A2: Fixed-point math, texturing, and texture caching

Michael Doggett
Department of Computer Science
Lund University
Assignment 2

• C++ programming, but very localized in functions where you should add code
 – C++ should be no problem (if it is, then contact us!)

• Only uses simple OpenGL
 – works on 8 year old ATI Radeon8500
Assignment 2

• You must use one of the frameworks
 – For project: either scenegraph, or use this framework, and reduce bandwidth usage as much as possible given an on-chip memory budget of 3 kB
 • Who can reduce bandwidth usage the most? Competition!

• Two small parts in this assignment:
 – Find three bad things in small scenes
 • Fix the code so that correct behaviour is obtained
 – Use a texture cache
 • Should be able to reduce texture bandwidth to 10-15%
Overview

• Theory:
 – Fixed-point math (Appendix A – online)
 – Texturing (Chapter 5 – online)
 – Texture caching (read assigned papers)
 • Caches (Section 5.5 in notes)
 – For assignment 2, it will help to read chapters 2 and 3 as well (online)

• Practice:
 – More about the rasterizer framework for assignment 2
 – More about the actual assignment
Fixed-point math

• Not floating point...
• Good to know!
• Ehhh..... why?
• Current mobile phones do not have floating-point units (FPUs)

• But (surely) they will have FPUs in the near future!
 – We do not want to learn stuff that will be useless in a month (or two). or even a few years

• It’s useful now, and for hardware design, it will always be useful – end of argument!
• Can be used for performance optimizations
Integer vs fixed-point

- An 8-bit integer:

 $b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0$

- b_i is "worth" 2^i as usual
 - But where is the decimal point?

 $b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \ 00000...$

- What if we move it to the left?

 $b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0 \ b_{-1} \ b_{-2} \ 00000...$

- b_i is still "worth" 2^i: $b_{-1} = 0.5$, $b_{-2} = 0.25$, ...
What is fixed?

• The decimal point...
• A fixed-point number has a representation of \([i.f]\) bits
 – \(i\) bits for the integer part (with sign, or without)
 • We assume that two’s-complement is used, i.e., integer math can be used
 – \(f\) bits for the fractional part
• Look at the fractional bits...

<table>
<thead>
<tr>
<th>(f_1)</th>
<th>(f_2)</th>
<th>(f_3)</th>
<th>(f_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1/2)</td>
<td>(1/4)</td>
<td>(1/8)</td>
<td>(1/16)</td>
</tr>
</tbody>
</table>

Decimal point

Worth \(1/2^1=0.5\)

Worth \(1/2^2=0.25\)

\(1/2^3=0.125\)

\(1/2^4=0.0625\)
Resolution

• f fractional bits \rightarrow resolution is 2^{-f}
• Examples:

<table>
<thead>
<tr>
<th>f</th>
<th>Resolution</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/2</td>
<td>0.5</td>
</tr>
<tr>
<td>2</td>
<td>1/4</td>
<td>0.25</td>
</tr>
<tr>
<td>3</td>
<td>1/8</td>
<td>0.125</td>
</tr>
<tr>
<td>4</td>
<td>1/16</td>
<td>0.0625</td>
</tr>
<tr>
<td>5</td>
<td>1/32</td>
<td>0.03125</td>
</tr>
<tr>
<td>6</td>
<td>1/64</td>
<td>0.015625</td>
</tr>
<tr>
<td>7</td>
<td>1/128</td>
<td>0.0078125</td>
</tr>
<tr>
<td>8</td>
<td>1/256</td>
<td>0.00390625</td>
</tr>
<tr>
<td>12</td>
<td>1/4,096</td>
<td>0.000244140625</td>
</tr>
<tr>
<td>16</td>
<td>1/65,536</td>
<td>0.0000152587890625</td>
</tr>
<tr>
<td>24</td>
<td>1/16,777,216</td>
<td>0.000000059604644775390625</td>
</tr>
<tr>
<td>32</td>
<td>1/4,294,967,296</td>
<td>0.000000000023283064365386962890625</td>
</tr>
</tbody>
</table>
How to maintain the best accuracy?

• The number of bits needed for exact accuracy is increased after each mathematical operation (e.g., subtraction)
 – Overflow

• We focus on
 – Addition/subtraction
 – Multiplication

• Reason: needed some part of assignment 2
Conversion: to fixed and back again

• We have floating point number, \(a \), and want fixed-point, \([i.f]\)

• To fixed: \(\text{round}(a \times 2^f) \)

• Nice thing: we now have an integer, and so can use integer addition, mult etc (but see next slides on that)

• Rounding is implemented:

\[
\text{round}(a \times 2^f) = \text{int}([a \times 2^f + 0.5])
\]

• If we have fixed-point number, \(b \), we get a float as:

\[
\text{float}(b \times 2^{-f})
\]

• \(x \ 2^f \) and \(x \ 2^{-f} \) are implemented as left and right shifts (fast!)
Very simple example:

• We have float \(b = 0.25 \)
• And want to represent it in fixed-point with 3 fractional bits, i.e., \(f = 3 \)
• \(\text{round}(0.25 \times 2^3) = 2 \)
• Thus 2 is the fixed-point representation of 0.25 with three fractional bits
• Can look at the 8 bits of the integer:
 – 0000.010 (is = 2 if you disregard the decimal point)
Addition precision

\[[i.f] \pm [i.f] = [i + 1.f] \]

• Why? Imagine the worse case:
 – Both numbers hold their maximum number:
 • Eg \(111.11_b + 111.11_b = 1111.10_b\)
 • Result grows by one bit in integer part!

• In general:

\[[i_1.f_1] \pm [i_2.f_2] = \max(i_1, i_2) + 1.\max(f_1, f_2) \]

Note ”+1”
Multiplication precision

• More complex. Can be seen as many adds!
 – So intuitively, should need more bits to store
 \[[i.f] \times [i.f] = [2i.2f] \]

• Note, that if you want to maintain exact accuracy, we need to move the "fixed-point"
 – Need twice as many fractional bits!

• In general:
 \[[i_1.f_1] \times [i_2.f_2] = [i_1 + i_2.f_1 + f_2] \]

• See appendix A for an explanation
 – Basically, a mult is a series of additions of shifted numbers
Fixed-point in practice

• In C++ code, you deal with these as int’s
 – 32 bits signed numbers (but you need not use all of the bits)
• However, you need to prepare the calculations so that bits are not lost
• For edge functions it is of uttermost importance to maintain exact values
 – (after you have rounded off floating-point screen space coordinates to sub-pixel fixed-point coords)
• Example: a and b are [8.2]. If you write:
 – c=a*b; // then c is [16.4]
 – d=c>>2; // d is on 16.2 format
 – // (but we’ve lost 2 LSB
 – // fractional bits)
Fixed-point example

- `float a=2.75f;`
- `int ai=int(a*(1<<2)+0.5); // [2.2]`
- `// should have used floatToFixed(), the above works fine for positive numbers`
- `float b=2.5;`
- `int bi=int(b*(1<<1)+0.5); // [2.1]`
- `// how compute ai+bi?`
- `int ci=a+(bi<<1); // [3.2] bits`
End of fixed-points...

- In software framework, a function
 int floatToFixed(fracBits, float_number)
is used.

- When you do a matrix/vector mult
 - You often do [16.16]*[16.16] ~=[32.16], or worse

- Remember
 - Full accuracy needed for edge-functions

- Read appendix A and chapter on Edge Funcs again
 - Available on course website
Texturing – the tiny details

Image from "lpics"-paper by Pellacini et al. SIGGRAPH 2005
PIXAR Animation Studios

• Surprisingly simple technique
 – Extremely powerful, especially with programmable shaders
 – Simplest form: "glue" images onto surfaces (or lines, or points)
Texture space, \((s,t)\)

- Texture resolution, often \(2^a \times 2^b\) texels
- The \(c^k\) are texture coordinates, and belong to a triangle’s vertices
- When rasterizing a triangle, we get \((u,v)\) interpolation parameters for each pixel \((x,y)\):
 - Thus the texture coords at \((x,y)\) are:

\[
(s,t) = (1 - u - v)c^0 + uc^1 + vc^2
\]
A texture image + coord systems

- An $w \times h = 8 \times 4$ texture.
 - (s, t) are independent of texture resolution
 - (sw, th) depends of resolution, and are used to access texels...
Texture filtering

- We basically want the sum of the texels in the footprint (dark gray) to the right.
Texture magnification (1)

- Middle: nearest neighbor – just pick nearest texel
- Right: bilinear filtering: use the four closest texels, and weight them according to actual sampling point
Texture magnification (2)

- Bilinear filtering is simply, linear filtering in x:
 \[a = (1 - \alpha)t_{00} + \alpha t_{10} \]
 \[b = (1 - \alpha)t_{01} + \alpha t_{11} \]
- Followed by linear filtering in y:
 \[f = (1 - \beta)a + \beta b \]
Texture minification

- If nearest neighbor or bilinear filtering is used, then serious flickering will result – Extremely annoying

For a pixel here, there is a 50% Change of getting a black texel
Texture minification: mipmapping

An image pyramid of low-pass filtered images
Trilinear Mipmapping (1)

• Basic idea:
 – Approximate (dark gray footprint) with square
 – Then we can use texels in mipmap pyramid
Trilinear mipmapping (2)

- Compute d (see Chapter 5), and then use two closest mipmap levels
 - In example above, level 1 & 2
- Bilinear filtering in each level, and then linear blend between these colors \rightarrow trilinear interpolation
- Nice bonus: makes for much better texture cache usage
Texture caching

• Without cache, we can get ridiculously expensive texturing...

• Basic idea is: just use a cache for recently accessed texels
 – Since we access coherently, hit rate should be quite high!
 – In hardware, a cache can be:
 • A small SRAM memory, or
 • A set of flipflops
 • We assume that an access in the cache is for "free"

• In assignment, texture filtering (eg mipmapping) is done for you.
 – You should experiment with caching parameters!
Assumptions: memory architecture

- Accesses to external memory are expensive
 - Both in time and from energy perspective
 - Bursting (i.e., send a sequence of continuous words) is often (much) cheaper
 - E.g., fetching 8x 32-bit words (32 bytes) in a sequence is much faster than fetching 8x 32-bit words that are in random places...
Texture cache readings

• You must read:
 • Note that these are old papers, and cache sizes etc does NOT apply to mobile systems...
 • The general results still apply though

• Example: NEON architecture
 – Built by Digital
 – Has 256 bytes of cache, fully associative (this is reasonable for a mobile architecture)
 – Split into 8 different small caches
 • So 8 texels can be fetched every clock cycle
 – Cache line size is 32 bits
 • This is very small. The optimal size depends on what type of external memory you have

• More about mobile memory architectures in a later lecture
How to get good efficiency

• Three important things [Hakura & Gupta]:
 – How texels in texture are ordered in memory
 – Rasterization algorithm
 – Cache parameters
 • Associativity
 • Cache line size
 • Cache size
Representation of textures in mem

- Normally, a 4x4 texture is stored as:
 - RGBA₀, RGBA₁, RGBA₂, ... RGBA₁₅
- What if, we traverse in the vertical direction?
 - E.g., accessing 1, 5, 9, 13
 - Quite bad if we read, say, 4 texels into the cache at a time
- Are better texel orderings possible?
- With representation to the right, only two blocks are read into the cache
- This representation will (on average) get the same performance regardless of traversal direction!!!
Representation of textures...

- This is called a "blocked" or "tiled" representation - "z-order"

- Is a 4D structure: first find 2x2 block, then texel in block

- In general, we have an $n \times n$ block...
 - n is power of 2

- Can get conflict misses between blocks from different levels in a mipmap

- Solution:
 - Use a fully associative cache
 - Hakura & Gupta shows that a 2-way associative cache gives similar results
 - Or simpler, "bake" the mipmap level into the computation of the "cache key" (tag)
Texture cache recommendations

• Tile (block) size in texture should be equal to cache line size
• Can even extend to 6D addressing
 – Another level, where each block is the size of the entire cache...
 • Further minimizes conflict misses
 – Also, Igehy et al use two separate direct-mapped caches:
 • One for odd mipmap levels, and one for even
 • Is enough to get good results
 • Again, one direct-mapped cached would work if the cache key (tag) take mipmap level into account (but having two caches gives as more bandwidth from the caches)
Traversing algorithm

• Traversal algorithm affects the order in which texels are accessed →
 – Also influences texture caching...

• With scanline-based traversal, we do not get any positive effects for pixels below current scanline
 – This is assuming a small cache
 – Positive effects should be possible, due to bilinear filtering (used in mipmapping and magnification)

• Tiled traversal performs better!
 – Especially for large triangles
Why is mipmapping good for texture caching?

• We choose mipmap levels to access where footprint becomes \(~1\) texel

• Therefore, traversal moves slowly in texture space \(\rightarrow\) many cache hits!

• Better than nearest neighbor (minification)
Back to the assignment...

The coding framework (1)

• Implements a subset of OpenGL ES
 – (mostly focused on the rasterizer, so far)

• Designed so
 – that it should be relatively easy to add algorithms for reducing bandwidth
 – that is, it is built around units that exist in real hardware

• Programmability
 – We have fragment shaders as well
 – Though, focus is not on using them right now...
The coding framework (2)

• Uses Microsoft Visual Studio 2003, 2005 or 2008

• Nice feature for this assignment:
 – Press the R key, and you can toggle rasterizer
 – You can switch from
 • our software rasterizer
 • to the OpenGL hardware rasterizer
Actual assignment (1)

- Two tasks..
- **Task 1:**
 - Switch between our software rasterizer and hardware OpenGL rasterizer (press ’R’)
 - Use this to detect the ”artifacts”
 - Three artifacts: need to correct so that results are ”very near” identical to hardware OpenGL
 - How could I know how to correct the artifacts?
 - Read the literature that we recommend!
 - Everything is very localized in the source:
 - Change in `cRasterizer.*` + `cEdgeFunc.*`
Actual assignment (2)

• **Task 1**: will not say more about that.
 – It’s your task to find and solve the problems

• **Task 2**:
 – Time to reduce texture bandwidth
 – In `glstate.cpp`, add a texture cache...
 – Should be able to reduce texture bandwidth to at most 10-15%...
 – You need to experiment quite a bit to get this kind of performance...
More about the software framework

setup()
cRasterizer or cTileRasterizer

rasterizeTriangle() [i.e., triangle traversal]

For each pixel inside triangle

perFragment()
Compute depth
Perspective interpolation
Fragment shader
Write color

cDepthUnit – depth test

cTextureUnit – texel fetch & filtering

cColorUnit
Last slide for today

• You must read the literature to pass this course!
 – just looking at slides is not enough
 – Holds for assignments too...

• Project should start soon!

• Thursday: Jacob Ström from Ericsson Research will be here to talk about texture compression!