
© 2009 Tomas Akenine-Möller and Michael Doggett 1

Michael Doggett
Department of Computer Science

Lund University

Performance Analysis and
Culling Algorithms

© 2009 Tomas Akenine-Möller and Michael Doggett

Assignment 2
• Sign up for Pluto labs on the web page

2

© 2009 Tomas Akenine-Möller and Michael Doggett 3

Mobile graphics problems...
• Mobile devices use batteries (doh!)
• Memory accesses cost a lot of energy
• Strategy for making a good architecture:

– Attempt to reduce memory accesses!
– (preferably) without loss in image quality!

• Memory accesses cost in terms of power
– use too many accesses, and battery dies

too soon!
• But other implications as well...

© 2009 Tomas Akenine-Möller and Michael Doggett 4

Remains a challenge? Power!

• Battery improvement doesn’t follow Moore’s law
– Only 5-10% per year

• Gene’s law
– "power consumption of integrated circuits decreases exponentially"

over time and because of that the whole system built around chips will
get smaller, and batteries will last longer

– Since 1994, the power required to run an IC has declined 10x every
two years

– But the performance of two years ago is not enough
• Pump up the speed
• Use up the power savings

Slide above is courtesy of Kari Pulli at Nokia

© 2009 Tomas Akenine-Möller and Michael Doggett 5
Slide above is courtesy of Kari Pulli at Nokia

Remains a challenge? Thermal mgt!

• But ridiculously good batteries still
won’t be the miracle cure
– The devices are small
– Generated power must get out
– No room for fans

• Thermal management must be
considered early in the design
– Hot spot would fry electronics

• Or at least inconvenience the user…
– The heat must be conducted through the

case walls, and finally removed to the
ambient

www.coolingzone.com

© 2009 Tomas Akenine-Möller and Michael Doggett 6

Theoretical performance
analysis of rasterizer (1)

• Some simple, useful formulae
• Useful tools when you should buy someone’s

hardware...
– Or investigate whether it is worth trying out particular

algorithm
• New term: depth complexity

– Measured per pixel
– The number of triangles that overlap with a pixel

(even though each triangle need not write to the pixel)
– However, often say that a scene has an average

depth complexity of, e.g., d=4

© 2009 Tomas Akenine-Möller and Michael Doggett 7

What is depth complexity?

[Slide courtesy of John Owens]

© 2009 Tomas Akenine-Möller and Michael Doggett 8

Theoretical performance
analysis of rasterizer (2)

• New term: overdraw
– Measured per pixel as well
– How many times we write to a pixel
– Less than or equal to depth complexity, o<=d

• Statistical model of overdraw, o:

• 1: first triangle is always written
• ½: second triangle has 50% of being in front of

previous triangle
• 1/3: third triangle has a 33% chance of being in

front of previous two triangles, and so on.

Example:
d=4 gives
o=2 (approx)

© 2009 Tomas Akenine-Möller and Michael Doggett 9

Theoretical performance
analysis of rasterizer (3)

• Tr is texture read
– 32 bits per texel, trilinear mipmapping needs 8

texels 32 bytes per access
• Zr and Zw are depth (Z) read and writes

– 16, 24, or 32 bits
• Cr and Cw are color read and writes

– 16, 24, or 32 bits
• Good formula for bandwidth, b, per pixel:

Not good!... Upper bound, though.

?

© 2009 Tomas Akenine-Möller and Michael Doggett 10

Theoretical performance
analysis of rasterizer (4)

• Need to take overdraw into account...
– Fragments that do not pass the depth test, do

not need to: access texture, write depth, write
color

• Recall, d=4 o=2 (approx)
– Significant difference (assume 3 bytes per color

and depth):
• b=4*3 + 2*(3 + 3 + 32) = 88 bytes per pixel
• b=4*(3 + 3 + 3 + 32) = 164 bytes per pixel (old formula)

Note: some architectures, do the texture lookup before depth test!

© 2009 Tomas Akenine-Möller and Michael Doggett 11

Theoretical performance
analysis of rasterizer (5)

• Need to take texture cache into account too
– With miss rate of, m, e.g., m=0.2 for 20% missrate

• Significant difference again:
– Miss rate m=0.2:

• b=4*3 + 2*(3 + 3 + 0.2*32) = 37 bytes per pixel
• b=4*3 + 2*(3 + 3 + 32) = 88 bytes per pixel
• b=4*(3 + 3 + 3 + 32) = 164 bytes per pixel

Note: can have many more texture accesses per fragment though...

R
as

te
riz

at
io

n
eq

ua
tio

n

© 2009 Tomas Akenine-Möller and Michael Doggett 12

What else needs to be
improved?

• b=4*3 + 2*(3 + 3 + 0.2*32) = 37 bytes per pixel
• Texture bandwidth (2*0.2*32=12.8 bytes): ok

– Can be reduced further with compression:
• At 4 bits per texel: 2*0.2*8*4/8=1.6 bytes...
• Does not work always though: render-to-texture, e.g.

• Color buffer (2*3=6 bytes): ok, not bad
• Depth buffer (4*3 + 2*3=18 bytes)

– The worst bandwidth consumer at this point
• Reads are worse than writes...

– This lecture: reduce depth bandwidth using culling
algorithms

– Next lecture, compression of buffers

© 2009 Tomas Akenine-Möller and Michael Doggett 13

Culling and compression
algorithms

• So far, we have seen texture caching and
texture compression as good ways of
reducing usage of texture bandwidth

• What else can be done?
– Culling:

• Zmax-culling and Zmin-culling
• Object culling

– Compression:
• Depth buffer compression
• Color buffer compression?

© 2009 Tomas Akenine-Möller and Michael Doggett 14

Zmax vs Zmin

• Left: small triangle is behind big triangle
• Right: small triangle is in front of big triangle

© 2009 Tomas Akenine-Möller and Michael Doggett 15

Zmax-culling (1)
• What about a fragment that fails the depth test (if

test is less_or_equal)?
– i.e., the fragment is occluded (not visible)

• Ideally, we do not want to process them at all!

• We know that o<=d, so reads consume more than
writes

• Zmax-culling:
– Very simple technique
– Culls occluded fragments on a tile basis (tiled traversal is a must!)
– Works without user intervention, i.e., fully automatic

ATI and NVIDIA has
some form of Zmax-culling

in their hardware

© 2009 Tomas Akenine-Möller and Michael Doggett 16

Zmax-culling example

• Now render red triangle

Not culled

Culled

Culled

Not culled

View direction

© 2009 Tomas Akenine-Möller and Michael Doggett 17

Zmax-culling (2)
• A tile is wxh pixels, and its depths:

• The key is to, per tile, maintain:

• Can be seen as a low-res Z-buffer!
• When tiled traversal algorithm arrives at a

new tile that overlaps triangle, do the
following per-tile computations:
– Compute ”smallest z-value on triangle”:

– If the following is true, we know that triangle is
occluded by zmax in tile, and can avoid depth
reads:

© 2009 Tomas Akenine-Möller and Michael Doggett 18

Zmax-culling (3)
• Great, how compute ?
• Many different ways, but key insight is that

it need not be the exact value, as long as
we err on the right side:
– Compute it in a conservative manner!
– In this case, it means that as long as we

compute a value that is smaller than the
exact value, the algorithm will not generate
incorrect results. Only performance will be
slightly worse

© 2009 Tomas Akenine-Möller and Michael Doggett 19

Zmax-culling (4)

• What is smaller than the ”smallest z-value of
the triangle” in that particular tile?

• Different techniques include:
1. Minimum of vertices’ depth values
2. Evaluate depth at corners of tile, then pick minimum

of these
• Optimal, if triangle cover entire tile!
• Bad, when, e.g., all vertices are inside a tile!

3. Always optimal: clip triangle against tile, evaluate
depth at all vertices of clipped triangle
• Not feasible though!

4. Hybrid: take maximum of result of 1 & 2

• How make conservative estimate of ?

© 2009 Tomas Akenine-Möller and Michael Doggett 20

Zmax-culling (5)
• Where should we store each tile’s zmax-value?

– Remember: we want to reduce memory bandwidth
– On-chip memory, or if that takes too much memory,

access the zmax’s through a cache
• How should we update the zmax?

– Can only become smaller
– Only way: read all depths in tile, compute maximum...
– Could be expensive, but works well with depth buffer

compression (next lecture)
• Some study has shown that depth reads are

reduced by 10-32%...

© 2009 Tomas Akenine-Möller and Michael Doggett 21

Zmax-culling example
(same example again)

• Now render red triangle

Not culled

Culled

Culled

Not culled

© 2009 Tomas Akenine-Möller and Michael Doggett 22

Zmin-culling example

• Red triangle is currently being rendered

Culled

Not culled

Not culled

Culled

© 2009 Tomas Akenine-Möller and Michael Doggett 23

• When tiled traversal algorithm arrives at
tile overlapping the triangle, we compute
the ”maximum of the triangle’s z in that
tile”:

Zmin-culling (1)
• Similar to Zmax-culling, but instead we

store, per tile:

• We can avoid depth reads, when the
following is true:

• This value can be computed using
equivalent techniques for Zmax-culling...

© 2009 Tomas Akenine-Möller and Michael Doggett 24

Zmin-culling (2)
• This means that the triangle currently being

rendered is definitely in front of the contents in
depth buffer

• Which means that the depth test will pass, and thus
reading the depth can be avoided

• Zmin stored onchip or in cache (as Zmax)
• Updating zmin?

– Simple: as soon as a depth, d, has been written that is
smaller than zmin, we update zmin=d

– i.e., no need to read all depth values in tile (as in Zmax)
– Thus much much more feasible for mobiles!

Cull when:

© 2009 Tomas Akenine-Möller and Michael Doggett 25

Zmin-culling example again

• Red triangle is currently being rendered

Culled

Not culled

Not culled

Culled

© 2009 Tomas Akenine-Möller and Michael Doggett 26

Zmin-culling results
• Algorithm developed for mobile devices
• Applications for mobile devices were used

for benchmarking

• d=0.65 d=2.5 d=1.5
• Reduction in depth reads:
• 84% 69% 49%

© 2009 Tomas Akenine-Möller and Michael Doggett 27

Why did Zmin work better than Zmax?
• Back to the equations, depth buffer

bandwidth, Bd:

These fragments fail the depth test
i.e., ”occluded fragments”

These fragments pass the depth test
i.e., ”visible fragments”

Zmax-culling can potentially
avoid these reads

Zmin-culling can potentially
avoid these reads

• d-o fragments for Zmax, o for Zmin-culling
• There are more fragments for Zmax when:

© 2009 Tomas Akenine-Möller and Michael Doggett 28

Zmin vs Zmax
• For d=4 we get o=2 (approx), and hence

we will get:
– more fragments for Zmax when d>4, and
– more fragments for Zmin when d<4

• Start rendering of a scene:
– Depth complexity is zero for all tiles
– Render triangles, and depth complexity starts

to build up. Zmin-culling works immediately
here

– When depth complexity is >4, Zmax-culling
starts to work better than Zmin-culling

© 2009 Tomas Akenine-Möller and Michael Doggett 29

Zmin & Zmax
• Both algorithms can only get rid of depth reads!

– [Or for architectures which always do texturing before
per-pixel depth reads, you get rid of texturing and
pixel shader executions as well]

• Both should be implemented for best
performance, however, for low depth complexity
Zmin will pay off the most

• Zmin is also simpler to implement

• Normally, depth is 16, 24, or 32 bits per pixel
– A conservative value for Zmin and Zmax works well:

• 8 bits might be enough
• Trade-off though...

© 2009 Tomas Akenine-Möller and Michael Doggett 30

Object Culling
• Can cull an entire object at a time

– Can save bandwidth from CPU to GPU, vertex
processing, and fragment processing!

• Needs user intervention, i.e., not automatic
• User can issue an ”occlusion query”:

– render a set of triangles, count the fragments that
passes the depth test

• Common use: render bounding box of complex
object (character, e.g.)
– If no fragments passes, then entire BBOX is hidden
– Means: entire object is hidden too
– I.e, do not render object!

© 2009 Tomas Akenine-Möller and Michael Doggett 31

On Thursday...
• Lecture will deal with:

– Real-time depth buffer compression
• Colors can also be compressed, but very

little public info is known about this...
– Patent issues

© 2009 Tomas Akenine-Möller and Michael Doggett 32

The end

