

Antialiasing

EDA075 Mobile Graphics

Michael Doggett Department of Computer Science Lund University © 2007 Tomas Akenine-Möller

Demo of aliasing

• Aliasing (eng) = vikning (swe)

DEMO

Shows that aliasing is *very* noticable when animated: called "crawlies" in that case...

CG is a sampling and filtering process

Pixels

This is what we will study now

• Texture

A reasonable solution is mipmapping

Mobile case

- Small display, but held very close to your eyes
- Our measurements in 2003:
 - Average eye-to-pixel angle is 1—4 times larger for mobile than for a laptop/desktop
- "These display conditions implies that every pixel on a mobile phone should ultimately be rendered with higher quality than on a PC system."
 - from "Graphics for the Masses: A Hardware Rasterization Architecture for Mobile Phones", SIGGRAPH 2003, Akenine-Möller and Ström

Today: dramatic changes since 2003

So, we do not need to care about antialiasing? Or what?

- Even though display technology has changed a lot, aliasing is still
 - visible,
 - disturbing, and
 - even on a PC, it is visible and disturbing.
- Example:
 - Playing a game on the PSP. First thing you notice is jaggies and crawlies...

What should we do?

- Well, if you have "aliasing", all you got to do, is to "turn on *anti*aliasing"...
- We want the "average color" seen in the gray pyramid below [integral]

That's simple: solve it analytically...

- In this case, it is simple:
- How about this case:

- It is actually very very hard!
 - Especially if you want to use limited computing resources...

Standard solution in graphics:

- Turn to "point sampling"
 - i.e., evaluate "color" in certain points

Point sampling using a single point is what we've done so far... Using a sample at the center of each pixel Using more samples per Pixel can give a more accurate estimate of the pixel's color

Images courtesy of Bill Mark, University of Austin, Texas

Screen-based Antialiasing

- One sample per pixel is not enough
- Hard case: an edge has infinite frequency content
 - Means no sample rate can fix this for us...
- Supersampling techniques: use more samples

NOTE: frame buffer needs to be 4x as big!

Another example

•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•	•	•	•	•	•

Instead of:

•	•	•	•	•	•	•	•	•	•	•	•	•

How to compute the color of a pixel from samples?

$$\mathbf{p}(x, y) = \sum_{i=1}^{n} w_i \mathbf{c}(i, x, y)$$

- *w_i* are the weights in [0,1]
 Depends on the filter you use!
- **c**(*i*,*x*,*y*) is the color of sample *i* inside pixel
- $\mathbf{p}(x,y)$ is the color of the pixel

Sampling theory

- The filter weights, *w_i*
 - The figure below assume a pixel starts at -0.5 and ends at +0.5

Box filter

Sinc filter

Mobile supersampling

- Increase the sampling rate, and hope for the best
 - There are good ways and bad ways...
- What can we afford in the mobile case?
 - As little as possible...
 - Still want good quality!

1 sample per pixel

per pixel

Standard supersampling schemes

- Rotated Grid Supersampling (RGSS)
 - Good for near horizontal and vertical edges
 - Cost: 4 samples/pixel

- A study by a researcher called Naiman:
 - Near-horizontal and near-vertical edges are the most annoying to humans
 - Then comes near-45-degree edges...
 - RGSS: is very good for those cases!

Standard supersampling schemes

- Bad: 1, 1x2, 2x1, 2x2...
- Good: RGSS

– Quite expensive though!

NVIDIA's Quincunx sampling

2 generated samples per pixel 5 samples used to compute color of pixel

- Good news: cost is only 2 samples/pixels
 - The rest comes from sharing samples with neighboring pixels

Still, RGSS quality is much better!
 – Check bottom edge of black triangle

A new inexpensive multisampling scheme

- Combine good features of two existing schemes
- Quincunx scheme by NVIDIA:

2 generated samples per pixel 5 samples used to compute color of pixel

- [Weights sum to one!]
- Rotated Grid Supersampling (RGSS)
 - Good for near horizontal and vertical edges

FLIPQUAD supersampling

Quality: quite near RGSS (costing 4 samples)

Visual Results: FLIPQUAD

Concentrate on two things:

Aliasing near horizontal edge

"jerk" when angle is near 45°

Single Sample

Visual Results: FLIPQUAD

NVIDIA Quincunx

Four mid gray levels, but only two effective for near horizontal edges

Note "jerk" at 45" angle still visible

Visual Results: FLIPQUAD

FLIPQUAD (proposed scheme):

Three mid gray levels, but effective since evenly spaced out

No "jerk"

Visual results: FLIPQUAD

Full scene example:

Single Sample Quincunx FLIPQUAD

Finnish research group has shown that *FLIPQUAD* is the best sampling scheme at 2 samples/pixel **DEMO**

FLIPQUAD implemented in ATI/Bitboy's architectures

Supersampling vs multisampling

- There are actually two types:
 - Supersampling: any type of sampling that uses more than one sample per pixel
 - Multisampling: is supersampling, but with the restriction that the fragment shader (texturing etc) is only evaluated once per pixel.
 - Cheaper but lower quality
 - Only affects edges, not shader antialiasing...
 - Hence, supersampling can provide better texture sampling

High-quality antialiasing

- Use jittered sample points
 Replaces aliasing with noise
 - Humans easily accept a bit of noise, rather than aliasing, which is disturbing

Divide pixel into nxn subpixels, random position inside subpixel

•	•	•	•	•	•	•	•	٠
•	•	•	•	•	•	•	•	•
•	•	•	•	•	•	•	•	•

High-quality antialiasing (2)

- Sample positions may differ spatially but not temporally
 - Each pixel must use same sample locations every frame

Image from ATI's SMOOTHVISION sampling [Note: this is not exactly jittered sampling, rather random/interleaved sampling] Though, positions of samples are programmable

Pattern is pseudo-random, and repeatable → manageable for HW

Check out the power of antialiasing of transparency

No FSAA

4X FSAA

16X FSAA

Images courtesy of Falanx

Texture sampling becomes better with supersampling techniques

Trilinear

+Supersampling

Images courtesy of Falanx

Next time...

- Is the last lecture
 - Jury will be here to judge the ones competing
 - Is anyone part of the competitions?
 - iPhone Project?
 - Graphics Hardware optimization?
 - You need to notify me whether you want to be part of the competition
- Project deadline is on Friday this week
 - You shall deliver: report + source code
 - Send by email to me and Magnus!
- Check out the list of required readings (papers etc) on website.

Intro to another topic: Real 3D Graphics...

- LG predicts 3D TV market > 30 million units by 2012
- Korea starts 3D Full HD broadcast next year
- Need a new type of displays for *real* 3D
- Known as autostereoscopic displays
- No need for extra glasses or other peripherals

Stereo graphics used to be painful

- Philips manufactures one display with 9 views
- Displays for mobile phones are available
- Systems for 3D TV and video have been built
 - 16 views
 - 80 views

Display type 1: lenticular displays

Display type 2: parallax barriers

How much does it cost?

Brute-force

- With N views, it costs N times as much as a single image
- Our display has 9 views...
- Can we do something smarter?
 - As shown below, the images are quite similar
 - Let's exploit this...

Hasselgren and Akenine-Möller sorted traversal

Sorted traversal

^{© 2007} Tomas Akenine-Möller

Results

Future...

- These displays are likely to be a big hit
- Need to mature a bit more
- Lots of new research to be done in this field

The end