Performance Analysis and
Culling Algorithms

Michael Doggett
Department of Computer Science
Lund University

Assignment 2

 Sign up for Pluto labs on the web page

Mobile graphics problems...

Mobile devices use batteries (doh!)
Memory accesses cost a lot of energy

Strategy for making a good architecture:
— Attempt to reduce memory accesses!
— (preferably) without loss in image quality!

Memory accesses cost in terms of power

— = use too many accesses, and battery dies
too soon!

But other implications as well...

Remains a challenge? Power!

_/ \
« Battery improvement doesn’t follow Moore’s law
— Only 5-10% per year
 Gene’s law

— "power consumption of integrated circuits decreases exponentially"
over time and because of that the whole system built around chips will
get smaller, and batteries will last longer

— Since 1994, the power required to run an IC has declined 10x every
two years

— But the performance of two years ago is not enough
* Pump up the speed
« Use up the power savings

Slide above is courtesy of Kari Pulli at Nokia

Remains a challenge? Thermal mgt!

_/ PN
« But ridiculously good batteries still
won’t be the miracle cure

— The devices are small
— Generated power must get out
— No room for fans

 Thermal management must be

considered early in the design

— Hot spot would fry electronics
« Or at least inconvenience the user...

— The heat must be conducted through the
case walls, and finallyw
ambient

\\ S

Slide above is courtesy of Kari Pulli at Nokia

Theoretical performance
analysis of rasterizer (1)

« Some simple, useful formulae

« Useful tools when you should buy someone’s
hardware...

— Or investigate whether it is worth trying out particular
algorithm

* New term: depth complexity
— Measured per pixel

— The number of triangles that overlap with a pixel
(even though each triangle need not write to the pixel)

— However, often say that a scene has an average
depth complexity of, e.g., d=4

What is depth complexity?
Depth Complexity (Quake)

Color Depth Complexity
[Slide courtesy of John Owens]

Theoretical performance
analysis of rasterizer (2)

 New term: overdraw
— Measured per pixel as well
— How many times we write to a pixel
— Less than or equal to depth complexity, o<=d

o Statistical model of 'over.draw. o:

|

o 1 | .
o(d) =1+ 5 + 3 + -+ i ng:\?;z'
= " e 0=2 (approx)

« 1: first triangle is always written
« V2. second triangle has 50% of being in front of
previous triangle

 1/3: third triangle has a 33% chance of being in

front of previous two triangles, and so on.
8

Theoretical performance
analysis of rasterizer (3)

T Is texture read

— 32 bits per texel, trilinear mipmapping needs 8
texels = 32 bytes per access

Z and Z are depth (Z) read and writes

— 16, 24, or 32 bits

C.and C are color read and writes

— 16, 24, or 32 bits

Good formula for bandwidth, b, per pixel: ?
b=dx (Z,+Z,+Cyp+T,)

Not good!... Upper bound, though.
9

Theoretical performance
analysis of rasterizer (4)

* Need to take overdraw into account...

— Fragments that do not pass the depth test, do
not need to: access texture, write depth, write
color

/; — (/ p 4 (.-'“. + _l,) l) — ('l >"\ ZT‘ + 0 >K (‘Zu‘ + (-‘I_L' + ,[‘7‘)

* Recall, d=4 - 0=2 (approx)

— Significant difference (assume 3 bytes per color
and depth):
e b=4*3 +2*(3 + 3 + 32) = 88 bytes per pixel
e b=4*3 + 3+ 3 + 32) =164 bytes per pixel (old formula)

Note: some architectures, do the texture lookup before depth test!

Theoretical performance

analysis of rasterizer (5)
 Need to take texture cache into account too

S b = dxZ,v+ox(Z,+C,+mxT,)
= C
® O = 2
_gg = dX Z4,F+oX4dy+ o0XC, + oXmxl.,
% o depth buffer. By color buffer. B, texture read. By
14

— B(l + B(“‘ + Bf

» Significant difference again:
— Miss rate m=0.2:
o b=4*3 +2*(3 + 3+ 0.2*32) = 37 bytes per pixel
o b=4*3 +2*(3 + 3 + 32) = 88 bytes per pixel
 b=4*(3 +3 + 3+ 32) = 164 bytes per pixel

Note: can have many more texture accesses per fragment though...

What else needs to be
improved?

b=4%*3 +2*(3 + 3 + 0.2*32) = 37 bytes per pixel
Texture bandwidth (2*0.2*32=12.8 bytes): OK

— Can be reduced further with compression:
» At 4 bits per texel: 2*0.2*8*4/8=1.6 bytes...
* Does not work always though: render-to-texture, e.g.

Color buffer (2#3=6 bytes): ok, not bad

Depth buffer (4*3 + 2#3=18 bytes)

— The worst bandwidth consumer at this point
* Reads are worse than writes...

— This lecture: reduce depth bandwidth using culling
algorithms

— Next lecture, compression of buffers

12

Culling and compression
algorithms

* So far, we have seen texture caching and
texture compression as good ways of
reducing usage of texture bandwidth

* What else can be done?
— Culling:
« Zmax-culling and Zmin-culling
* Object culling
— Compression:
» Depth buffer compression
 Color buffer compression?

13

Zmax vs Zmin

 Left: small triangle is behind big triangle
* Right: small triangle is in front of big triangle

14

Zmax-culling (1)

What about a fragment that fails the depth test (if
testis less_or equal)?

— i.e., the fragment is occluded (not visible)

|deally, we do not want to process them at all!

Bi=dXx Z,.+0 X Z,,
L

reads writes

We know that o<=d, so reads consume more than

writes
_ ATl and NVIDIA has
Zmax-culllng: some form of Zmax-culling

— Very simple technique) I el s

— Culls occluded fragments on a tile basis (tiled traversal is a must!)
— Works without user intervention, i.e., fully automatic

15

Zmax-culling example

View direction

pixel{ _
Not.-cullaed

TvuUl vuitTuvu

Culled

Culled

Not culled

2 e <min

 Now render red triangle

wemses triangles already rendered to depth buffer = ==eeee- Zonex

16

: tile A

tile B

tile C

v tile D

Zmax-culling (2)

* Atile is wxh pixels, and its depths:
d(i,7), 1 € [0,w —1]and 5 € [0,h — 1]
* The key is to, per tile, maintain:
“max — 111,2,‘X[([(L, /)]
« Can be seen as a low-res Z-buffer!

* When tiled traversal algorithm arrives at a
new tile that overlaps triangle, do the
following per-tile computations:

— Compute "smallest z-value on triangle”: - tri

~“min

— If the following is true, we know that triangle is
occluded by zmax in tile, and can avoid depth

reads: L
~“min ~max 17

Zmax-culling (3)

* Great, how compute -t ?

~“1min

* Many different ways, but key insight is that
it need not be the exact value, as long as
we err on the right side:

— Compute it in a conservative manner!

— In this case, it means that as long as we
compute a value that is smaller than the
exact value, the algorithm will not generate
incorrect results. Only performance will be
slightly worse

18

Zmax-culling (4)

+ How make conservative estimate of z'"! ?

« What is smaller than the "smallest z-value of
the triangle” in that particular tile?

« Different techniques include:

1.
2.

Minimum of vertices’ depth values

Evaluate depth at corners of tile, then pick minimum
of these

Optimal, if triangle cover entire tile!

Bad, when, e.g., all vertices are inside a tile!
Always optimal: clip triangle against tile, evaluate
depth at all vertices of clipped triangle

Not feasible though!

Hybrid: take maximum of result of 1 & 2

19

Zmax-culling (5)

* Where should we store each tile’'s zmax-value?
— Remember: we want to reduce memory bandwidth

— On-chip memory, or if that takes too much memory,
access the zmax’s through a cache

* How should we update the zmax?
— Can only become smaller

— Only way: read all depths in tile, compute maximum... ®

— Could be expensive, but works well with depth buffer
compression (next lecture)

« Some study has shown that depth reads are
reduced by 10-32%...

20

Zmax-culling example
(same example again)

pixel{ _

Not.-cullaed

TvuUl vuitTuvu

tile ¢

Culled

Culled

Not culled

s {riangles already rendered to depth buffer

>z

 Now render red triangle

21

tile A

tile B

tile C

v tile D

Zmin-culling example

tile A

tile B

tile C

i tile D

pixel{
Cirillad
wUIICU
tile { Not culled
Not culled
Culled
wessss riangles already rendered to depth buffer = ===ee-- Zosin
An
. “m:

* Red triangle is currently being rendered

22

Zmin-culling (1)

Similar to Zmax-culling, but instead we
store, per tile: zuin = min[d(i. j)]

/

When tiled traversal élgorithm arrives at
tile overlapping the triangle, we compute
the "maximum of the triangle’s z in that

tile”™
This value can be computed using
equivalent techniques for Zmax-culling...

We can avoid depth reads, when the
following is true: '™ < - ..

“1max

11
~max

23

Cull when:

Zmin-culling (2) |.. _.

>IN

This means that the triangle currently being
rendered is definitely in front of the contents in
depth buffer

Which means that the depth test will pass, and thus
reading the depth can be avoided

Zmin stored onchip or in cache (as Zmax)

Updating zmin?

— Simple: as soon as a depth, d, has been written that is
smaller than z_. , we update z_. =d

min’

— i.e., no need to read all depth values in tile (as in Zmax)
— Thus much much more feasible for mobiles!

24

Zmin-culling example again

tile A

tile B

tile C

1 tile D

pixel{ :
i Cirillad
W UIICJU
tile { Not culled
Not culled
Culled
wessss riangles already rendered to depth buffer = ===ee-- Zosin
in
. “m:

* Red triangle is currently being rendered

25

Zmin-culling results

* Algorithm developed for mobile devices

» Applications for mobile devices were used
for benchmarking

¢ d=0.65 d=2.5 d=1.5
* Reduction in depth reads:
o 84% 69% 49%

Why did Zmin work better than Zmax?

» Back to the equations, depth buffer
bandwidth, B

B =d X Lot X b= { dr—=0) 5% 2 -+ O X Ly 4+ 0 X 2y
fragments t‘?ljl(only read fragments llmlv‘(rcml and write
These fragments fail the depth test These fragments pass the depth test
i.e., "occluded fragments” i.e., "visible fragments”
Zmax-culling can potentially Zmin-culling can potentially
avoid these reads avoid these reads

» d-o fragments for Zmax, o for Zmin-culling
* There are more fragments for Zmax when:

d—o >0 <& d>20

27

d—o>0 & d>20

Zmin vs Zmax

* For d=4 we get 0o=2 (approx), and hence
we will get:
— more fragments for Zmax when >4, and
— more fragments for Zmin when d<4

 Start rendering of a scene:
— Depth complexity is zero for all tiles

— Render triangles, and depth complexity starts
to build up. Zmin-culling works immediately
here

— When depth complexity is >4, Zmax-culling
starts to work better than Zmin-culling

28

Zmin & Zmax

Both algorithms can only get rid of depth reads!

— [Or for architectures which always do texturing before
per-pixel depth reads, you get rid of texturing and
pixel shader executions as well]

Both should be implemented for best
performance, however, for low depth complexity
Zmin will pay off the most

Zmin is also simpler to implement

Normally, depth is 16, 24, or 32 bits per pixel

— A conservative value for Zmin and Zmax works well:

8 bits might be enough
 Trade-off though...

29

Object Culling

Can cull an entire object at a time

— Can save bandwidth from CPU to GPU, vertex
processing, and fragment processing!

Needs user intervention, i.e., not automatic

User can issue an “occlusion query”:

— render a set of triangles, count the fragments that
passes the depth test

Common use: render bounding box of complex
object (character, e.g.)

— If no fragments passes, then entire BBOX is hidden
— Means: entire object is hidden too

— |.e, do not render object!

30

On Thursday...

* Lecture will deal with:
— Real-time depth buffer compression

» Colors can also be compressed, but very
little public info is known about this...

— Patent issues ®

31

The end

32

