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Overview

» Benefits of texture compression
» Differences from normal image compression

» Texture compression algorithms
— Palettized textures
—BTC
—CCC
—S3TC
- PVR-TC
— PACKMAN
— ETC (Ericsson Texture Compression)

> Normal map compression
—3Dc
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why 3D graphics

On a mobile phone

» Killer app: User Interfaces

» But also...
—Games
—Maps,
—Browsing, Screen Savers, Messaging and more...




Why is 3D Graphics Hard

on a Mobile Phone?

Limited resources:
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Limited resources:

» Small amount of memory

» Little memory bandwidth

» Little chip area for special purpose
» Powered by batteries
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Texture Compression Helps

» Small amount of memory
—More texture data can fit in the limited amount of memory

» Little memory bandwidth
—More texturing possible for same amount of bandwidth

» Little chip area for special purpose
— A texture cache using compressed data can be made smaller

» Powered by batteries
—Reduced bandwidth means lower energy consumption

» However, texture compression is also good for computers
and games consoles!
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Texture Mapping is a Bandwidth Hog

» For each pixel drawn in the image, eight pixels from the
texture (texels) are usually read.

drawn image

texture mipmap levels
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Texture Compression
and the Bus

BUS

Decompression
on-the fly
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Benefits of Texture Compression

» Higher Performance

—Bandwidth is usually the factor limiting
performance in rasterization-based graphics
hardware.

— Texture Compression reduces texturing
bandwidth with a factor of up to 6

— Spare bandwidth can be used for higher
performance, or lower power consumption
(mobile case)

» Higher Quality! (Yes, really...)

—Even a huge video memory gets full.

—With a compression ratio of 6, you can
iIncrease the resolution one mipmap level and
still save memory
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Benefits of Texture Compression

) with texture compression,
» Higher Performance 128x128 pix, 8192 bytes
—Bandwidth is usually the factor limiting
performance in rasterization-based graphics
hardware.

— Texture Compression reduces texturing
bandwidth with a factor of up to 6

— Spare bandwidth can be used for higher
performance, or lower power consumption
(mobile case)

» Higher Quality! (Yes, really...)

—Even a huge video memory gets full.

—With a compression ratio of 6, you can

increase the resolution one mipmap level and no texture compression,
till save memor downsampled to 64x64,
St y 12288 bytes
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Benefits of Texture Compression

with texture compression,
128x128 pix, 8192 bytes

afpled to 64x64,
12288 bytes
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Difference to Image Compression

why not just use JPEG?

» First a short recap on how JPEG compresses images

JPEG bits

left image courtesy of Henrik Wann Jensen
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Difference to Image Compression

why not just use JPEG?

» First a short recap on how JPEG compresses images
—The image is first divided into 8x8 blocks.

JPEG bits
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Difference to Image Compression

why not just use JPEG?

» First a short recap on how JPEG compresses images
—The image is first divided into 8x8 blocks.
—Each block is then encoded and put into the file
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Difference to Image Compression

why not just use JPEG?

» First a short recap on how JPEG compresses images
—The image is first divided into 8x8 blocks.
—Each block is then encoded and put into the file
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JPEG bits

left image courtesy of Henrik Wann Jensen
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Difference to Image Compression

why not just use JPEG?

» Most image compression algorithms, such as JPEG, uses
variable bit length coding (VLC).

» A block that is hard to code is allowed to occupy more bits
than a block that is, for instance, just black.
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Difference to Image Compression

why not just use JPEG?

» Most image compression algorithms, such as JPEG, uses
variable bit length coding (VLC).

» A block that is hard to code is allowed to occupy more bits
than a block that is, for instance, just black.
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Difference to Image Compression

why not just use JPEG?

» Most image compression algorithms, such as JPEG, uses
variable bit length coding (VLC).

» A block that is hard to code is allowed to occupy more bits
than a block that is, for instance, just black.

few bits

many bits

JPEG bits

left image courtesy of Henrik Wann Jensen
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Difference to Image Compression

why not just use JPEG?

» However, variable bit rate also means that you cannot
calculate the address for a pixel in the JPEG bits.
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Difference to Image Compression
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» However, variable bit rate also means that you cannot
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Difference to Image Compression

why not just use JPEG?

» However, variable bit rate also means that you cannot
calculate the address for a pixel in the JPEG bits.

» In order to know the address for a particular pixel, you have
to parse the entire file.

JPEG bits
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Difference to Image Compression

why not just use JPEG?

» However, variable bit rate also means that you cannot
calculate the address for a pixel in the JPEG bits.

» In order to know the address for a particular pixel, you have
to parse the entire file.

» During rendering, you would have to parse the entire file for
every texel! Not feasible.

JPEG bits

left image courtesy of Henrik Wann Jensen
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Difference to Image Compression

why not just use JPEG?

» Therefore, most texture compression coders are fixed rate coders,
which means that each block in the image occupies the same number
of bits, for instance 64 bits per 4x4 block.

» In this way, it is simple to calculate the address for a particular block in
the compressed texture bit stream.

JPEG bits

left image courtesy of Henrik Wann Jensen
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Difference to Image Compression

why not just use JPEG?

» Therefore, most texture compression coders are fixed rate coders,
which means that each blocks in the image occupies the same number
of bits, for instance 64 bits per 4x4 block.

» In this way, it is simple to calculate the address for a particular block in
the compressed texture bit stream.

JPEG bits
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Difference to Image Compression

why not just use JPEG?

> Note, that there is only one rate that will guarantee error
free coding, and that is to have no compression at all!

» Thus, for fixed rate coding, one has to allow error
(distortion) in the image. The goal is to make this error as
small as possible.

i
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original compressed and decompressed

left image courtesy of Henrik Wann Jensen
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Difference to Image Compression

why not just use JPEG?

» Decompression should be of low complexity.
» Up to eight texels must be decompressed for each pixel.

» If we are unlucky, all eight texels can be in different
blocks.

drawn image

texture mipmap levels
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Difference to Image Compression

why not just use JPEG?

» Decompression should be of low complexity.
» Up to eight texels must be decompressed for each pixel.

» If we are unlucky, all eight texels can be in different
blocks.

» This means that we have to have
texture mipmap levels eight parallel block decompressors
on the chip to deliver one filtered
pixel per clock.




The Texture Cache

» In @ system without texture compression, a dedicated
texture cache is usually present.

BUS GPU

Texels

texture cache




The Texture Cache

» If texture compression is added, the decompression can
either happen before or after caching.

BUS GPU

Texels

texture cache




The Texture Cache

» If decompression is done before caching, the
decompression is allowed to be slower since the data
rate out of it is rather low.

BUS GPU

>
Texels

texture texture cache
decompression
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The Texture Cache

» On the other hand, if decompression is done after caching, the
cache can be reduced by a factor of, e.g., 6 in terms of surface area.

BUS GPU
>m
Texels
texture cache texture

decompression
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The Texture Cache

» On the other hand, if decompression is done after caching, the
cache can be reduced by a factor of, e.g., 6 in terms of surface area.

» Complexity should therefore be low enough for handling the larger
data streams after caching.

BUS GPU
>m
Texels
texture cache texture

decompression
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Palettes and other Global Data

» Many image compression formats have a palette where a

number of colors are stored.

iIndex data
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Palettes and other Global Data

» This is an indirect way of obtaining the color data.
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Palettes and other Global Data

» This is an indirect way of obtaining the color data.
» The GPU must first load the index data

request for index data
S
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Palettes and other Global Data

» This is an indirect way of obtaining the color data.
» The GPU must first load the index data

request for index data

R
index data

—indexdata
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Palettes and other Global Data

» This is an indirect way of obtaining the color data.
» The GPU must first load the index data
» Only once it has the index data can it load the real color

request for index data

R
index data

—indexdata

request for color 14

S
color 14
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Palettes and other Global Data

» This is an indirect way of obtaining the color data.

» The GPU must first load the index data

» Only once it has the index data can it load the real color

» This induces extra latency that is costly to hide in FIFO buffers etc.

request for index data

R
index data

—indexdata

request for color 14

S
color 14
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Palettes and other Global Data

» This is an indirect way of obtaining the color data.

» The GPU must first load the index data

» Only once it has the index data can it load the real color

» This induces extra latency that is costly to hide in FIFO buffers etc.

» Having the table on-chip is expensive, as it can take up as much
data as the texture cache itself
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Palettes and other Global Data

» This is an indirect way of obtaining the color data.

» The GPU must first load the index data

» Only once it has the index data can it load the real color

» This induces extra latency that is costly to hide in FIFO buffers etc.

» Having the table on-chip is expensive, as it can take up as much
data as the texture cache itself

» Therefore, palettes and other texture depending global data is best
avoided.

request for index data

R
index data

—indexdata

request for color 14

S
color 14
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Differences to Image Compression

Summary

1. Random access is needed — fixed rate coder makes this
possible.

2. Several parallel units needed — low hardware
decompression complexity necessary. (Long
compression times OK though!)

3. Indirect addressing due to use of palettes or other global,
texture depending data should be avoided.
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Texture Compression
Formats



Palettized Textures

» Were used in the past when memory latency was not the

limiting factor

» Is used in software renderers on mobile devices, and is
part of JSR 184 and OpenGL ES 1.0.

Index data
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Block Truncation Coding



BTC - Block Truncation Coding

» Image is divided into 4x4 blocks
» Two 8-bit gray shades are encoded per block
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BTC - Block Truncation Coding

» Image is divided into 4x4 blocks

» Two 8-bit gray shades are encoded per block
» A bit mask of 16 bits is also used.
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BTC - Block Truncation Coding

» Image is divided into 4x4 blocks
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BTC - Block Truncation Coding

» Image is divided into 4x4 blocks

» Two 8-bit gray shades are encoded per block
» A bit mask of 16 bits is also used.
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» Bit rate equals 8+8+16 = 32 bits per block, i.e., 2 bits per
pixel (bpp).

» Everything is contained in the codeword, no “global data” or
color palette needs to be read.
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» Bit rate equals 8+8+16 = 32 bits per block, i.e., 2 bits per
pixel (bpp).

» Everything is contained in the codeword, no “global data” or
color palette needs to be read.

» Hardware complexity for decompression is very simple:

gray 0 gray 1 bitmask

\ multiplexor = which pixel

\ multiplexor /-
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BTC - Block Truncation Coding

compression

» First the mean u and standard deviation s of the block is calculated.
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BTC - Block Truncation Coding

Compression

» First the mean u and standard deviation s of the block is calculated.

» Then the bit mask is constructed. All pixels with gray value greater
than u equals 1, otherwise 0.
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BTC - Block Truncation Coding

Compression

» First the mean u and standard deviation s of the block is calculated.

» Then the bit mask is constructed. All pixels with gray value greater
than u equals 1, otherwise 0.

» Let ¢ be the number bigger than u (7 in our case), and m be the total
number of pixels.
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BTC - Block Truncation Coding

Compression

» First the mean u and standard deviation s of the block is calculated.

» Then the bit mask is constructed. All pixels with gray value greater
than u equals 1, otherwise 0.

» Let ¢ be the number bigger than u (7 in our case), and m be the total
number of pixels.

» The colors can now be
calculated as

0|00 1|0

0101010 colD=u-s | 4
11110 |1 m-q
1711 (1 1
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BTC - Block Truncation Coding

Compression

» First the mean u and standard deviation s of the block is calculated.

» Then the bit mask is constructed. All pixels with gray value greater
than u equals 1, otherwise 0.

» Let ¢ be the number bigger than u (7 in our case), and m be the total
number of pixels.

» The colors can now be
calculated as

Ala|lolo

0
0
1
1

coll =u+s |m-q
» Or, just do exhaustive search! 9
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BTC - Block Truncation Coding

Quality

» This means that the mean and the standard deviation of the
block is preserved.

» However, having only two shades of gray gives rise to
banding artifacts.
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BTC - Block Truncation Coding

Quality

original BTC
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BTC - Block Truncation Coding

Color Compression

» BTC can also be used separately on the Red, Green and
Blue Components. Bit rate then becomes 6 bpp.

» Still, banding artifacts remain, and shot noise of strangely
colored pixels appear.
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BTC - Block Truncation Coding

Color Compression

» BTC can also be used separately on the Red, Green and
Blue Components. Bit rate then becomes 6 bpp.

» Still, banding artifacts remain, and shot noise of strangely
colored pixels appear.
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Color Cell Compression



CCC - Color Cell Compression

» Based on BTC, but instead of two gray scales, two colors
are used per block, in RGB565 format.
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CCC - Color Cell Compression

» Based on BTC, but instead of two gray scales, two colors
are used per block, in RGB565 format.
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CCC - Color Cell Compression

» Based on BTC, but instead of two gray scales, two colors
are used per block, in RGB565 format.

» Two 16 bit colors, together with the 16-bit-wide bit mask,
gives 48 bits per block or 3 bpp.
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CCC - Color Cell Compression

Compression

» To compress a block, the LBG-algorithm can be used.
» Plot colors in block as points in RGB space
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Compression

» To compress a block, the LGB-algorithm can be used.
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CCC - Color Cell Compression

Compression

» To compress a block, the LGB-algorithm can be used.
» Plot colors in block as points in RGB space
» Start with two random colors in the bounding box
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CCC - Color Cell Compression

Compression

» To compress a block, the LGB-algorithm can be used.
» Plot colors in block as points in RGB space
» Start with two random colors in the bounding box
» See what color each point is closest to
» Refine the colors to the average of its points

— » See again what color each point is closest to, etc.
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CCC - Color Cell Compression

2-bit version

» Campbell et al. also present a 2-bit version of CCC. Here,
the 16-bit RGB565 colors are changed to 8-bit indexes into
a 256 wide color palette.

» However, this introduces latency as discussed above.

» Quality in both 3- and 2-bit versions is not too great, since
only two colors per 4x4 block is possible.
—Block artifacts visible (“I can see the blocks”)
—Banding artifacts (“Smooth transitions comes in steps.”)
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S3TC



S3TC - S3 Texture Compression

also called DXT1

» S3TC can be seen as an extension of CCC.
» Instead of two colors, four colors can be chosen per pixel.

col 3
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S3TC - S3 Texture Compression

also called DXT1

» S3TC can be seen as an extension of CCC.

» Instead of two colors, four colors can be chosen per pixel.
However, only col 0 and col 3 are stored in the block. Col 1
and col 2 are linearly interpolated

col O |
col 1|l =2/3* (colOJJf}) + 1/3 * (col 3| )

col 2/ =1/3*(col OJflD) + 2/3 * (col 3| )

col 3
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and col 2 are linearly interpolated

» Bit mask must now be two bits per pixel



S3TC - S3 Texture Compression

also called DXT1

» S3TC can be seen as an extension of CCC.

» Instead of two colors, four colors can be chosen per pixel.
However, only col 0 and col 3 are stored in the block. Col 1
and col 2 are linearly interpolated

» Bit mask must now be two bits per pixel
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S3TC - S3 Texture Compression

also called DXT1

» S3TC can be seen as an extension of CCC.

» Instead of two colors, four colors can be chosen per pixel.
However, only col 0 and col 3 are stored in the block. Col 1
and col 2 are linearly interpolated

» Bit mask must now be two bits per pixel
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also called DXT1

» S3TC can be seen as an extension of CCC.

» Instead of two colors, four colors can be chosen per pixel.
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and col 2 are linearly interpolated

» Bit mask must now be two bits per pixel

CO|O- 00 |10 | 11 | 11
CO|1- 01 |11 [ 11 | 11

CO|2- 10 [ 11 [ 11 |11

"M (11 (11 |11
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S3TC - S3 Texture Compression

quality

» In this way, four colors per 4x4 block can be used instead
of two — quality increases tremendously.
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IS now the industry standard in the desktop space.




S3TC - S3 Texture Compression

quality

» In this way, four colors per 4x4 block can be used instead
of two — quality increases tremendously.

» S3TC was adopted by Direct 3D under the name DXT1 and
IS now the industry standard in the desktop space.
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S3TC - S3 Texture Compression

» The two base colors are stored in RGB565 (16 bits).
Together with the 32 bits of pixel bits we get 64 bits per
block, or 4 bpp. Compression ratio is thus 6:1.
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S3TC - S3 Texture Compression

» The two base colors are stored in RGB565 (16 bits).
Together with the 32 bits of pixel bits we get 64 bits per
block, or 4 bpp. Compression ratio is thus 6:1.

» Decompression includes multiplication of 1/3 and 2/3.

col O col1 1 pixel bits
—_I_I_I__I_I_I_ITLI.LI.LIJ.I.LI.LI.IIIIIIIII/IZbitS
\ multiplexor = which pixel
— ) 4 bits
[ | 2 bits
blend blend

\ multiplexor  /
|
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S3TC - S3 Texture Compression

» Due to the way the intermediate colors are interpolated,
the four colors of the block will lie on a straight line in
RGB space.
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S3TC - S3 Texture Compression

» Due to the way the intermediate colors are interpolated,
the four colors of the block will lie on a straight line in
RGB space.

» For many natural images, this is a rather good
approximation.

/
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S3TC - S3 Texture Compression

» One way to compress blocks to S3TC is to look for this
line, or “major axis” in the data.
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S3TC - S3 Texture Compression

» One way to compress blocks to S3TC is to look for this
line, or “major axis” in the data.

> Atool from statistics, Principal Component Analysis (PCA)
can be used to find the line.
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S3TC - S3 Texture Compression

)

One way to compress blocks to S3TC is to look for this
line, or “major axis” in the data.

A tool from statistics, Principal Component Analysis (PCA)
can be used to find the line.

PCA finds the direction, along which the points should be
projected, so that they have maximal variance.
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S3TC - S3 Texture Compression

)

One way to compress blocks to S3TC is to look for this
line, or “major axis” in the data.

A tool from statistics, Principal Component Analysis (PCA)
can be used to find the line.

PCA finds the direction, along which the points should be
projected, so that they have maximal variance.
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S3TC - S3 Texture Compression

)

One way to compress blocks to S3TC is to look for this
line, or “major axis” in the data.

A tool from statistics, Principal Component Analysis (PCA)
can be used to find the line.

PCA finds the direction, along which the points should be
projected, so that they have maximal variance.

G

high variance
(]
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Principal Component Analysis

» First calculate and remove the average from the colors:
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Principal Component Analysis

» First calculate and remove the average from the colors:

>
W, = — &y,
16

Fi = ri- W,
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Principal Component Analysis

» First calculate and remove the average from the colors:

= 12 = _12 . = iZb
A T A S T A N T o
r T 8= & Uy, b’y =b;i-w,
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Principal Component Analysis

» First calculate and remove the average from the colors:

- 13>, - Iy, - 13
AT A R T KA Ttk
ry=r- g,i:gi_u‘g’ b',=b;-u,

» Then, regard the average-free colors of the block as
outcomes x, from a random vector X:
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Principal Component Analysis

» First calculate and remove the average from the colors:

- 13 - 13 DY
W, = 16 ry Mg 16 8i Wy 16 i’

r=rs W, g,i:gi_u‘g’ b’,=b;-w,
» Then, regard the average-free colors of the block as

outcomes x, from a random vector X:

YX,=(r L, 8L b7), x,=(r', g5 075, = (116 & 16 D 16
from X.
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Principal Component Analysis

» First calculate and remove the average from the colors:

=1y _ Iy, - 1>y
W, = 16 ry Mg 16 8i Wy 16 i’
r=rsu,, g =g~ Uy, b’ =b;-w,

» Then, regard the average-free colors of the block as
outcomes x, from a random vector X:

YX; = (1, 8 b)), x,=(r'5 g5 by, = (116 & 16 D 16
from X.

» The axis we are interested in is the first eigenvector of
the covariance matrix Cy of X.
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Principal Component Analysis

cont.

» The covariance matrix Cyof X can be estimated using

1 T
y Cx ~ I—SAA :
r,or r 16
g, g g’
where A =[x, x, ... X;4] = Lo v
b, b b 16_
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Principal Component Analysis

cont.

» The covariance matrix Cyof X can be estimated using

1

ro,or s

g &, - g

where A =[x,x, ... x,,] = A :
1%2 16 b, b b’

» The major axis is the first eigenvector of Cy The scaling

of 1/15 does not change the eigenvector, and 447 can be
used directly.
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S3TC - S3 Texture Compression

» Once we have the major axis, it is simply an issue of
placing the two outer colors
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S3TC - S3 Texture Compression

» Once we have the major axis, it is simply an issue of
placing the two outer colors

> One way is to project the colors onto the line, and use the
end points.
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S3TC - S3 Texture Compression

» Once we have the major axis, it is simply an issue of
placing the two outer colors

> One way is to project the colors onto the line, and use the
end points.

» The position can then be refined with linear search along
the line.
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S3TC - S3 Texture Compression

» Another approach, not dealing with PCA, is based on the
assumption that the end colors should be close to some
color in the block.
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S3TC - S3 Texture Compression

» Another approach, not dealing with PCA, is based on the

assumption that the end colors should be close to some
color in the block.

» The algorithm is then to try every pair of colors in the

block as end points, and compress the block. The block
with the smallest error wins.
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with the smallest error wins.

At most 15*16/2 = 128 trials.
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S3TC - S3 Texture Compression

)

)

Another approach, not dealing with PCA, is based on the
assumption that the end colors should be close to some
color in the block.

The algorithm is then to try every pair of colors in the
block as end points, and compress the block. The block
with the smallest error wins.

At most 15*16/2 = 128 trials.
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PVR-TC

» PVR-TC by Fenney builds on the fact that a down-sampled,
up-scaled image is rather similar to itself.
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up-scaled image is rather similar to itself.




PVR-TC

» PVR-TC by Fenney builds on the fact that a down-sampled,
up-scaled image is rather similar to itself.

» The only thing that is missing is sharp edges.
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PVR-TC

» Fenney solves this by having two low resolution images,
and a bitmask.
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PVR-TC

» Fenney solves this by having two low resolution images,
and a bitmask.

OO0~ |0O

O~ ~10O0|0|0O
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PVR-TC

» Fenney solves this by having two low resolution images,
and a bitmask.

» Each pixel can then choose which image it wants to take its
color from.

o|lo|=]o|=]0o
aAalolalalala
aAalololalala
o|l=]=]olo]o
o|l=]=]=]=]0
aAalalololala
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PVR-TC

» Fenney solves this by having two low resolution images,
and a bitmask.

» Each pixel can then choose which image it wants to take its
color from.
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O~ ~10O0|0|0O
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PVR-TC

» Fenney solves this by having two low resolution images,
and a bitmask.

» Each pixel can then choose which image it wants to take its
color from.

O~ ~10O0|0|0O
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PVR-TC

» Fenney solves this by having two low resolution images,
and a bitmask.

» Each pixel can then choose which image it wants to take its
color from.

O~ ~10O0|0|0O
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PVR-TC

» For instance, if one of the two images is completely
white, then one can get perfectly sharp white text over
the other image by arranging the bit mask.

(fake)

e —1EFD Tt
> =




PVR-TC

» By making the bitmask contain four levels (2 bits per
pixel), Fenney can blend between the first and the
second image.

2 |3 (fake)
3 (3|3
3 lolol2 |3
T3 1002 |2
_— 3 [1 o3 [3
103 [3 |3 ]2 [3
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PVR-TC

» Each block in PVR-TC includes one color from each low-
resolution image in RGB565
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PVR-TC

» Each block in PVR-TC includes one color from each low-
resolution image in RGB565

col A




PVR-TC

» Each block in PVR-TC includes one color from each low-
resolution image in RGB565

colA [l col B
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PVR-TC

» Each block in PVR-TC includes one color from each low-
resolution image in RGB5695, plus the bitmask.

colA [l col B
00 |4+ |01 [10

11 |11 |11 |01

01 {01 |11 |01

00 |00 |11 |10
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PVR-TC

» Each block in PVR-TC includes one color from each low-
resolution image in RGB5695, plus the bitmask.

colA [l col B
00 [+ |01 10
1 [11 [11 |o1
o1 |01 [11 |01
00 |00 [11 |10
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» This means
16+16+32=64
bits per block,
or 4 bpp.



ERICSSON

PVR-TC

» The colors are situated in the top left middle pixel.

col A
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PVR-TC

» The colors are situated in the top left middle pixel.
» To decode a block, the neighboring blocks are needed.

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



PVR-TC

» The colors are situated in the top left middle pixel.
» To decode a block, the neighboring blocks are needed.
» Bilinear upscaling is used.
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PVR-TC

» The same thing is done for color B
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PVR-TC

» The bit mask is now used to choose between the two.
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PVR-TC

» Even though surrounding blocks must be read, it is never
necessary to load more than four blocks to decode an
entire 2x2 area.

» This is the same as the worst case for S3TC etc.
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PACKMAN =

texture compression for mobile phones

Scheme Complexity Quality

CCC [Campbell et al. '86] Low — but uses indirect Medium/Low
addressing
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PACKMAN =

texture compression for mobile phones

Scheme Complexity Quality

CCC [Campbell et al. '806] Low — but uses indirect Medium/Low
addressing

S3TC/DXTC [lourcha et al. ‘99] Medium/High — performs High
multiplication with 1/3 and 2/3
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PACKMAN

texture compression for mobile phones

ERICSSON

Scheme Complexity Quality

CCC [Campbell et al. '806] Low — but uses indirect Medium/Low
addressing

S3TC/DXTC [lourcha et al. ‘99] Medium/High — performs High
multiplication with 1/3 and 2/3

PVR-TC [Fenney '03] Medium/High — bilinear High

upscaling

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date




PACKMAN

texture compression for mobile phones

ERICSSON

Scheme Complexity Quality

CCC [Campbell et al. '806] Low — but uses indirect Medium/Low
addressing

S3TC/DXTC [lourcha et al. ‘99] Medium/High — performs High
multiplication with 1/3 and 2/3

PVR-TC [Fenney '03] Medium/High — bilinear High

upscaling

2?77

Low

High
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Design Goals

» Low Decompression Complexity
— 8 parallel units needed for one trilinear operation per clock
—mobile devices have very little surface area to spare

» High Image Quality

—Should be on par with, or better than, industry standard DXTC at
the same bit rate

» Should be “system friendly”

—You want to be able to store compressed data in the cache, and
that means that the decompression needs to be simple and fast.

—No indirect data such as a color palette that increases latency
—No data from adjacent blocks should be needed

—For systems without a texture cache, a block size of 32 bits would
be preferable, matching the size of the bus.
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Basic Idea PACKMAN

» The model that colors are along a line in RGB space has
worked well for S3TC.

» Maybe we can pre-specify a specific direction in RGB
space and thus save one color?

» The most common direction should be (1,1,1), that is, going
from dark to bright.

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



Basic Idea PACKMAN

» The model that colors are along a line in RGB space has
worked well for S3TC.

» Maybe we can pre-specify a specific direction in RGB
space and thus save one color?

» The most common direction should be (1,1,1), that is, going
from dark to bright.

direction (1,1,1)

r
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Basic Idea PACKMAN

» In addition, the Human Visual System is more sensitive to
luminance than to chrominance

» In video and still image coding, chrominance information is
most often subsampled in the x- and y- direction (MPEG,
JPEG, H263, H264 etc). Loosely speaking, chrominance is
defined per 2x2 block.

» PACKMAN has basically only one color per 2x4 block. The
rest is luminance information

» Code each 2x4 block using 32 bits
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Basic Idea PACKMAN

» Use only 12 bits to specify a “base color” for a 2x4 block

12-bit “base
color”
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Basic Idea PACKMAN

» Use only 12 bits to specify a “base color” for a 2x4 block
» Modify the luminance for each pixel in the block

12-bit “base per-pixel
color” luminance
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Basic Idea PACKMAN

» Use only 12 bits to specify a “base color” for a 2x4 block
» Modify the luminance for each pixel in the block

12-bit “base per-pixel resulting image
color luminance
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Luminance modification

» Only one value per pixel needed to specify luminance
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Luminance modification

» Only one value per pixel needed to specify luminance

R=17
G=34
B =204

/

Base Color
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Luminance modification

» Only one value per pixel needed to specify luminance

R=17 +110
G=34 +110
B =204 +110

Base Color Add same value
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Luminance modification

» Only one value per pixel needed to specify luminance

R=17 +110
G=34 +110
B =204 +110

Base Color Add same value
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=127
=144
= 255 (after clamping)

\

Resulting Color



How to Specify Luminance

» Two bits per pixel are used to specify the
luminance. Modifier is one out of four values.

» Problem: Small values [-8, -2, 2, 8]
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How to Specify Luminance

» Two bits per pixel are used to specify the
luminance. Modifier is one out of four values.

» Problem: Small values [-8, -2, 2, 8]
—smooth transitions OK
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How to Specify Luminance

» Two bits per pixel are used to specify the
luminance. Modifier is one out of four values.

» Problem: Small values [-8, -2, 2, 8]
—smooth transitions OK
—sharp edges bad
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How to Specify Luminance

» Two bits per pixel are used to specify the T
luminance. Modifier is one out of four values. €Xt

» Problem: Small values [-8, -2, 2, 8]
—smooth transitions OK . ijl -
—sharp edges bad I I
» Big values [-2595, -127, 127, 255]
—sharp edges OK TeXt
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How to Specify Luminance

» Two bits per pixel are used to specify the T
luminance. Modifier is one out of four values. €Xt

» Problem: Small values [-8, -2, 2, 8]
—smooth transitions OK . i] —
—sharp edges bad I I
» Big values [-2595, -127, 127, 255]

—sharp edges OK F TQXt
!r

—smooth transitions bad
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How to Specify Luminance

» Two bits per pixel are used to specify the
luminance. Modifier is one out of four values.

» Problem: Small values [-8, -2, 2, 8]
—smooth transitions OK
—sharp edges bad

» Big values [-255, -127, 127, 255]

—sharp edges OK
—smooth transitions bad

» Solution: Codebook of tables, one/block.
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Modifier Codebook

» We created the codebook from random
numbers by minimizing the error forasetof 77 7?7 7
?? 0?7 7?7?77

Images. 22 22 22 ??
22 22 2?2 27
22 72 77 27
22 72 27?7 27
22 22 2?2 27
22 22 7?2 27
22 72 7?7 27
22 22 27?2 27
22 22 2?2 27
22 72 77 27
22 22 27?7 27
; 22 22 2?2 27
 in differens 2?2 2?77 7?7 7

SeNa. 2?7 0?7 7?7 ??
Alissing!

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



Modifier Codebook

ERICSSON

» We created the codebook from random
numbers by minimizing the error for a set of 12
Images. -16
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ERICSSON

Modifier Codebook

» We created the codebook from random
numbers by minimizing the error for a set of
iImages.

—Simulated Annealing
—Modified version of LBG-algorithm

» Symmetry was enforced to reduce on-chip
memory
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Modifier Codebook

ERICSSON

» We created the codebook from random
numbers by minimizing the error for a set of _1'2
images. 16
— Simulated Annealing -24
—Modified version of LBG-algorithm -31

» Symmetry was enforced to reduce on-chip 47
memory .50
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Modifier Codebook

ERICSSON

» We created the codebook from random
numbers by minimizing the error for a set of
iImages.

—Simulated Annealing
—Modified version of LBG-algorithm

» Symmetry was enforced to reduce on-chip
memory

» This way only half the table needed to be
stored on chip.
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Modifier Codebook

» We created the codebook from random
numbers by minimizing the error for a set of
iImages.

—Simulated Annealing
—Modified version of LBG-algorithm

» Symmetry was enforced to reduce on-chip
memory

» This way only half the table needed to be
stored on chip.
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Modifier Codebook

» We created the codebook from random
numbers by minimizing the error for a set of
iImages.

—Simulated Annealing
—Modified version of LBG-algorithm

» Symmetry was enforced to reduce on-chip
memory

» This way only half the table needed to be
stored on chip.

» The same table is used for all textures — can
be hardwired into the logic.

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date
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Bit outline

» First 12 bits is RGB444 which gives the base color for the
entire block.

153 153 85

I
9 9 5 \

12 bit RGB444

9956b59f
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Bit outline

ERICSSON

» Next 4 bits selects a table from a
set of 16 tables

11 10 00 01

8 -2 2 8

42 4 4 12

16 -4 4 16

24 8 8 24

31 6 6 31

34 12 12 34

47 19 19 47

50 -8 8 50

9 9 §5 6 62 12 12 62
PR EEEN 0 1 2 EEEEEEEEEEEEEEEE -68 -24 24 68
80 -28 28 80

12 bit RGB444 94 38 38 94
1100 -16 16 100

127 42 42 127

160 -56 56 160

254 -84 84 254
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Bit outline

ERICSSON

» Next 4 bits selects a table from a
set of 16 tables.

11 10 00 01
8 2 2 8

12 4 4 12

16 -4 4 16

11 10 00 01 24 8 8 24

47 19 19 47 31 6 6 31

\ 34 12 12 34

47 19 19 47

50 -8 8 50

9 9 5 6 62 12 12 62
EEERTTT [ [[[TTTTTITTTI] 68 -24 24 68
80 28 28 80

12 bit RGB444 94 38 38 94
1100 -16 16 100

27 42 42 127

160 -56 56 160

254 -84 84 254
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ERICSSON

Bit outline

» The next 2 bits modifies the first pixel according to the
table...

1 10 00 O 153 153 85
47 19 19 47 + 19 -19 -19
= 134 134 66

)

9 9 5 6 19
D | [ [ [ [ [ [ [ [ [ [ [

12 bit RGB444
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Bit outline

» The next 2 bits modifies the first pixel according to the
table... and so on.

1 10 00 01 153 153 85
47 19 19 47 + AT AT AT
= 106 106 38

\

9 9 5 6 1011
N | [ [ [ [ [ [ [ [ [ [

12 bit RGB444
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Bit outline

» The next 2 bits modifies the first pixel according to the
table... and so on.

1 10 00 01 153 153 85
47 19 19 47 + 47 41 A7

/ 200 200 132

9 9 5 6 101101
I [ [ [ [ [ [ [ [ [

12 bit RGB444

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date
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Bit outline

» The next 2 bits modifies the first pixel according to the
table... and so on.

1 10 00 01 153 153 85
47 19 19 47 + 47 41 A7

/ 200 200 132

9 9 5 6 1011010t
D T [ e | [ [ [ [ [ ][]

12 bit RGB444
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Bit outline

» The next 2 bits modifies the first pixel according to the
table... and so on.

1 10 00 01 153 153 85
47 19 19 47 + 19 19 19

\ = 134 134 66

9 9 5 6 1011010110

12 bit RGB444
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Bit outline

» The next 2 bits modifies the first pixel according to the
table... and so on.

1 10 00 O 153 153 85
47 19 19 47 + 47 47 47

\ = 200 200 132

9 9 5 6 101101011001
EEEEEEEECCC- ..  EEEE = EEEEE

12 bit RGB444

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



Bit outline

Z

-

ERICSSON

» The next 2 bits modifies the first pixel according to the
table... and so on.

M1 10 00 01 153 153 85
47 19 19 47 t AT AT AT
= 106 106 38

\

9 9 5 6 101101011001 11
EEEEEEEECCCE 0 L0 EEES BN EE

12 bit RGB444
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Bit outline

» The next 2 bits modifies the first pixel according to the
table... and so on.

M1 10 00 01 153 153 85
47 19 19 47 t AT AT AT
= 106 106 38

\

9 9 5 6 1011010110 01 11 1t
EEEEEEEESCEE 0 0L EEEN EE

12 bit RGB444

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



Simple Decompression

ERICSSON

» The correct texel is selected

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

12 bits

4 bits

xS bits §

R Extend to 8 bits
G Extend to 8 bits
B Extend to 8 bits

4+ Clamp: 0,255

Clamp: 0,255

— Clamp: 0,255

9 bit modifier value

PACKMAN

24 bt RGB

Texture Decompression




ERICSSON

Simple Decompression

» The correct texel is selected
» The modifier value is looked up

R Extend to 8 bits 4 Clamp: 0,255 |-

12bis| G

Extend to 8 bits Clamp: 0,255

24 bt RGB

Clamp: 0,255

4 bits

xS bits

PACKMAN
Texture Decompression

3 bits indicating
which of the 2x4 texel
colors to decode

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



Simple Decompress

Telg

ERICSSON

» The correct texel is selected
» The modifier value is looked up

» The base color is extended to 24
bits

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

Extend to 8 bits 4+ - Clamp: 0,255

—

2his) G

Extend to 8 bits + Clamp: 0255

Extend to 8 bits - Clamp: 0,255

xS bits

Wp 9 bit modifier value

2 bits

PACKMAN

3 bits indicating
which of the 2x4 texel
colors to decode

Texture Decompression

24 bt RGB




Simple Decompression

ERICSSON

» The correct texel is selected

» The modifier value is looked up

» The base color is extended to 24
bits

» The modifier value is added

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

12 bits

4 bits

xS bits

24 bt RGB

PACKMAN
Texture Decompression

3 bits indicating
which of the 2x4 texel
colors to decode




Simple Decompression

ERICSSON

» The correct texel is selected

» The modifier value is looked up

» The base color is extended to 24
bits

» The modifier value is added

» The result is clamped

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

12 bits

4 bits

xS bits

Extend to 8 bits

Extend to 8 bits

Extend to 8 bits

Lok

2 bits

4+ H Clamp: 0,255 |-

+ Clamp: 0255 [Fr—75m

— Clamp: 0,255

9 bit modifier value

PACKMAN
Texture Decompression

3 bits indicating
which of the 2x4 texel
colors to decode

B




ERICSSON

ETC

Ericsson Texture Compression
(previously called iPACKMAN)



PACKMAN Flaws

» PACKMAN was of very low complexity, but

—2 dB worse than DXTC in terms of Peak Signal to Noise Ratio
(PSNR)

— Suffered from chrominance banding / block artifacts due to low
color resolution (RGB444)

original PACKMAN
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PACKMAN Flaws

» PACKMAN was of very low complexity, but

—2 dB worse than DXTC in terms of Peak Signal to Noise Ratio
(PSNR)

— Suffered from chrominance banding / block artifacts due to low
color resolution (RGB444)

original PACKMAN

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



Enhancing the Chrominance

...would increasing the block size help?

» By coding 4x4 blocks instead of 2x4 blocks, spatial
redundancy could be better exploited.

» The small block size of 32 bits would be lost, but that was
only beneficial in systems without a texture cache, so it
was not a big loss.

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



Neighboring Base Colors

Quite Similar

035

o)._ ..... . cosmessse : tresmssssce P it s

025

02

015

01

005

max(|R1-R2|, |G1-G2|, |B1-B2]) .
(in RGB555)

88% within interval [-4, 3]
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Differential Encoding

R G B table 10 11 01 0110 01 11 11
[T T [ .
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Differential Encoding

R G B table
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Differential Encoding

» Instead of coding the left block with
RGB444...

left block ———
R G B table
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left block




Differential Encoding

» Instead of coding the left block with

RGB444... and the right with RGB444...

left block right block——
R G B table R G B table

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date
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Differential Encoding

» Instead of coding the left block with

RGB444... and the right with RGB444...

» We code the left with RGB555...

left block right block——
R G B table R B table

NN

\____

R G B table bits

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

left block right block




Differential Encoding

» Instead of coding the left block with
RGB444... and the right with RGB444...

» We code the left with RGB355... and the right
with dR dG dB 333.

right block——
B table R B table

///\

B dB table bits

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

left block right block




Differential Encoding

» However, in 10% of the cases, the left and
right blocks will differ too much in color for
differential coding.

T T P T —— T e ——

R dR G dG B dB table bits

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

left block right block




Differential Encoding

_ left block right block
» However, in 10% of the cases, the left and

right blocks will differ too much in color for
differential coding.

T T P T — T e ——

R dR G dG B dB table bits
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Differential Encoding

left block right block

» However, in 10% of the cases, the left and
right blocks will differ too much in color for
differential coding.

» For these blocks, we fall black to individual
coding.

T T P T —— T e ——

R dR G dG B dB table bits

T e e ———

R R G G B B table bits
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Differential Encoding

left block right block

» However, in 10% of the cases, the left and
right blocks will differ too much in color for
differential coding.

» For these blocks, we fall black to individual
coding.

» We thus need an extra bit to signal if we are
in differential mode or not.

555differential or 444
dB table bits 7

B

R R G G B table bits



Differential Encoding

left block right block

» However, in 10% of the cases, the left and
right blocks will differ too much in color for
differential coding.

» For these blocks, we fall black to individual
coding.

» We thus need an extra bit to signal if we are
in differential mode or not.

» We must take that bit from somewhere.

555differential or 444
dB table bits 7

B

R R G G B table bits



-

>

Differential Encoding e o o 8
-12 -4 4 12

o _ 16 -4 4 16

» By shrinking the codebook from 16 entries 24 8 8 o4
to 8, we can save one bit on each of the 31 -6 6 31
table code words. 4 -2 2 34
47 -19 19 47

-50 -8 8 50

-62 -12 12 62

-68 -24 24 68

-80 -28 28 80

94 -38 38 94

-100 -16 16 100

-127 -42 42 127

-160 -56 56 160

-254 -84 84 254

dB table bits

R R G G

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date
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Differential Encoding .

.

-

ERICSSON

8

» By shrinking the codebook from 16 entries 49
to 8, we can save one bit on each of the -60
table code words. -80

dB table bits

R R G G

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

B B table bits

AN

18
24

17
29
42
60
80

33 106
47 183



-

Differential Encoding e o o 8
-17 -5 5 17

L _ 29 9 9 29

» By shrinking the codebook from 16 entries 42 13 13 42
to 8, we can save one bit on each of the 60 -18 18 60

table code words. 80 -24 24 80

-106 -33 33 106
-183 -47 47 183

T TP T —— T ——

R dR G dG B dB table bits

R R G G B B table bits
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Differential Encoding

-8 -2 2 8

-17 -5 5 17

L _ 29 9 9 29

» By shrinking the codebook from 16 entries 42 13 13 42
to 8, we can save one bit on each of the 60 -18 18 60
table code words. 80 24 24 80

_ -106 -33 33 106

» That creates room for an extra bit. 183 -47 47 183

R R G G

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

B

dB

B

table bits

table bits




Differential Encoding

» By shrinking the codebook from 16 entries
to 8, we can save one bit on each of the
table code words.

» That creates room for an extra bit.

» The new bit determines if the 2x4 blocks are

vertically or horizontally oriented.

R dhR G dG B dB table bits /

T e ———

R R G G B B table bits

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date

flipped or non flipped




Results “improved PACKMAN”

or Ericsson Texture Compression (ETC)

» Much less chrominance banding
» Jumps 2.5 dB in PSNR overall

PACKMAN ETC

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



Results



Quality Measure

» One common measure is the Root Mean Square Error
(RMSE) measure.

- -

RMSE = \/ : Y ARZ, +AG%, + AB%,,
w X h Xy '
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Quality Measure

» One common measure is the Root Mean Square Error
(RMSE) measure.

- -

RMSE = \/ : Y ARZ, +AG%, + AB%,,
w X h Xy '

» A variant of this is Peak Signal to Noise ratio (PSNR)

32557
PSNR:lOloglo( X2 )

RMSE?
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Quality Measure

» One common measure is the Root Mean Square Error
(RMSE) measure.

1
RMSE = \/ Y ARZ, +AG%, + AB%,,
w X h Xy '

» A variant of this is Peak Signal to Noise ratio (PSNR)

32557
PSNR:lOlogIO( o )

RMSE?

» Usually, 0.25 dB difference is a visible difference.

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date




Results

We have compared against the following systems:

ERICSSON

Scheme

Coder Used

S3TC/DXTC [lourcha et al. ‘99]

ATl's Compressonator, with
weights [1, 1, 1] to maximize
PSNR
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Results

We have compared against the following systems:

ERICSSON

Scheme

Coder Used

S3TC/DXTC [lourcha et al. ‘99]

ATl's Compressonator, with
weights [1, 1, 1] to maximize
PSNR

PVR-TC [Fenney '03]

No coder publicly available —
the same images were used
and results taken from the
paper.
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Results

We have compared against the following systems:

Scheme Coder Used

S3TC/DXTC [lourcha et al. ‘99] ATl's Compressonator, with
weights [1, 1, 1] to maximize
PSNR

PVR-TC [Fenney 03] No coder publicly available —
the same images were used
and results taken from the
paper.

The 7 images used were:

Kodim1-5

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



Results

We have compared against the following systems:

ERICSSON

Scheme

Coder Used

S3TC/DXTC [lourcha et al. ‘99]

ATl's Compressonator, with
weights [1, 1, 1] to maximize
PSNR

PVR-TC [Fenney '03]

No coder publicly available —
the same images were used
and results taken from the
paper.

PACKMAN [Strom and Akenine-
Moller '04]

Exhaustive Coding
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Results for ETC

We have compared against the following systems:

ERICSSON

Scheme

Coder Used

Average Gain

S3TC/DXTC [lourcha et al. ‘99]

ATl's Compressonator, with
weights [1, 1, 1] to maximize
PSNR

0.41 dB

PVR-TC [Fenney '03]

No coder publicly available —
the same images were used
and results taken from the
paper.

0.65 dB

PACKMAN [Strom and Akenine-
Moller '04]

Exhaustive Coding

2.5dB
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Results for ETC

We have compared against the following systems:

ERICSSON

Scheme

Coder Used

Average Gain

S3TC/DXTC [lourcha et al. ‘99]

ATl's Compressonator, with
weights [1, 1, 1] to maximize
PSNR

0.41 dB

PVR-TC [Fenney '03]

No coder publicly available —
the same images were used
and results taken from the
paper.

0.65 dB

PACKMAN [Strom and Akenine-
Moller '04]

Exhaustive Coding

2.5dB

These figures were collected from a rather small number of images.
When using more images, quality of ETC was similar to S3TC/DXTC.
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[
» The strengths can most easily be seen in areas with fine
variations in luminance.

original
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ERICSSON

» The strengths can most easily be seen in areas with fine
variations in luminance.

original S3TC/DXTC
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Z
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ERICSSON

» The strengths can most easily be seen in areas with fine
variations in luminance.

original S3TC/DXTC ETC
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ERICSSON

» The strengths can most easily be seen in areas with fine
variations in luminance.

S3TC/DXTC ETC
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ERICSSON

» The strengths can most easily be seen in areas with fine
variations in luminance.
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ERICSSON

» The strengths can most easily be seen in areas with fine
variations in luminance.
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ERICSSON

Weaknesses

» When there are more than two colors of different
chrominance in a 2x4 block, ETC has problems.

» Such artifacts are especially visible when the two colors
have similar luminance.

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



ERICSSON

Weaknesses

» When there are more than two colors of different
chrominance in a 2x4 block, ETC has problems.

» Such artifacts are especially visible when the two colors
have similar luminance.

i %l

original
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Weaknesses

» When there are more than two colors of different
chrominance in a 2x4 block, ETC has problems.

» Such artifacts are especially visible when the two colors
have similar luminance.

original S3TC/DXTC
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Weaknesses

» When there are more than two colors of different
chrominance in a 2x4 block, ETC has problems.

» Such artifacts are especially visible when the two colors
have similar luminance.

original S3TC/DXTC ETC
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Adoption

» The Khronos organization has adopted ETC under the
name “Ericsson Texture Compression” (ETC) through an
OES extension for OpenGL ES.

» It is likely to be used by M3G 2.0, the new Java standard
for 3D graphics on phones

» Independent hardware vendors have started
implementing ETC.

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



ETC2

» Recently, an updated version of ETC was presented:

» J. Strom and M. Pettersson "ETC2: Texture Compression Using Invalid
Combinations”, Graphics Hardware 2007

» It is backwards compatible to ETC and brings a 1.0 dB
iIncrease in quality compared to ETC. (0.8 dB compared to
S3TC/DXTC)

» It fixes mostly blocks that ETC has problems with

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date




ERICSSON

Results

T-mode

original S3TC/DXTC ETC1 ETC2 B H-mode

. Planar

original S3TC/DXTC ETC 1 ETC2
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. Planar

original S3TC/DXTC ETC1 ETC2

X8

original S3TC/DXTC ETC 1 ETC2
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ERICSSON

RESUltS ETC1

T-mode

original S3TC/DXTC ETC1 —

This is also o Texture Test
Testmg Testing 12345678900 1)

1 CEIEN (A BIAEn 0.7 52

original S3TC/DXTC ETC 1

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date




Results

ETC1
CcoO nt. T-mode

original S3TC/DXTC ETC1 ETC2 = fhmode

L

original S3TC/DXTC ETC1 ETC2
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Results

ETC1
CcoO nt. T-mode

original S3TC/DXTC ETC1 ETC2 = fhmode

original S3TC/DXTC ETC1 ETC2
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Results

ETC1
CcoO nt. T-mode

original S3TC/DXTC ETC1 ETC2 = fhmode

.,

original  S3TC/DXTC ETC1 ETC2
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Normal Map Compression

Overview

» Normal maps: definition and usage
» The 3Dc algorithm
» Improvements over 3Dc
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Normal Map Compression

Overview

» Normal maps: definition and usage
» The 3Dc algorithm
» Improvements over 3Dc
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Normal Map Compression

Overview

» Normal maps: definition and usage
» The 3Dc algorithm
» Improvements over 3Dc

I've got
nothing
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Normal Maps Usage

» Adds geometric detail with the help of texture maps
» Stores a value of the local normal vector
» Realistic, detailed appearance at low cost

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



ERICSSON

How to "bake” a Normal Map

» Use a original high resolution mesh
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ERICSSON

How to "bake” a Normal Map

» Use a original high resolution mesh
» Create a low-res mesh that captures overall shape

Low resolution
mesh (here: only
two triangles)

, High resolution
e

s mesh
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How to "bake” a Normal Map

(continued)

» Shoot rays from the
lo-res surface to the high-
res surface

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



How to "bake” a Normal Map

(continued)

» Shoot rays from the
lo-res surface to the high-
res surface

» Calculate the normal e
vector (X, Y, Z) in the
Intersection points... /
A & . 4
Y b . Yl ‘ 4
4 AN N | | o L't;' 4




How to "bake” a Normal Map

(continued)

» Shoot rays from the
lo-res surface to the high-
res surface

» Calculate the normal
vector (X, Y, Z) in the

Intersection points...
e
. F'{ b L" ) b A ) '}.'1' 4 A
W i A& ... and store them
N S as RGB in a
| texture

—
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How to "bake” a Normal Map

(continued)

» Render the low-res surface + normal map

Hi-res — 20k triangles Lo-res — two triangles + normal map
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Lo-reg™— two triangles + normal map

7~

Lnnl
w N1 1 .

Hi-res — 20k triangles

» Render the low-res surface + normal map

Internal | X (X) | Date

AB 2009 | Ericsson

© Ericsson



Why not use regular texture comp.?

» S3TC and ETC are designed for colors — not for normal
data

» Visible artifacts along edges and in smooth areas
» It seems more than 4 bits per pixel is usually needed

» There are two methods especially made for normal maps:
—3Dc by ATI — 8 bits per pixel

—Ericsson Normal Compression, ENC (mostly developed by Lund
University [Munkberg et al. 2006]), also 8 bits per pixel

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date
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3Dc Overview

» Divide the normal map texture into 4x4 texel blocks
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3Dc Overview

Continued

» Each normal vector is normalized to the unit sphere
-X Y72 ()2

N=(X.Y,Z)
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3Dc Overview

Continued

» Each normal vector is normalized to the unit sphere
-X Y72 ()2

/

© Ericsson AB 2009 | Ericsson Internal | X (X) | Date



3Dc Overview

Continued

» Each normal vector is normalized to the unit sphere
-X Y2 (xy2)

» The z-coordinate can then be calculated using
z=+1/1—x2 —y2and does not need to be stored.

/
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3Dc Overview

Continued

» Each normal vector is normalized to the unit sphere
-X Y2 (xy2)

» The z-coordinate can then be calculated using
z=+1/1—x2 —y2and does not need to be stored.

» Only the (x,y) projection of the vector is stored.
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3Dc Overview

Continued

» Each normal vector is normalized to the unit sphere
-X Y2 (xy2)

» The z-coordinate can then be calculated using
z=+1/1—x2 —y2and does not need to be stored.

» Only the (x,y) projection of the vector is stored.

n=(x,0,2)
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3Dc Overview

(Continued)

» The bounding box for the block’s projected normals in the
XY-plane is stored

Xmin Xmax

Y
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3Dc Overview

(Continued)

» Inside the bounding box, each dimension is quantized to
one of eight levels (3 bits per dimension)
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3Dc Overview

(Continued)

» Inside the bounding box, each dimension is quantized to
one of eight levels (3 bits per dimension)




3Dc Overview

(Continued)

» Inside the bounding box, each dimension is quantized to
one of eight levels (3 bits per dimension)

» In total 128 bits per block:
— 32 bits for bounding box (8bits per xmin,xmax,ymin,ymax)
— 6 texel index bits per pixel = 96 bits
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3Dc Decompression

» Restore x and y values from the min/max values and the
texel indices using
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3Dc Decompression

» Restore x and y values from the min/max values and the
texel indices using
—x = Xmin + index * (xmax-xmin)/7
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3Dc Decompression

» Restore x and y values from the min/max values and the
texel indices using
—x = Xmin + index * (xmax-xmin)/7
—y =ymin + index * (ymax-ymin)/7
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3Dc Decompression

» Restore x and y values from the min/max values and the
texel indices using
—x = Xmin + index * (xmax-xmin)/7
—y =ymin + index * (ymax-ymin)/7
» Restore unit z-values using

z=11—x2—y2
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3Dc Decompression

» Restore x and y values from the min/max values and the
texel indices using
—x = Xmin + index * (xmax-xmin)/7
—y =ymin + index * (ymax-ymin)/7
» Restore unit z-values using
. . z=11—x2—2
» Can be done in a pixel shader
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3Dc Decompression

» Restore x and y values from the min/max values and the
texel indices using
—x = Xmin + index * (xmax-xmin)/7
—y =ymin + index * (ymax-ymin)/7
» Restore unit z-values using
. . z=11—x2—2
» Can be done in a pixel shader

» Supported by AMD graphics cards
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ERICSSON

Newer Normal Map Compression

Techniques

. Jacob Munkberg, Tomas Akenine-Moller and Jacob Strom,”High-
K uality Normal Map Compression",
& Graphics Hardware, September 2006.
— 1.87 dB higher quality than 3Dc
— Backwards compatible with 3Dc

» Jacob Munkberg, Ola Olsson, Jacob Strom and Tomas Akenine-
Moller, "Tight Frame Normal Map Compression"
Graphics Hardware, 2007
— 2.63 dB higher quality than 3Dc
— A candidate for inclusion in OpenGL ES
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http://graphics.cs.lth.se/research/papers/normals2006/
http://graphics.cs.lth.se/research/papers/normals2006/
http://graphics.cs.lth.se/research/papers/normals2006/
http://graphics.cs.lth.se/research/papers/normals2006/
http://graphics.cs.lth.se/research/papers/2007/tightframe
http://graphics.cs.lth.se/research/papers/2007/tightframe

Thanks to:

» Jacob Munkberg (for Normal Map Compression slides)
» Michael Doggett (for inviting me)
» You (for listening!)
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