECT

• Everyone needs to do this (2 people/proj)
• Every group must write a report, 2-4 pages

– Use the LaTeX-style on course webpage
– Or similar style

• Two paths (take only one):
1. iPhone application
2. Graphics hardware optimization

– bandwidth reducing algorithms in our SW framework 

• Formulated as a non-compulsory competition
– With grand prizes: honor and glory

• Should correspond to 3 points (i.e., 2 weeks of work x 
2 persons)

• Finish by 2009-12-04, 12:00, or you’re welcome to try 
again when the make-up exam takes place (Jan 2007)

– Can continue to work on it until competition



© 2009 Tomas Akenine-Möller and Michael Doggett 3

iPhone Project
• Come up with your own iPhone application that is either:

– Cool
– Beautiful
– Interesting
– Useful
– Or combination of all of the above

• Examples:
– Game
– Screensaver (remember though: 2x2 weeks of work)
– New GUI for mobile platforms (might give you a job at TAT )
– A useful tool

• The performance is not the most important thing right now
– But if you can optimize, that’s good

• Formulate project, and clear with me (Mike)!
– A paragraph description of what your app will do

• Who wins the iPhone competition?
– A jury (with participants from industry, I hope) decides ...



© 2009 Tomas Akenine-Möller and Michael Doggett

iPhone project
• Get latest RenderChimp framework on 

Friday
– Mac version soon after

• Running on the iPhone is optional
– Can participate in competition using a PC
– You need to port it to the mac, vc++ vs g++

• iPhone Developer Program
– Need an intel mac
– iPod Touch for overnight use
– Send me an email

4



iPhone Particles



© 2009 Tomas Akenine-Möller and Michael Doggett 6

Graphics Hardware project
• We provide:

– A simple animated scene (in the code at the project 
web page)

– Basic rasterizer (the framework you’ve used)
– 3.0 kB of onchip memory that you can use for BW-

reducing algorithm
– @ 320x240 (QVGA)

• You give us:
– A rasterizer that uses as little BW to external memory 

as possible... (lands you a job at ATI/NVIDIA/INTEL? 
)

• Who wins?
– The group that uses least BW to external memory



© 2009 Tomas Akenine-Möller and Michael Doggett 7

Back to today’s lecture



Memory bandwidth problem



Mini overview: DRAM
• Dynamic Random Access Memory

– Looses its content, unless the charge is refreshed 
periodically, i.e., if power is removed, content is lost

– Smaller and less expensive than SRAM (which do not 
need periodic refresh)

– Thefore, DRAM used as graphics memory in desktop 
GPUs

– Many many different types of DRAM:
• SDRAM, VRAM, SGRAM, PSRAM, etc.

– There are also double data rate (DDR) versions
• Works on both low-to-high clock transitions, and high-to-low 

transitions



Memory architectures in a 

• GeForce 6800 DRAM DDR memory:
– 550 MHz x 256 bits/clock x 2 transfers/clock=~33-35 

Gbytes/s
• Kilgariff and Fernando’s article said 35Gb, I get 33Gb

This is not what we
have in mobile systems!



Memory system in mobile
Mobile chip

CPU
L1 Cache

L2 Cache
(later)

Bus 16 bits 
(32 bits later) RAM

4-32 MB
50-100MHz

NAND Flash

32 MB-1GB

GPU Bus 
8-16 bits

Video,
etc

i.e., maybe 200 MB/s
(peak performance)
Can be SRAM or 
DRAM.

~10-30 MB/s

NAND flash is used as a 
”hard drive”, i.e., data is 
move into RAM, and 
executed from there.

GPU could also be a
separate chip...



Flash memory

• Is static: no need for power...
• Used in digital cameras, USB memories, MP3 

players, mobile phones: i.e., mobiles... 
• Two types: NAND and NOR

– NAND are cheaper to produce, more silicon-effective 
(i.e., smaller), and consume less power, and lasts 
longer...

• iPod nano 
has 2 or 4 
GB of NAND-
flash



More about flash
• Can read at random places
• Cannot write randomly

– Must erase a block of memory, and can then update 
the content of that block

• NOR: much faster read (can ”execute in 
place” (XIP) without reading into RAM first)

• One NAND part can hold 16 Gbit (2 GB)
– From Samsung, September 2005
– This is in the iPod nano
– Even bigger now (2007)?



Back to 
Graphics Hardware algorithms



Why depth buffer?

[Slide courtesy of John Owens]

The ”brute-force apprach” is depth buffering (aka Z-buffering):
It won over sorting-polygons-methods because memory became
ridiculously inexpensive...



Depth buffer bandwidth

• Still could be quite expensive!
• Zmin/Zmax-culling helped (previous 

lecture)

• Real-Time Buffer Compression can help 
reduce
– Depth buffer bandwidth
– Color buffer bandwidth
– Other buffers...



Real-Time Buffer Compression

• Techniques that are or may be used in 
mobiles...

• Basic idea:
– Lots of coherency (correlation) between pixels
– Use that to compress buffer info
– Send compressed buffer info over the bus
– Special hardware handles compression and 

decompression on-the-fly
– Must be lossless!!



General Compression System



Compression System
• Works on a tile basis

– Eg 8x8 pixels at a time
• Cache is important!

– Do not want to decompress tile for every 
fragment that need access values in that tile

• Tile table store ”per-tile info”:
– E.g., which compression mode is used
– Example: 00 is uncompressed, 01 is 

compressed at 25%, 10 is at 50%, 11 is 
cleared

– Always needs one uncompressed mode as a 
fallback



Example
• Read request  ctrl block
• Checks cache

– If there, deliver immediately
– If not

• Evict one tile from cache by attempting to 
compress info, and sending resulting 
representation, update tile table for that tile

• Check tile table for requested tile, and
• Read appropriate amount of bytes
• Decompress (or send cleared info without reading, 

or in case of data being uncompressed, no 
decompression needed)

• Done



Dirty bit
• Each tile in cache has one bit for this
• When new info has been written to a tile in 

cache, set dirty bit=1
• When tile in cache need to be evicted, check 

dirty bit
– If =0, information in external memory is up to date  

no need to write back!
– If =1, attempt to compress, and send to external 

memory
• Saves a lot when no updates

– Example: particle systems – do not write depth!



Depth buffer compression

• Hard to get accurate information about this
• Looking at patents we can extract some 

ideas
• Three techniques:

– Depth offset compression
– Layered plane equation compression
– DPCM compression



Depth buffer compression
• Simplest buffer to compress

– Highly coherent info (big triangles wrt tile size)
– Depth is linear in screen space

• Depth cache and depth compression needed for 
Zmax-culling
– Zmin culling is more difficult to combine with depth 

compression (can avoid depth reads for tiles that are 
entirely overlapped by a triangle)

• Depths, d(i,j) per tile, 
– i is in [0, w-1], j is in [0, h-1]
– Min depth value is 00...00b (all zeroes, eg 24 bits)
– Max depth value is 11...11b (all ones)

• i.e., we can use integer math



Depth offset compression (1)

• Identify a set of reference values, rk, 
– and compress each depth as an offset with 

respect to one reference value
• Easiest to only use two reference values

– Use Zmin and Zmax of tile!
– Rationale: we have two layers

• One with depths close to Zmin and 
• one with depths close to Zmax



Visually, this means...

• Can encode if all z-values are in the gray 
regions

25



Depth offset compression (2)
• Use an offset range of t=2p

• Can use offset, o(i,j), per pixel as:

• If at least one pixel, (i,j), cannot fulfil the 
above, the tile cannot be compressed!

• Info to store (if compression possible):
– Zmin and Zmax
– Plus wxh p-bit values



Depth offset compression (3)
• Example with following assumptions:

– 8x8 pixels per tile
– t=28 means 8 bits per offset, o
– 24 bits depth  Zmin and Zmax has 24 bits each

• Storage (uncompressed: 8x8x3=192 bytes):
– 1 bit per pixel to indicate whether offset to Zmin or Zmax 
 8x8x1 bits= 8 bytes

– Offsets: 8x8x8 bits= 64 bytes
– Zmin & Zmax: 6 bytes (might be onchip though)
– Total: 8+64+6=78 bytes  100*78/192=41% 

compression



Less expensive implementation

• Only possible to compress if all depths in a 
tile are gray regions

• There are some extensions to this that 
makes the hardware simpler!

• Make the offset computation inexpensive!
– Currently costs an adder in HW



Inexpensive offsets...

• Instead of storing exactly Zmin and Zmax, 
store only m most significant bits (MSBs)
– Call these truncated values, umin and umax

• Offset is now simply the k-m least 
significant bits of depth (no add needed)

umin

m bits

Offset, o(i,j)

k-m bits

k bits (eg 24 bits)



Disadvantage of cheap offsets, and a 
solution

• Only values in dark gray area can be coded  
loss of compressibility!

• Simple solution: use one more bit per pixel  
four reference values:
– umin, umin+1, umax-1 and umax



Decompression hardware

• Very simple



Compression ratio with inexpensive 
variant

• Slightly worse  44% instead of 41% 
• But, range of offsets is larger!

– Best case: range is twice as large
– Worst case: range is only one depth value larger
– Average case: range is about 50% larger!
– So more tiles can be compressed, but still costs 

more



DPCM Compression
• ATI had this in their hardware

– DPCM=differential pulse code modulation
• Basic idea: we usually have linearly varying 

values in tile
– Second derivative of linear function is zero!
– However, we have discretized function, so need 

discretized ”second derivatives”



DPCM: Focus on one column of depths

• For linear functions, the Δs’s will be close to 0
• Reconstruction is simple (next slide)

d0

d1

d2

d3

d4

d5

d7

d6

Compute slopes,

si= di -di-1

d0

s1

s2

s3

s4

s5

s7

s6

Compute differential 

slopes, Δsi= si -si-1

d0

s1

Δs2

Δs3

Δs4

Δs5

Δs7

Δs6



DPCM reconstruction
• From definition, we get:
• Only s1 is known, but:



Process each column independently

• Not ideal: still many d’s and s’s
• Process first two rows similarly 



DPCM: How to store this?

• One depth, d, two slopes, s, and 61 Δs
• The Δs are small, in [-1,+1] inside triangle
• Use two extra bits per pixel:

– 00: add 0
– 01: add +1
– 10: add -1
– 11: use as escape code to handle extraordinary 

cases...
• Best case compression (no escapes at all):

– 24 bits + 25 +25 +8x8x2 ~= 25 bytes (13% ratio)
– If a single triangle covers entire tile

• Do not need the 11-escape case then though...



DPCM: common case
• Single column:

– Depths:1,2,3,4,8,10,12,14
– Slopes: 1,1,1,4,2,2,2
– Diff slopes: 0,0,3,-2,0,0

• Two escape codes needed per column to 
change from one plane eq (tri) to another
– Becomes expensive! 40% compression ratio

• Solution: encode from the top & down and from 
bottom & up
– Store also where transition happens
– Gives about 20% compression ratio!
– Might be possible to use fewer bits per slope
– Can only handle two plane equations per tile
– Still does not use escape (trinary encoding would be 

good!)



DPCM: more complex cases

• Do the common case
– Add real escapes as well, and store, say 16 

extra escape codes

– Or change from 2 extra bits per pixel to, 
perhaps, 8 bits per pixel



Plane Eq. Compression
• Each triangle is a plane
• For every triangle in a tile store that plane 

equation
– Store one depth in center of tile, dz/dx, dz/dy

• For every pixel in the tile store an index to 
find the matching plane equation

• Works great for multisample!
• [VanHook07] US Patent 7,242,400



Plane Eq. Compression
• 0 : Zc, dz/dx, dz/dy
• 1 : Zc, dz/dx, dz/dy
• 2 : Zc, dz/dx, dz/dy

• Plane Equations
– 3 x (3 + 2 + 2)B = 21B

• Indexes
– 64 x 2bits = 16B 

• Compressed
– 37B

• Uncompressed
– 64 x 3B = 192B

• Compression ratio
– 19%

41

2 2 2 2 2 2 2 2
1 2 2 2 2 2 2 2
1 1 2 2 2 2 2 0
1 1 1 2 2 2 0 0
1 1 1 1 2 0 0 0
1 1 1 1 0 0 0 0
1 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0



Depth Buffer Compression
• A little is known about this topic:

– To pass the course, read this paper:
• Jon Hasselgren and Tomas Akenine-Möller, “Efficient Depth 

Buffer Compression,” in Graphics Hardware 2006 

• You can invent your own superior algorithms!

• ATI has reported about 50% compression on a 
wide range of benchmarks



Color Buffer Compression

• Could use offset compression for R, G, 
and B separately (perhaps)

• Could use JPG’s non-lossy algorithms
• Can do simple color compression for multi-

sample anti-aliasing
• Can compress clear color
• Is generally very difficult due to restrictions

– Cannot be lossy
– Must decode very fast for alpha blending



Conclusion

• Reduces bandwidth further
– Quite simple for depth
– Harder for color
– Needs cache
– Needs fallback for non-compressed mode



The end


