
© 2009 Tomas Akenine-Möller and Michael Doggett 1

Michael Doggett
Department of Computer Science

Lund University

How to rasterize a triangle!
Edge functions and interpolation

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 2

Misc stuff
• Assignment 1 due Wednesday next week

– Sign up for next Wednesday’s Pluto lab
– Link on web page
– Meet during break to find partners

• Assignment 2 available on the web
– Talk about it more next tuesday

• Do you check out the Online Discussion forum? You
should...
– Assignment questions and answers

• The following lectures will be about graphics hardware.
There are notes (~100 pages) available for free on the
course website.

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 3

Overview of today’s lecture
• How graphics hardware can draw a triangle:

– Edge functions
– Triangle traversal
– Interpolation

• Why do I need to know about this?
– Before you can learn how to walk, you need to know...
– If you want to design your own hardware
– If you design new hardware algorithms
– If you work at company XXX and need to buy graphics

hardware for that company’s mobile phones, for example
– If you need to write your own rasterizer ...

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 4

The pipeline is long, why
rasterization?

• For any computer system, memory accesses are
the operation that uses most energy!

• For mobile devices: consume as little energy as
possible!

• Fact: pipeline is roughly two parts:
– GEOMETRY (per-vertex)
– RASTERIZER (per-pixel)

• Fact: RASTERIZER accesses memory much
more than GEOMETRY

• Conclusion: focus on making RASTERIZER as
efficient as possible

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 5

Overview of rasterizer

• Triangle setup
– Put everything we can factor out from the rest of the

pipeline, i.e., all ”per-triangle” computations
• Triangle traversal

– Find pixels (or samples) that are inside the triangle
• Pixel shader: apply per-pixel computations, texture

accesses, etc
• Frame buffer operations: depth buffer testing,

stencil, write to buffers, e.g.
Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 6

Let’s study
triangle traversal
• Critical operation in rasterizer

– without it, we have nothing
– Once we have it, we will study algorithms to dramatically

reduce memory accesses
• When does a pixel belong to a triangle?

Clearly, this pixel
belongs to the triangle

Clearly, this pixel does NOT
belong to the triangle

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 7

When does a pixel belong to a
triangle?

• It all depends on where you sample!
• For (low-quality) normal rasterizaion, you sample

in the center of the triangle:

How about this case? And this? And this? And this?

If sample point is inside triangle, then pixel is inside (belongs to)
the triangle.

In a later lecture, we will see how quality can be improved by
using more than one sample per pixel

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 8

Which coordinate system?
Where are we?

• After projection matrix, and homogenization, we
have p=(px,py,pz,1)T

• (px,py) are screen-space coordinates.
• Those are used for triangle traversal
• We assume that triangle have been clipped to

screen-space, that is, (px,py) are in [0,w] x [0,h]
(and w x h is screen resolution)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 9

Screen-space coordinates

• This is according to the specification of
OpenGL

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 10

What happens if you round off floating point
vertices to nearest pixel center?

Triangle
edge
using
floating
point
coords

Edge with ”snapped”
vertex coordinates

Frame 1 Frame 2 Frame 3

Big jump here... looks really bad.

With sub-pixel
coordinates this
will get solved

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 11
Remember: integer coords
at pixel corners!

After projection: sub-pixel coords
• Projected points are floating-point
• Due to limited range of the coordinates, we can

use fixed point math (integer)
• However, as we’ve seen, we cannot round off to

nearest pixel center
• Instead use sub-pixel coordinates
• With 2 subpixel fractional bits per x, and y, we

get:

Sub-pixel
Sample points

Floating point
coordinates
snaps to the
closest sub-
pixel sample

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 12

Edge functions
• Hardware uses these to find pixels inside

a triangle
• For each edge of the triangle, create a line

equation (implicit form):
• Edge function for two points p0 and p1:

Can be interpreted as the ”normal” of the line

• By definition, e(x,y)=0, if (x,y) is exactly on
the (infinite) line through p1 and p0

• How about other points?
Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 13

Intuition about edge functions

• e(u) must be >0 or <0? Why?
• e(v) must be >0 or <0? Why?

Recall this one:

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 14

Three edge funcs per triangle

• A sample point (x,y) is inside the triangle if
ei(x,y)>=0 for i= 0,1,2

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 15

Not really that simple, though :-(

• What happens to pixels exactly on an
edge?

A

B

Does the pixel belong to A or B,
or both or neither of them?

• Correct answer: one and only one of A or B
• Why?

– Neither  cracks between triangles
– Both  unnecessary work is done, and transparency &

shadow volumes (e.g.) give incorrect results

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 16

A solution (by McCool et al)

• Another way to think about it:
– We exclude shadowed edges

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 17

How about when a vertex coincides
with the sampling point?

• You get the same kind of problems!

• One solution: offset the subpixel grid so
that sampling points never coincide with
sub-pixel grid

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 18

Another solution

• Edges sharing sample points is the most
common problem, so solve that first...

• Don’t change the sub-pixel grid, allow
vertices to coincide with sample point

• So, now, two edge functions will be zero
for this pixel: e1(x,y)=0 and e2(x,y)=0

• How would you do it?
• Choose one direction, say southwards:
• The sampling point should only belong

to the triangle that has the arrow in it
• Can be determined from looking at the

”normals” of the edge functions

[Idea by John Owens, UC Davis]
Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 19

Incremental updates

• Reduce operations when moving from one pixel to
the next

• Similar for the other neighbors, and in general:

• Finally, we have the tool (edge functions) needed
for triangle traversal!

• Assume we have evaluated an edge function at
(x,y), so we already know e(x,y)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 20

Triangle traversal strategies
• Simple (and stupid): execute Inside() for every

pixel on screen, and for every edge
• Little better: compute bounding box first

– Called ”bounding box traversal”

Visits all
light and dark
gray pixels

But only dark
gray pixels
are inside,
and sent down
the pipeline
for further
processing

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 21

Backtrack traversal
• Have been used on mobile devices

– by a Korean research group (KAIST)
• Advantage: only traverse from left to right

– Could make for more efficient memory accesses
– Could backtrack at a faster pace (because no mem acc)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 22

Zigzag traversal
• Simple technique that avoids backtracking

– Otherwise, very similar
– Can still visit a bunch of pixels outside

• see next to most bottom scanline

– Can be solved, but requires more Inside()-testing

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 23

Side by side comparison
Backtrack vs zigzag

Backtrack never visits unnecessary
pixels to the left

Zigzag never visits unnecessary pixels
to the left on even scanlines and to the
right on odd scanlines
(and avoids backtracking)

We only cover simple schemes here. There
are more sophisticated schemes that visits fewer
pixels, but those are more expensive

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 24

Tiled traversal
• General idea: divide screen space into non-

overlapping tiles (a tile is wxh pixels)
– Traverse one tile at a time, and finish visiting pixels in

tile before moving to next tile

• Better because (all topics will be treated in later lextures):
– Gives better texture cache performance
– Enables simple culling (Zmin & Zmax)
– Real-time buffer compression (color and depth)

4x4 tile

8x8 tile size is
common in
desktop graphics
cards

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 25

Is tiled traversal that different?

• No, not really. We need:
– I : Traverse to tiles overlapping triangle
– II : Test if tile overlaps with triangle
– III: Traverse pixels inside tile

• Previous algorithms can handle I and III
• II needs to be handled

– Easily solved using....edge functions!
– See next slides...

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 26

Tile/triangle overlap test (1)
• Reuse knowledge from 3D intersection

testing—Haines and Wallace’s trick:
Only need to test the
corners whose diagonal
aligns best with the normal
of the plane

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 27

Tile/triangle overlap test (2)
• A tile is fully outside a triangle if:

– Either the tile is outside the bounding box of the
triangle (trivial)

– Or if tile is fully outside at least one edge func
(concentrate on this case)

We only need to
test the black corner
of the tile!!!

How can we know?

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 28

Tile/triangle overlap test (3)
• Assume we have evaluated the edge function for

the lower left corner, s= (sx,sy), of the tile, i.e., e(s)
• We can evaluate the tile corners with:

• Where t= (0,0), or t= (w,0), or t= (0,h), or t= (w,h)
– Since n=(a,b) is known from the edge function, and w &

h in all realistic scenarios are powers of two (e.g., 2g)...
– ...this reduces to adding shifted versions of a and b

• How compute t?

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 29

Tile/triangle overlap test (4)
• How compute t?
• Try example

to the right

• Look at normal direction n=(a,b)=(nx,ny)

• In general:

• t is computed as part of the ”triangle
setup”, since the info is constant all over
the triangle

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 30

Interpolation
• Now, we can find pixels inside triangles
• Next, interpolate parameters across triangles
• Why?
• Example 1; interpolation

of vertex colors:

• Example 2; interpolation
of ”images” (textures)

image
Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 31

Interpolation
• What is s at p?
• s(x,y) should vary

smoothly over
the triangle!

• Can be done using
barycentric
coordinates, (u,v,w)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 32

Barycentric coordinates
• Are proportional to the signed

areas of the subtriangles
formed by p and the vertices

• Area computed using cross product, e.g.:

• In graphics, we always use barycentric coordinates
normalized with respect to triangle area:

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 33

What are those barycentric
coordinates?

• Some examples

• Why are they constant on lines parallel to an
edge?

• Because height of subtriangle is constant!
Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 34

How are they used?
• 1: Compute barycentric

coordinates for a pixel
• 2: Interpolate vertex

parameters, s0, s1, s2:

• Note also:
– And they are negative

outside the triangle,
– Or >1

• Depth d=pz= hz/hw should be interpolated like this

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 35

Barycentric coordinates from
edge functions (1)

• The a and b parameters of an edge function
must be proportional to the normal
– However, if defined as we have, then we can

use the edge functions directly to compute
barycentric coordinates as well!

• Focus on edge, e2:

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 36

Barycentric coordinates from
edge functions (2)

• From definition of dot product:

• ||n2|| must be exactly b
(base of triangle)

• ||p-p0||cos α is the
length of projection of
p-p0 onto n2 i.e., h
(height of triangle)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 37

Barycentric coordinates from
edge functions (3)

• This means:

• And 1/(2AΔ) can be computed in the
triangle setup (once per triangle)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 38

Resulting interpolation

• Looks even
worse when
animated...

• Clearly,
perspective
correction is
needed!

With barycentric coordinates,
i.e., without perspective correction With perspective correction

Which is which?
Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 39

Perspective-correct interpolation
• Why?

– Things farther away appear smaller!

• And even inside objects, of course:

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 40

Per-pixel division is required for
perspective correct interpolation
• Surprisingly difficult to explain...
• Recall perspective projection: Me=h

– Where M is projection matrix, e is coord in eye
space, h is the result (but no homogenization
done)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 41

Here is the matrix M for your
convenience

• hx and hy are simply scaled (and translated, in the
general case) eye coordinates in x and y

• hw is simply the z-coordinate in eye-space
• Thus (hx, hy, hw) is e but in a slightly distorted space!

Tutorial on homogenization

(px,py) are screen space
coords

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 42

Our goal
• Interpolate with perspective
• Let’s try to use linear interpolation as

much as possible

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 43

Perspective correct interpolation (2)

• Now, we have parameters, si, per vertex that we
want to interpolate.

• In distorted eye space, this is straightforward,
because we can write the following for each vertex:

i=0,1,2

• Three equations, three unknowns (k,l,m)  solvable:

• We need to express this in screen space: (px,py)
– But (px,py)=(hx /hw, hy /hw)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 44

Perspective correct interpolation (3)

• Divide equation by hw ! 

• That is, linear interpolation in screen space!
• But unfortunately, we interpolate s/hw 
• Simple to correct for though:

– Linearly interpolation of: 1/hw Call func:
– And then…

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 45

• Correction is done as:
• Using sloppy notation (simpler to

understand, perhaps):

Perspective correct interpolation (4)

• So, to sum up:
– Linearly interpolate s/w in screen space
– Linearly interpolate 1/w in screen space
– Once s/w and 1/w have been computed for a

pixel (or sample point), recover s as:
(s/w)/(1/w)

– Linear interpolation can be done with
barycentric coordinates: (u,v)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 46

“Perspectively-correct
interpolation coordinates” (1)

• Background: many parameters to
interpolate (texture coordinates (1-8), fog,
color, etc) and expensive to compute
parameter/hw

• Better: compute (u,v) that are similar to
barycentric coordinates, (u,v) but (u,v)
have taken perspective into account

• Advantage: once (u,v) have been
computed, we can interpolate all
parameters with perspective as:

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 47

“Perspectively-correct
barycentric coordinates” (2)

• So, how compute (u,v)?
• Imagine, creating these per-vertex parameters, si :

You might want to recall this figure

• This means, that if we interpolate s with perspective in
mind, we will get u, which is perspectively correct!

• Similar trick can be done for v  (u,v)
• Can all be done with edge functions too!

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 48

“Perspectively-correct
barycentric coordinates” (3)

• Recall:

• Simplify:

Recall



Very important result

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 49

Triangle setup vs
per-pixel computations

• Triangle setup

• Per pixel (only most basic stuff)

Thursday, 5 November 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 50

Summary
• Edge functions are very powerful

– Crackfree rasterization (and no unnecessary
overdraw)

– Can evaluate pixels in parallel if needed
– Can interpolate using them as well

• Perspective-correct and...
• ...without perspective

– Tiled traversal possible too

• Next week, the (even more) fun graphics
hardware stuff starts!
– Time to save memory accesses!!
– And power!

• Before next lecture: read about caches
– Chapter 5, section 5 in online notes

Thursday, 5 November 2009

