

Seminar:
Assignment 1

Magnus Andersson (magnusa@cs.lth.se)

A lot of ground to cover...

● Assignment
● C++ crash course
● RenderChimp

This seminar

Assignment 1

1. Getting started

2. Building a Scene Graph

3. Simple Game

4. Playing around in Shaders

Assignment 1

1. Getting started
● Download Visual Studio Express
● Open RenderChimp.sln
● Compile and Run (should get a warning)

(if there is time, VS demo)

Assignment 1

2. Building a Scene Graph
● World node
● Creating and managing resources and nodes

● Create your own object using a VertexArray and an
IndexArray

● Hierarchical transformation

Assignment 1

3. Simple Game
● Transforming objects over time
● Input

(if there is time, show demo)

Assignment 1

4. Playing around in Shaders
● This is all the shader you'll ever have to see...
● Getting a value all the way from the platform

to the shader
● Time dependent effect

● Just one or a few lines of code...

Assignment 1

Errors and warnings end up in:
log.txt

Memory information ends up in:
mem.txt

In point.h:

class Point
{

public:
Point(float x, float y); // constructor
float getX(void) const; // accessor: const means does not change

state of object
float getY(void) const;

protected:
float mX; // member attributes
float mY;

};

The actual implementation is in point.cpp

Class Definition

In point.cpp:

Point::Point(float x,float y) // Point:: indicates which class
{

mX=x;
mY=y;

}

float Point::getX(void) const // getY() in the same way
{

return mX;
}

Implementation of Point

Function declaration:

In header file (for example):

bool finished(int t); // note semi-colon instead of function body

In cpp-file, function definition:

bool finished(int t)
{

if(t>1) return true;
else return false;

}

Declarations and Definitions

void func(void) // function not belonging to class (no ::)
{

int a;
a=sin(0.314);
Point pl;
Point *p = new Point(10.0, 20.0); // a pointer
Point *pa = new Point[20]; // array of 20 point objects

}

When func() is entered, a & pl are allocated on the stack, and when exited,
a & pl are automatically deleted.

p and pa is allocated using new, which means that you need to delete it at
some point: delete p; delete [] pa;

There is NO garbage collection in C++.

Allocation

Used when a class allocates memory using new.

The destructor deletes what it has allocated

class Point
{

public:
Point();
~Point(); // destructor

};

In point.cpp:
Point::~Point()
{

// delete memory here, for example:
delete mNameOfPointString; //if there was such a variable

}

Destructor

class Point
{

public:
virtual void update(void);

};

class TimePoint : public Point // inherit from Point
{

public:
void update(void); // overloads Point::update

};

Inheritance

Similar to packages in Java.

In header-file, rc.h:
namespace rc
{

class Point {...};
}

In cpp.file:
#include “rc.h”
namespace rc
{

Point::getX(void) const { return mX; }
}

Namespaces

#include “rc.h”

void test(void)
{

using rc::Point;
Point p;

}

// can “import” everything from a namespace by

using namespace rc;

Using namespaces

Default as in Java: parameter is copied

Then we have pointers and references as well

int func(Point &pr, Point *pp) // & is ref, * is pointer
{

pr.setX(pr.getX()+10); // note .
pp->setX(pp->getX()+10); // note ->

}

void test(void)
{

Point pr(1,1); // stack allocation
Point *pp= new Point(1,1); // heap allocation

func(pr, pp);
}

Reference and Pointer Parameters

An array: int a[10]; // no a.length as in Java

Array is passed as pointer to first element:
void func(int b[], int sizeOfArray) {...}

or
void func(int *b, int sizeOfArray) {...}

Functions and Arrays

Regular operators can be overloaded.

For example:
{

Matrix4x4 m = Matrix4x4(...);
Matrix4x4 n = Matrix4x4(...);

Matrix4x4 o = m * n; // Matrix multiplication!
}

Matrix4x4 Matrix4x4::operator*(const Matrix4x4 &v)
{

// Matrix multiplication implementation
}

(take peak inside VectorMath.h and VectorMath.cpp)

Operator Overloading

// For example, might be good for debugging sometimes

 std::cout << "drawing..." << std::endl;

// prints “drawing...” to standard output

// You can also use

 printf(“drawing...”);

// which is more C-like

Output

Lines beginning with #

The pre-processor is executed prior to the compiler

#define X

#ifdef X
printf(“X is defined”);

#else
printf(“X is not defined”);

#endif

Preprocessor

● C++ course slides
http://www.cs.lth.se/EDA031/forelasningar.shtml

● cplusplus.com
http://www.cplusplus.com/doc/tutorial/

More info

Moving on...

RenderChimp
Scene Graph

RenderChimp

Assignment package
● Out now!
● You will need:

● Visual Studio Express
● The assignment package from the home page

Project package
● An updated version of the framework for use in the

project will be available soon...

RenderChimp Overview

RenderChimp Overview

● RCInit() - called when program is loaded
● RCDestroy() - called just before program exits
● RCUpdate(DeviceState_t *ds) - called every frame

struct DeviceState_t {

u32 touch;
f32 x;
f32 y;

f32 roll;
f32 pitch;
f32 facing;

f32 time;
f32 timeStep;

};

Scene Graph Nodes

Scene Graph Resources

Nodes vs. Resources

Nodes:
● Describe hierarchical relationships in a scene.
● Organized in a tree-like manner. One parent per node.
● One node describes one object.
● Relatively cheap (~10s - 100s of bytes)

Resources:
● Describe data.
● Not organized in any particular way.
● One resource can be instantiated many times.
● Relatively expensive (~10s – 1000000s of bytes)

Nodes use resources. Resources use resources. No-one uses nodes.

Nodes vs. Resources

Imagine a game with two enemies...

Their triangle data is identical. Storing that data twice = twice as
expensive!

...what about 50 enemies?

Solution: Shared data!

However: located at
different positions in
the scene.

(Vertex) (Fragment)

The sceneGraph singleton

In RenderChimp there is an almighty singleton object called

 sceneGraph

All creation and deletion of Nodes and Resources must go through
this object. (new and delete are not permitted for any RenderChimp
objects).

For example: To create a Sprite you may write something like this:
 Sprite *s = sceneGraph.createSprite(“MrSprite”, “textures/smileyface.png”, ...);

And to delete it use:
 sceneGraph.deleteNode(s);

Take a look inside SceneGraph.h for more info...

Resources

Let's look through the available resource types...

● VertexArrays, IndexArrays and Materials can be cloned. This means that their
data is duplicated. This is most often less expensive than re-creating your
resource.

virtual Resource *clone(...);
● To retrieve a new instance of a resource, use this function:

virtual Resource *instantiate();

Resource instantiation and cloning

Instantiation:

Cloning:

Resource handling

Note: Resource handling differs in the Assignment package and the
coming Project package...

● For the assignment, just declare everything permanent, and
let the sceneGraph clean up after you on shutdown.

Resource handling

In the Project package...

Each resource is assigned a purge level. For instance...

Give Menu resources purge level 5.
Give Player mesh purge level 3.
Give Level data resources purge level 1.

To get rid of all the Level data and the Player mesh, but not the
Menu, use:

sceneGraph.purgeResources(3); // Purges everything <= 3

But, Node tree must die first! (it's your responsibility)

Resource handling

In the Project package...

Special case: purge level = 0.

Resource is associated with a reference counter.
● ++ every time a resource is instantiated.
● -- every time a reference to it is severed.
● If the reference counter hits 0, the resource is deleted.

Resource instantiation
There is a difference between... (1)

Sprite *s = sceneGraph.createSprite("mySpr", "textures/smoke.png", 0);

 ...and... (2)

Texture *t = sceneGraph.createTexture("textures/smoke.png", 0);
Sprite *s = sceneGraph.createSprite("mySpr", t, true); // (instantiate_resource =

true)

 ...and... (3)

Texture *t = sceneGraph.createTexture("textures/smoke.png", 0);
Sprite *s = sceneGraph.createSprite("mySpr", t, false); // (instantiate_resource =

false)

1) The texture is created within the Sprite. We don't need to manage the resource.

2) The texture is created by our application. When it's passed to the Sprite, it is instantiated.
We hold one instance of the Texture (the *t pointer), as do the Sprite! This means that the
resource should be deleted on our side at some point.

3) We created the Texture, but surrender it to the Sprite. This is equivalent to (1).

Resource instantiation

(1) and (3) (2)

● An array of float attributes associated with each vertex.
● For example: “Vertex”, “Normal”, “Color”, “Texcoord”, ...
● Organized with attributes to the same vertex adjacent to

each other.

● Set attributes using
void setAttribute(offset, length, name);

● In the example to the right we have:
setAttribute(0, 3, “Position”); // x, y, z floats
setAttribute(3, 4, “Color”); // r, g, b, a floats

Important note: The example shaders expects the attribute name
“Vertex” instead of “Position".

● Contains indices to a VertexArray
● Removes the need to repeat data in VertexArray
● TRIANGLE, TRIANGLE_STRIP, TRIANGLE_FAN

Basically an array of pixels.
Loaded in to texture memory.

Supported formats:
● RGBA, RGB, Grayscale

Filtering:
● Nearest neighbour, Bilinear, Trilinear

Wrapping:
● Clamp, repeat, mirrored repeat

● Defines the appearance of your triangle mesh
● Essentially its purpose is to hold data for the

associated ShaderProgram.

The assignment package has two example Materials:

● MaterialColorful:
● Very simple. Interpolates color between vertices.
● Expects “Vertex” and “Color” vertex attributes.

● MaterialPhong:
● A textured, per-pixel phong shader.
● Expects “Vertex”, “Normal” and “Texcoord” vertex attributes.

Can be either a Vertex shader or a Fragment shader

Vertex Shader
● Loaded from .vs source files.
● Per vertex calculations

Fragment Shader
● Loaded from .fs source files.
● Per pixel (fragment) calculations

(Shaders are compiled individually at run-time)

Vertex Shader + Fragment Shader = ShaderProgram
● Links two compiled shaders to a program

Useful for a range of different purposes:
● Materials (lighting calculations, texturing, ...)
● Per-vertex transformations (skinning, noise, ...)
● Post processing effects (depth of field, ambient

occlusion, ...)
● Use your imagination!

Nodes

Let's look through the available node types...

● Each node is identified by a name:
void setName(...); char *getName();

● Each node can have any number of children and may or may not have a parent.
void attachChild(...); void detachChild(...);
void detachFromParent(...); Node *getChild(...);
Node *getNextSibling(); Node *getParent();

● Duplicate the node, either by itself its entire subtree.
Node *duplicate(...);

Scene graph building example

Scene graph building example

Scene graph building example

Scene graph building example

● The root node of the scene graph must be a World node. Not
permitted anywhere else in the scene graph!

● Draw the entire scene graph using:
void drawAll(...);

● Must set an active camera. Render scene from this.
void setActiveCamera(...);

Describes a render state.

● Depth testing
● Stencil testing
● Scissors testing
● Blending
● Face culling

Don't worry about these for the assignment

A “standard state” resides in the World node. Applied before
drawing begins.

Rotate (R), Scale (S) and Translate (T)... Hierarchically!

Computed as:

M = T * R * S

(think: scale, then rotate, then translate)

Hierarchical transformation

leftGroup rightGroup

Hierarchical transformation

leftGroup rightGroup

rightGroup->translate(2.0f, 1.0f, 0.0f);

Hierarchical transformation

leftGroup rightGroup

rightGroup->translate(2.0f, 1.0f, 0.0f);

● Just a “dummy node”...

● Use to stack hierarchical transformations.

● .pwn files are loaded into Group nodes.
Group *g = sceneGraph.createGroup(“spaceship.pwn”, ...);

Looks down negative Z-axis

Projection is set to orthogonal, perspective
or a custom matrix.

void setOrthogonalProjection(...);
void setPerspectiveProjection(...);
void setProjection(...);

Very simple point light source.
● Color
● Intensity

A point in your scene.

Used by Geometry

Base class of geometric objects.

Set active lights on it for lighting calculations.
void setLight(...);
void clearLight(...);
Light *getLight(...);

It's up to the sub-classes how they use these lights.
● A TriangleMesh with MaterialPhong needs at least one light.
● A TriangleMesh with MaterialColorful doesn't need any lights.

Describes a triangle mesh.
● VertexArray + IndexArray defines triangles.
● Material defines appearance.

A Sprite is just two triangles glued together.

● Always faces the camera.

● May be lit using Light nodes.
● No light nodes attached = fully lit

● Great for explosions!

Memory debugging

Yes it's true – no garbage collection!

Memory.h tries to catch mistakes...
● Writing outside of an array
● Writing to free'd memory
● Freeing already free'd memory
● Memory leaks

Enable #define MEMORY_DEBUG
 from time to time...

Memory debugging

In the emulator...

Ti
m

e

Large allocation

Small allocation

Now

Total allocation
size

