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Assignment 2
• Sign up for Pluto labs on the web page

2
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Mobile graphics problems...
• Mobile devices use batteries (doh!)
• Memory accesses cost a lot of energy
• Strategy for making a good architecture:

– Attempt to reduce memory accesses!
– (preferably) without loss in image quality!

• Memory accesses cost in terms of power
–  use too many accesses, and battery dies 

too soon!
• But other implications as well...
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Remains a challenge?      Power!

• Battery improvement doesn’t follow Moore’s law
– Only 5-10% per year 

• Gene’s law
– "power consumption of integrated circuits decreases exponentially" 

over time and because of that the whole system built around chips will 
get smaller, and batteries will last longer

– Since 1994, the power required to run an IC has declined 10x every 
two years

– But the performance of two years ago is not enough
• Pump up the speed
• Use up the power savings

Slide above is courtesy of Kari Pulli at Nokia
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Slide above is courtesy of Kari Pulli at Nokia

Remains a challenge?      Thermal mgt!

• But ridiculously good batteries still 
won’t be the miracle cure
– The devices are small
– Generated power must get out
– No room for fans

• Thermal management must be 
considered early in the design
– Hot spot would fry electronics 

• Or at least inconvenience the user…
– The heat must be conducted through the 

case walls, and finally removed to the 
ambient

www.coolingzone.com
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Theoretical performance 
analysis of rasterizer (1)

• Some simple, useful formulae
• Useful tools when you should buy someone’s 

hardware...
– Or investigate whether it is worth trying out particular 

algorithm
• New term: depth complexity

– Measured per pixel
– The number of triangles that overlap with a pixel 

(even though each triangle need not write to the pixel)
– However, often say that a scene has an average 

depth complexity of, e.g., d=4
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What is depth complexity?

[Slide courtesy of John Owens]
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Theoretical performance 
analysis of rasterizer (2)

• New term: overdraw
– Measured per pixel as well
– How many times we write to a pixel
– Less than or equal to depth complexity, o<=d

• Statistical model of overdraw, o:

• 1: first triangle is always written
• ½: second triangle has 50% of being in front of 

previous triangle
• 1/3: third triangle has a 33% chance of being in 

front of previous two triangles, and so on.

Example:
d=4 gives
o=2 (approx)
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Theoretical performance 
analysis of rasterizer (3)

• Tr is texture read 
– 32 bits per texel, trilinear mipmapping needs 8 

texels  32 bytes per access 
• Zr and Zw are depth (Z) read and writes

– 16, 24, or 32 bits
• Cr and Cw are color read and writes

– 16, 24, or 32 bits
• Good formula for bandwidth, b, per pixel: 

Not good!... Upper bound, though.

?
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Theoretical performance 
analysis of rasterizer (4)

• Need to take overdraw into account...
– Fragments that do not pass the depth test, do 

not need to: access texture, write depth, write 
color

• Recall, d=4  o=2 (approx)
– Significant difference (assume 3 bytes per color 

and depth):
• b=4*3 + 2*(3 + 3 + 32) = 88 bytes per pixel
• b=4*(3 + 3 + 3 + 32) = 164 bytes per pixel (old formula)

Note: some architectures, do the texture lookup before depth test!
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Theoretical performance 
analysis of rasterizer (5)

• Need to take texture cache into account too
– With miss rate of, m, e.g., m=0.2 for 20% missrate 

• Significant difference again:
– Miss rate m=0.2:

• b=4*3 + 2*(3 + 3 + 0.2*32) = 37 bytes per pixel
• b=4*3 + 2*(3 + 3 + 32) = 88 bytes per pixel
• b=4*(3 + 3 + 3 + 32) = 164 bytes per pixel

Note: can have many more texture accesses per fragment though...
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What else needs to be 
improved?

• b=4*3 + 2*(3 + 3 + 0.2*32) = 37 bytes per pixel
• Texture bandwidth (2*0.2*32=12.8 bytes): ok

– Can be reduced further with compression:
• At 4 bits per texel: 2*0.2*8*4/8=1.6 bytes... 
• Does not work always though: render-to-texture, e.g.

• Color buffer (2*3=6 bytes): ok, not bad
• Depth buffer (4*3 + 2*3=18 bytes)

– The worst bandwidth consumer at this point
• Reads are worse than writes...

– This lecture: reduce depth bandwidth using culling 
algorithms

– Next lecture, compression of buffers
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Culling and compression 
algorithms

• So far, we have seen texture caching and 
texture compression as good ways of 
reducing usage of texture bandwidth

• What else can be done?
– Culling:

• Zmax-culling and Zmin-culling
• Object culling

– Compression:
• Depth buffer compression
• Color buffer compression?
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Zmax vs Zmin

• Left: small triangle is behind big triangle
• Right: small triangle is in front of big triangle



© 2009 Tomas Akenine-Möller and Michael Doggett 15

Zmax-culling (1)
• What about a fragment that fails the depth test (if 

test is less_or_equal)? 
– i.e., the fragment is occluded (not visible)

• Ideally, we do not want to process them at all!

• We know that o<=d, so reads consume more than 
writes

• Zmax-culling:
– Very simple technique
– Culls occluded fragments on a tile basis (tiled traversal is a must!)
– Works without user intervention, i.e., fully automatic

ATI and NVIDIA has
some form of Zmax-culling

in their hardware
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Zmax-culling example

• Now render red triangle

Not culled

Culled

Culled

Not culled

View direction
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Zmax-culling (2)
• A tile is wxh pixels, and its depths:

• The key is to, per tile, maintain:

• Can be seen as a low-res Z-buffer!
• When tiled traversal algorithm arrives at a 

new tile that overlaps triangle, do the 
following per-tile computations:
– Compute ”smallest z-value on triangle”:

– If the following is true, we know that triangle is 
occluded by zmax in tile, and can avoid depth 
reads:
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Zmax-culling (3)
• Great, how compute          ?
• Many different ways, but key insight is that 

it need not be the exact value, as long as 
we err on the right side:
– Compute it in a conservative manner!
– In this case, it means that as long as we 

compute a value that is smaller than the 
exact value, the algorithm will not generate 
incorrect results. Only performance will be 
slightly worse
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Zmax-culling (4)

• What is smaller than the ”smallest z-value of 
the triangle” in that particular tile?

• Different techniques include:
1. Minimum of vertices’ depth values
2. Evaluate depth at corners of tile, then pick minimum 

of these
• Optimal, if triangle cover entire tile!
• Bad, when, e.g., all vertices are inside a tile!

3. Always optimal: clip triangle against tile, evaluate 
depth at all vertices of clipped triangle
• Not feasible though!

4. Hybrid: take maximum of result of 1 & 2

• How make conservative estimate of          ?
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Zmax-culling (5)
• Where should we store each tile’s zmax-value?

– Remember: we want to reduce memory bandwidth
– On-chip memory, or if that takes too much memory, 

access the zmax’s through a cache
• How should we update the zmax?

– Can only become smaller
– Only way: read all depths in tile, compute maximum...  
– Could be expensive, but works well with depth buffer 

compression (next lecture)
• Some study has shown that depth reads are 

reduced by 10-32%...



© 2009 Tomas Akenine-Möller and Michael Doggett 21

Zmax-culling example
(same example again)

• Now render red triangle

Not culled

Culled

Culled

Not culled



© 2009 Tomas Akenine-Möller and Michael Doggett 22

Zmin-culling example

• Red triangle is currently being rendered

Culled

Not culled

Not culled

Culled
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• When tiled traversal algorithm arrives at 
tile overlapping the triangle, we compute 
the ”maximum of the triangle’s z in that 
tile”:

Zmin-culling (1)
• Similar to Zmax-culling, but instead we 

store, per tile: 

• We can avoid depth reads, when the 
following is true:

• This value can be computed using 
equivalent techniques for Zmax-culling... 
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Zmin-culling (2)
• This means that the triangle currently being 

rendered is definitely in front of the contents in 
depth buffer

• Which means that the depth test will pass, and thus 
reading the depth can be avoided

• Zmin stored onchip or in cache (as Zmax)
• Updating zmin?

– Simple: as soon as a depth, d, has been written that is 
smaller than zmin, we update zmin=d

– i.e., no need to read all depth values in tile (as in Zmax)
– Thus much much more feasible for mobiles!

Cull when:
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Zmin-culling example again

• Red triangle is currently being rendered

Culled

Not culled

Not culled

Culled



© 2009 Tomas Akenine-Möller and Michael Doggett 26

Zmin-culling results
• Algorithm developed for mobile devices
• Applications for mobile devices were used 

for benchmarking

• d=0.65                 d=2.5                    d=1.5
• Reduction in depth reads:
•   84%                   69%                       49%
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Why did Zmin work better than Zmax?
• Back to the equations, depth buffer 

bandwidth, Bd:

These fragments fail the depth test
i.e., ”occluded fragments”

These fragments pass the depth test
i.e., ”visible fragments”

Zmax-culling can potentially
avoid these reads

Zmin-culling can potentially
avoid these reads

• d-o fragments for Zmax, o for Zmin-culling
• There are more fragments for Zmax when:
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Zmin vs Zmax
• For d=4 we get o=2 (approx), and hence 

we will get:
– more fragments for Zmax when d>4, and
– more fragments for Zmin when d<4

• Start rendering of a scene:
– Depth complexity is zero for all tiles
– Render triangles, and depth complexity starts 

to build up. Zmin-culling works immediately 
here

– When depth complexity is >4, Zmax-culling 
starts to work better than Zmin-culling
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Zmin & Zmax
• Both algorithms can only get rid of depth reads!

– [Or for architectures which always do texturing before 
per-pixel depth reads, you get rid of texturing and 
pixel shader executions as well]

• Both should be implemented for best 
performance, however, for low depth complexity 
Zmin will pay off the most

• Zmin is also simpler to implement

• Normally, depth is 16, 24, or 32 bits per pixel
– A conservative value for Zmin and Zmax works well:

• 8 bits might be enough
• Trade-off though...
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Object Culling
• Can cull an entire object at a time

– Can save bandwidth from CPU to GPU, vertex 
processing, and fragment processing!

• Needs user intervention, i.e., not automatic
• User can issue an ”occlusion query”:

– render a set of triangles, count the fragments that 
passes the depth test

• Common use: render bounding box of complex 
object (character, e.g.)
– If no fragments passes, then entire BBOX is hidden
– Means: entire object is hidden too
– I.e, do not render object!
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On Thursday...
• Lecture will deal with:

– Real-time depth buffer compression
• Colors can also be compressed, but very 

little public info is known about this...
– Patent issues 
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The end


