
© 2009 Tomas Akenine-Möller and Michael Doggett 1

Michael Doggett
Department of Computer Science

Lund University

Architectures

© 2009 Tomas Akenine-Möller and Michael Doggett 2

Overview of today’s lecture
• The idea is to cover some of the existing graphics

architectures (for mobile platforms)
– Extremely little is known to the public

• General info about graphics architectures
• XBOX

– Traditional ‘straight’ pipeline
– But slowly disappearing
– non-unified architecture

• Tiling architectures [different from ”tiled rasterization”!]
– Kyro (PC-architecture)
– Popular for mobile architectures where bandwidth and memory

are limited
• ATI Bitboys’ architecture
• Unified shaders

– XBOX 360
– High end PC graphics ATI Radeon 2900, 4870, 5870

Graphics Processing Unit
GPU

• How to turn millions of triangles into pixels in 1/60
of a second?

• Parallelism !!

• Pipelining

• Single Instruction Multiple Data (SIMD)

• Memory Bandwidth reductions (covered previously)

PU PU PUPU 4-wide

Data 0 Data 1 Data 2 Data 3

1 Instruction

TexturingPixel shader

TransformVertex shader

GPU Pipeline

4

Rasterization

Surface

FrameBuffer

Z & Alpha

Surface

Vertices

Shaders

Textures

Shaders

Image

Programmable shaders
SIMDs

New surface
tessellation stages

•2001 -- Radeon 8500 (R200)
•2-wide Vertex shader
•4-wide SIMD Pixel shader

•2002 -- Radeon 9700 (R300)
•4-wide Vertex shader
•8-wide SIMD Pixel shader

© 2009 Tomas Akenine-Möller and Michael Doggett 5

Briefly about pipelining
• In GeForce3: 600-800 pipeline stages!

– 57 million transistors
– Pentium IV: 20 stages, 42 million transistors

• Some desktop graphics cards:
– GeForce FX 5800: 125 M transistors, 500 MHz
– 2005: GeForce FX 7800: 302 M transistors, 430 MHz
– 2007: ATI Radeon 2900, 700 M transistors, 740 MHz
– 2009: ATI Radeon 5870, 2154 M transistors, 850 MHz

• Ideally: n stages n times throughput
– But latency increases!
– However, not a problem here

• Chip runs at, say, 200 MHz (5ns per clock)
• 5ns*700stages=3.5 µs
• We got about 20 ms per frame (50 frames per second)

• Graphics hardware is simpler to pipeline because:
– Pixels are independent of each other
– Few branches and much fixed functionality
– Don’t need that high clock freq: bandwidth to memory is often bottleneck

• This is changing with increased programmability though
– Simpler to predict memory access pattern (do prefecthing!)

© 2009 Tomas Akenine-Möller and Michael Doggett 6

Parallelism
• ”Simple” idea: compute n results in parallel, then

combine results
• GeForce FX 5800: 8 pixels/clock, 16 textures/clock

– With a pipeline of several 100 stages, there are many pixels
being processed simultaneously

– This does not apply directly to mobiles, though

• Not always simple!
– Try to parallelize a sorting algorithm…
– But pixels are independent of each other, so simpler for graphics

hardware

• Can parallelize both geometry (vertex) and rasterizer
(pixel):

© 2009 Tomas Akenine-Möller and Michael Doggett 7

Taxonomy of hardware
• Need to sort from model space to screen space
• Gives four major architectures:

– Sort-first
– Sort-middle
– Sort-Last Fragment
– Sort-Last Image

• Will describe these briefly, and then focus on
sort-middle and sort-last fragment (used in
commercial hardware)

© 2009 Tomas Akenine-Möller and Michael Doggett 8

Sort-First
• Sorts primitives before geometry stage

– Screen in divided into large regions
– A separate pipeline is responsible for each

region (or many)
• G is geometry, FG & FM is part of rasterizer

– A fragment is all the generated information for a pixel on a
triangle

– FG is Fragment Generation (finds which pixels are inside
triangle)

– FM is Fragment Merge (merges the created fragments
with various buffers (Z, color))

• Not explored much at all – kind of weird architecture
- poor load balancing

© 2009 Tomas Akenine-Möller and Michael Doggett 9

Sort-Middle

• Spread work arbitrarily among G’s
• Then depending on screen-space position, sort to

different R’s
– Screen can be split into ”tiles”. For example:

• Rectangular blocks (e.g., 4x4 pixels)
• Every n scanlines

• The R is responsible for rendering inside tile
• A triangle can be sent to many FG’s depending on

overlap (over tiles)

• Sorts betwen G and R
• Pretty natural, since after G, we know the

screen-space positions of the triangles

© 2009 Tomas Akenine-Möller and Michael Doggett 10

Sort-Last Fragment

• Again spread work among G’s
• The generated work is sent to FG’s
• Then sort fragments to FM’s

– An FM is responsible for a tile of pixels
• A triangle is only sent to one FG, so this avoids

doing the same work twice
– Sort-Middle: If a triangle overlaps several tiles, then

the triangle is sent to all FG’s responsible for these
tiles

– Results in extra work

• Sorts betwen FG and FM
• XBOX uses this!

© 2009 Tomas Akenine-Möller and Michael Doggett 11

Sort-Last Image
• Sorts after entire pipeline
• So each FG & FM has a separate

frame buffer for entire screen (Z and
color)

• After all primitives have been sent to
pipeline, the z-buffers and color buffers are
merged into one color buffer

• Can be seen as a set of independent pipelines
• Huge memory requirements!
• Used in research, but probably not commercially

© 2009 Tomas Akenine-Möller and Michael Doggett 12

Taxonomy – why?
• Good to know if you want to discuss what

type of architecture a company want to sell
to you

• Good to know if you want to build your
own architecture
– What are the advantages/disadvantages of

each...

© 2009 Tomas Akenine-Möller and Michael Doggett 13

The Xbox game console
• Built by Microsoft

and NVIDIA
• Is almost a PC:

– Pentium III, 733 MHz
– An extended

GeForce3
• Why talk about it

here?
– It resembles some

mobile architectures a
bit, and there is
information
available...

© 2009 Tomas Akenine-Möller and Michael Doggett 14

Xbox is a UMA machine
• UMA = unified memory architecture

– Every component in the system accesses the
same memory

We focus on the
GPU

Many mobile
graphics
architectures
are UMA as well

© 2009 Tomas Akenine-Möller and Michael Doggett 15

Xbox Graphics Processing Unit
• Supports programmable

vertex shaders
– No fixed-function geometry

stage
• Is sort-last fragment

architecture
• Rasterizer: handles four

pixels per clock
• Runs at 250 MHz

Imagine this is a programmable
fragment shader unit,
and we have a pretty modern
architecture

© 2009 Tomas Akenine-Möller and Michael Doggett 16

Xbox
geometry stage

• Vertex shader unit is a SIMD machine that
operates on 4 components at a time
– The point is that instead of a fixed function

geometry stage, we have now full control over
animation of vertices and lighting etc.

• Uses DMA (direct memory access), so that the
GPU fetches vertices directly from memory by
itself!

• Three different caches – for better performance!

• Dual vertex shaders
– Same vertex program is

executed on two
vertices in parallell

© 2009 Tomas Akenine-Möller and Michael Doggett 17

Xbox rasterizer
• First block: triangle setup

(TS) and FG
• TS computes various deltas

and other startup info

• This block also does Z-occlusion testing
• FG generates fragments inside triangles

– Tests 2x2 pixels at a time, and forwards these to the four
pipelines that follow

– Note: near edges, not all pixels are inside triangles, and
therefore 0-3 pipelines may be idle

– There are many strategies on how to find which fragments
are inside triangle, but exactly how this is done on the
XBOX is not known

© 2009 Tomas Akenine-Möller and Michael Doggett 18

• Assume TX+RC+Combiner is a
”Programmable Fragment Shader Unit”
– The Xbox only had little flexibility there...
– Register Combiners (programmable)

• Finally, result from TXs, RCs, shading
interpolation, fog interpolation is merged into
a final color for that pixel

Xbox rasterizer
• Sorting is done after FG

– Sort-last fragment arch.
• First: 2 texture units

– Can be run twice 4
texture lookups

sort

© 2009 Tomas Akenine-Möller and Michael Doggett 19

Xbox rasterizer:
Fragment merge

• The combiner produced a final color for the pixel
on a triangle

• FG merges this with:
– Color in color buffer (alpha blending)
– Respect to Z-buffer
– Stencil testing
– Alpha testing

• Z-compression and decompression is handled
here as well

• Writes final color over the system memory bus

© 2009 Tomas Akenine-Möller and Michael Doggett 20

Questions on XBOX?

© 2009 Tomas Akenine-Möller and Michael Doggett 21

Tiling architectures
• There is an ongoing battle between

traditional architectures (what we’ve
looked at so far) and tiling architectures
– Which is best?
– Depends...

• Sort-Middle architecture!

© 2009 Tomas Akenine-Möller and Michael Doggett 22

Examples of existing tiling
architectures

• Imagination technologies
– Kyro II (PC graphics card)
– Sega Dreamcast
– PowerVR MBX (for mobiles)
– PowerVR SGX (for mobiles)

• Falanx (Norway) [now owned by ARM]
– Mali architectures
– For mobiles as well

• Intel Larrabee
– Software Tiled based rasterizer
– Coming soon ...

© 2009 Tomas Akenine-Möller and Michael Doggett 23

Tiling: basic idea (1)
• Apply vertex shader (incl. projection) to

vertices

• Create a triangle list for each tile
– Holds pointers to all triangles overlapping a tile

A

B

C

D
E

F

A

B

C

D

E

F

© 2009 Tomas Akenine-Möller and Michael Doggett 24

• Process one tile at a
time, and rasterize
triangles in tile’s
triangle list

Tiling: basic idea (2)
A

B

C

D

E

F

Screen color buffer
On-chip buffers (color, depth, etc)

Start with tile A’s triangles
When all triangles in list have
been processed, copy on-chip color buffer
to screen color buffer
Need to write out depth buffer as well! Because, the programmer may
want to access it

© 2009 Tomas Akenine-Möller and Michael Doggett 25

Tiling: basic idea (3)
A

B

C

D

E

F
Screen color buffer

On-chip buffers (color, depth, etc)

Then tile B’s triangles
When all triangles in list have
been processed, copy on-chip color buffer
to screen color buffer

A

B

C

D
E

F

© 2009 Tomas Akenine-Möller and Michael Doggett 26

Tiling: basic idea (4)
A

B

C

D

E

F
Screen color buffer

On-chip buffers (color, depth, etc)

Then tile C’s triangles
When all triangles in list have
been processed, copy on-chip color buffer
to screen color buffer

AND
SO
ON...

A

B

C

D
E

F

© 2009 Tomas Akenine-Möller and Michael Doggett 27

KYRO – a PowerVR-based
tiling architecture

• For KYRO II: tile=32x16 pixels
• Tiling advantage: can implement

temporary color, stencil, and Z-buffer in
fast on-chip memory for a single tile

• Saves memory and memory bandwidth!
– Claims to save 2/3 of bandwidth compared

to traditional architecture (without Z-
occlusion testing, no buffer compression...)

© 2009 Tomas Akenine-Möller and Michael Doggett 28

KYRO architecture overview

• CPU sends triangle data to KYRO II
• Tile Accelerator (TA)

– Needs an entire scene before ISP and TSP blocks
can start

– So TA works on the next image, while ISP and TSP
works on the current image (i.e., they work in a
pipelined fashion)

– TA sorts triangles, and creates a list of triangle
pointers for each tile (for tris inside tile)

© 2009 Tomas Akenine-Möller and Michael Doggett 29

KYRO
• Tile accelerator:

– When all triangles for entire scene are sorted into tiles, the
TA can send tile data to next block: ISP

– And the TA then continues on the next frame’s sorting in
parallel

• Image synthesis processor (ISP):
– Implements Z-buffer, color buffer, stencil buffer for tile
– Depth testing:

• Test 32 pixels at a time against Z-buffer
• Records which pixels are visible

– Groups pixels with same texture and sends to TSP
• These are guaranteed to be visible, so we only texture each pixel

once

© 2009 Tomas Akenine-Möller and Michael Doggett 30

KYRO: TSP
• Texture and Shading Processor (TSP):

– Handles texturing and shading interpolation
• Has two pipelines that run in parallel

– 2 pixels per clock
• Can use 8 textures at most

– Is implemented by ”looping” in TSP
• Texture data is fetched from local memory
• Supersampling: 2x1, 1x2, and 2x2

– Renders a larger image and filters and scales down
– For 2x2: Need only 4x the size of tile (or rather, render 4x

as many tiles, i.e., need not 4x memory)

© 2009 Tomas Akenine-Möller and Michael Doggett 31

PowerVR MBX and SGX
• Kyro was for the PC market...
• MBX and SGX are designed for the mobile market
• Tiling: creates depth buffer first, then applies pixel shader

– Does not apply pixel-shader for hidden fragments: called ”deferred
shading”

• Uses PVR Texture Compression
• SGX (newest): uses unified shaders

– Programmable vertex and pixel shaders

© 2009 Tomas Akenine-Möller and Michael Doggett 32

Traditional vs Tiling

© 2009 Tomas Akenine-Möller and Michael Doggett 33

Falanx Mali Architecture
• Tiling architecture (tile size=16x16)

• Does not create Z-buffer
first, and then apply pixel
shader (as do PowerVR)

• Instead two other
techniques to reduce BW:
– Efficient Zmax-culling

Eliminates ~50% of
occluded pixels [this
varies, of course...]

– 2 bits-per-pixel texture
compression (FLXTC)

• Plus fantastic antialiasing
(more about that next
lecture)

© 2009 Tomas Akenine-Möller and Michael Doggett 34

Questions on tiling
architectures?

© 2009 Tomas Akenine-Möller and Michael Doggett 35

Bitboys’ G40 architecture
• Not a tiling architecture Bitboys, bought by ATI, ATI

bought by AMD, AMD sold
handheld graphics to Qualcomm

© 2009 Tomas Akenine-Möller and Michael Doggett 36

© 2009 Tomas Akenine-Möller and Michael Doggett 37

© 2009 Tomas Akenine-Möller and Michael Doggett 38

What can we expect?

© 2009 Tomas Akenine-Möller and Michael Doggett 39

To tile or not to tile? (1)
• Tiling:

– Good:
• Uses a small amount of very fast memory

– 16x16x (4 (color) + 4 (depth) + 1 (stencil))=2304 bytes
• Bandwidth to z-buffer, color buffer, stencil for free
• Design is parallel (add more pipes)

– Bad:
• More local memory is needed (for tile sorting)
• Bandwidth increase since geometry needs sorting
• State changes: what happens when you need to switch from one

long pixel-shader program to another? (several times per tile...)
• Harder to predict performance
• A triangle covering several tiles, is processed several times

– E.g., triangle setup...
– Ugly:

• Amount of local memory places a limit on how many triangles can
be rendered

• Overflow?
• 3 MB can handle a little over 30,000 triangles (info from Kyro II)

© 2009 Tomas Akenine-Möller and Michael Doggett 40

To tile or not to tile? (2)
• Traditional:

– Good:
• More straightforward to implement
• Easier to predict performance
• Other bandwidth reduction techniques can be used (buffer

compression, zmin/zmax-culling, e.g.)
• No (big) problems with state changes

– Bad:
• Cannot have the entire framebuffer in on-chip memory
• Buffer accesses costs!
• Have to execute pixel shader unnecessarily for some occluded

fragments [but Zmax/Pre-Z pass can help]
– Ugly:

• Too traditional – not that exotic...

© 2009 Tomas Akenine-Möller and Michael Doggett 41

• Who knows?
– Definitely scene-dependent!

To tile or not to tile? (3)

© 2009 Tomas Akenine-Möller and Michael Doggett 42

Unified shader architecture
• First on XBOX 360 (2005)

– DirectX10 uses unified shader model
• All PC graphics unified from Radeon 2xxx and GeForce

8xxx up
• iPhone’s PowerVR SGX
• Made possible since vertex shaders and

fragment shader instruction set converged
• Basic idea:

– Have n ”unified shader units”
– Can be used for either vertices or fragments

• Why?
– Load balancing!
– Increasing vertex processing

© 2009 Tomas Akenine-Möller and Michael Doggett

Unified Shader: XBOX 360
• 48 unified shader units

– e.g 16 used for vertices, and 32 for fragments
– Scheduling is dynamic
– Split depends on what is being rendered

• Consequence: can run at ~100% efficiency all the time,
rather than having some pipeline instructions waiting for
others
– Non-unified shader pipeline based high-end

PC chips can run at 50-60% efficiency.

43

© 2009 Tomas Akenine-Möller and Michael Doggett 44

Unified shaders
• Sequencer’s

goal:
– Keep all 48

unified shader
units busy
~100% of the
time in the
most efficient
way possible.

– Threads are
grouped in
sets of 64 and
run together

XBOX 360

– If a thread needs to wait for data, another
thread can be processed and sent to the
unified shader units.

ATI Radeon 2900
(R600)

• Merge the XBOX360 unified shader with
X1800 (R520) series

• Support Microsoft’s DirectX Direct3D 10

• Unified shader language

• New Geometry Shader pipeline stage

• Supported on mobiles chips

• Launched 2007

Radeon HD 2900 August 200746

R600
Top Level
Red – Compute

Yellow – Cache

Unified shader

Shader R/W

Instr./Const. cache

Unified texture cache

Compression

4 SIMDs
16 Vector Units per SIMD
5 ALUs per Vector Unit

Unified
Texture
Cache

L2 256KB
L1 32KB

Rasterizer

Thread Scheduler

Z + Blend

Radeon 480047

ATI Radeon™ 4800 Series Architecture

 10 SIMDs
 1.2 teraFLOPS

= 10 SIMDs x
 16 ALUs x
 5 (32bit FP) x
 2ops (muladd) x
 750MHz

Radeon 480048

Radeon 4800 Series (R770)

 Launched 2008
 260mm2

 956 MTransistors

Radeon 480049

Radeon 4800 Series

 Launched 2008
 260mm2

 956 MTransistors
 64 z/stencil
 40 texture
 10 SIMDs

– Increasingly larger
percentage of chip

ATI Radeon 5870
(R800)

• Released 23 September 2009

• First Direct3D 11 GPU

• 2 x 10 SIMDs

ATI Radeon 5870

from http://
www.anandtech.com/
video/showdoc.aspx?

i=3643&p=5

RasterizerRasterizer

L2 Cache
128KB

L2 Cache
128KB

L2 Cache
128KB

L2 Cache
128KB

http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5

Intel’s Larrabee

• n (16-32) Pentiums with 16 wide 32bit SIMD

• 1024 bit ring bus

© 2009 Tomas Akenine-Möller and Michael Doggett 53

The end

