Architectures

Michael Doggett
Department of Computer Science
Lund University

Overview of today’s lecture

The idea is to cover some of the existing graphics
architectures (for mobile platforms)
— Extremely little is known to the public ®

General info about graphics architectures
XBOX

— Traditional ‘straight’ pipeline
— But slowly disappearing
— non-unified architecture

TI|Ing architectures [different from tiled rasterization”!]
— Kyro (PC-architecture)

— Popular for mobile architectures where bandwidth and memory
are limited

ATI Bitboys’ architecture

Unified shaders

— XBOX 360

— High end PC graphics ATl Radeon 2900, 4870, 5870
2

Graphics Processing Unit
GPU

® How to turn millions of triangles into pixels in 1/60
of a second?

® Parallelism !!
® Pipelining
® Single Instruction Multiple Data (SIMD)

® Memory Bandwidth reductions (covered previously)

Data 0 Data | Data 2 Data 3

. Ii;!l Ii!l Ii:!l Iigl 4-wide

GPU Pipeline

New surface
tessellation stages

Programmable shaders

SIMDs
*2001 -- Radeon 8500 (R200) Textures l
e2-wide Vertex shader
Shaders

*4-wide SIMD Pixel shader

*2002 -- Radeon 9700 (R300)
*4-wide Vertex shader

*8-wide SIMD Pixel shader Image

Briefly about pipelining

In GeForce3: 600-800 pipeline stages!
— 57 million transistors
— Pentium IV: 20 stages, 42 million transistors

Some desktop graphics cards:
— GeForce FX 5800: 125 M transistors, 500 MHz
— 2005: GeForce FX 7800: 302 M transistors, 430 MHz
— 2007: ATl Radeon 2900, 700 M transistors, 740 MHz
— 2009: ATI Radeon 5870, 2154 M transistors, 850 MHz
|deally: n stages = n times throughput
— But latency increases!

— However, not a problem here
« Chip runs at, say, 200 MHz (5ns per clock)
« 5ns*700stages=3.5 us
» We got about 20 ms per frame (50 frames per second)

Graphics hardware is simpler to pipeline because:

— Pixels are independent of each other

— Few branches and much fixed functionality

— Don’t need that high clock freq: bandwidth to memory is often bottleneck
» This is changing with increased programmability though

— Simpler to predict memory access pattern (do prefecthing!) 5

Parallelism

"Simple” idea: compute n results in parallel, then

combine results

GeForce FX 5800: 8 pixels/clock, 16 textures/clock
— With a pipeline of several 100 stages, there are many pixels

being processed simultaneously

— This does not apply directly to mobiles, though

Not always simple!

— Try to parallelize a sorting algorithm...
— But pixels are independent of each other, so simpler for graphics

hardware

Can parallelize both geometry (vertex) and rasterizer

(pixel):

G

R

Application (A)

see| O

Geometry
stage

see|

~
-

~

Display

Rasterizer

stage 6

Taxonomy of hardware

* Need to sort from model space to screen space

« Gives four major architectures:
— Sort-first 'f
— Sort-middle —

Jiesdlealed

— Sort-Last Fragment : Ffiuf?
Z s [em] [em

==

— Sort-Last Image 2

« Will describe these briefly, and then focus on
sort-middle and sort-last fragment (used in
commercial hardware)

Sort-First I

SORT
Sorts primiti bef try st i
* O0rts primitives betore geometry stage :|[L¢JLECILE
P s . J _ y Slage T
— Screen in divided into large regions % |Lr6] [kG] [¥G
— A separate pipeline is responsible for each ; sz f\b, ,{\%
region (or many) Ll
G is geometry, FG & FM is part of rasterizer —7_
— Afragment is all the generated information for a pixel on a
triangle
— FG is Fragment Generation (finds which pixels are inside
triangle)

— FM is Fragment Merge (merges the created fragments
with various buffers (Z, color))

* Not explored much at all — kind of weird architecture
- poor load balancing .

Sort-Middle]

(G (
+ Sorts betwen G and R SORT
* Pretty natural, since after G, we know the
screen-space positions of the triangles FG [Ji FG I} FG
w W
FM | [FM| | FM

« Spread work arbitrarily among G’s [

] |

]

* Then depending on screen-space position, sort to 30
different R’s DISPLAY

— Screen can be split into "tiles”. For example:
« Rectangular blocks (e.g., 4x4 pixels)
« Every n scanlines

 The R is responsible for rendering inside tile

« Atriangle can be sent to many FG’s depending on
overlap (over tiles)

Sort-Last Fragment

e Sorts betwen FG and FM
« XBOX uses this!

Again spread work among G's
The generated work is sent to FG's
Then sort fragments to FM’s

— An FM is responsible for a tile of pixels
A triangle is only sent to one FG, so this avoids

doing the same work twice

A

P wr] s

T EE

SORT

V7 N7 \7

M

M| [FM

\ 7

DISPLAY

— Sort-Middle: If a triangle overlaps several tiles, then
the triangle is sent to all FG’s responsible for these

tiles
— Results in extra work

10

Sort-Last Image LI

« Sorts after entire pipeline :f‘f_f(’_ff:
 So each FG & FM has a separate f}, f%, }5\%
frame buffer for entire screen (Z and N BN
color) S
 After all primitives have been sent to X7

pipeline, the z-buffers and color buffers are =22

merged into one color buffer
« Can be seen as a set of independent pipelines
 Huge memory requirements!
« Used in research, but probably not commercially

11

Taxonomy — why?

* Good to know if you want to discuss what
type of architecture a company want to sell
to you

* Good to know if you want to build your
own architecture

— What are the advantages/disadvantages of
each...

12

The Xbox game console

 Built by Microsoft
and NVIDIA

* |s almost a PC:

— Pentium Ill, 733 MHz

— An extended
GeForce3

« Why talk about it
here? ‘
— It resembles some \/

mobile architectures a V &\
bit, and there is :

information &

available...

8
X

13

Xbox i1s a UMA machine

« UMA = unified memory architecture

— Every component in the system accesses the
same memory

Memory Bus
4*1.6 GB's

CPU

L1, L2caches

i ;l‘mnl-sidc bus. 1.0 GB/s

North Bridge

Memory Controller [N

and Cache

NV

.'II ’

We focus on the
GPU

v

N\
—
-

e

<

2

SZ

16 MB
Block 0

16 MB
Block 1|

16 MB
Block 2

16 MB
Block 3

Memory: 64 MB, 200 M1z

Y

Many mobile
graphics

South Bridge Chip
Audio, Network
and USB Interface

architectures
are UMA as well

14

Xbox Graphics Processing Unit

e Supports programmable
vertex shaders
— No fixed-function geometry
stage

* |s sort-last fragment
architecture

 Rasterizer: handles four
pixels per clock

« Runs at 250 MHz

Imagine this is a programmable
fragment shader unit,

and we have a pretty modern
architecture

System Memory Bus

Pre T&L Verntex Cache
| 1

{5

Vertex
Shader

Y
Vertex Program

A4 \Vertex
L Shader

— Vertex Constants

B

VERY; =

Post T&L Vertex Cache

Geometry U
Stage Primitive Assembly Cache
s &

l‘laslcrlmr Triangle Setup &

Stage Fragment Generation

X X TX TX TX TX X X

RC RC RC RC RC RC RC RC
Combiner Combiner Combiner Combiner
Fragment Fragment Fragment Fragment

Merge Merge Merge Merge
T 1 C]

1§’

System Memory Bus

15

Xbox

geometry stage

 Dual vertex shaders

— Same vertex program is
executed on two
vertices in parallell

 Vertex shader unit is a SIMD machine that

System Memory Bus

'y

S £

Pre T&L Vertex Cache

{5

Vertex
Shader

Vertex Program

V.

=
C: Vertex Constants

=)

Vertex
Shader

Geometry
Stage

VAR

Post T&L Vertex Cache

N4

Primitive Assembly Cache

.|
- | o

operates on 4 components at a time

— The point is that instead of a fixed function
geometry stage, we have now full control over
animation of vertices and lighting etc.

« Uses DMA (direct memory access), so that the

GPU fetches vertices directly from memory by

itself!

* Three different caches — for better performance!

16

Xbox rasterizer | == gtzjl

.S

Triangle Setup &
Stage Fragment Generation

Rasterizer

TX TX X TX X X TX X

. . ~ [— 1/ AFE ==
First block: triangle setup R‘{;R‘ "‘Qﬁ’“ '“Qj“‘ '“Q;R‘

(TS) and FG Combiner Combiner Combiner Combiner

TS COmpUteS VaI’IOUS deltas Fl:i':zcm FHSL'_I!%CHI ang:{cnl l"r;i;%cnl
d th t t . f Niicq‘:c x\llcr%c M’cn:_'c .\‘l’cn__‘vc

and other startup info | — " —

This block also does Z-occlusion testing M,V

n Memory Bus
FG generates fragments inside triangles

— Tests 2x2 pixels at a time, and forwards these to the four
pipelines that follow

— Note: near edges, not all pixels are inside triangles, and
therefore 0-3 pipelines may be idle

— There are many strategies on how to find which fragments
are inside triangle, but exactly how this is done on the
XBOX is not known

17

.S
-~ .

Rasterizer Triangle Setup &

Xbox raSterizer TX TX T.\'JI:TX "I\Jl'h TX
» Sorting is done after FG R«J{Em- R(-]{E»«- “"35[*“' R("]{E”

Combiner

— Sort_last fragment arCh Combiner . Combiner Combiner y
] .] ' {K | 11 | P | I | - S
» First: 2 texture units =l e B s
— Can be run twice > 4] T o il 3 [

texture lookups
) 4

System Memory Bus

 Assume TX+RC+Combiner is a
"Programmable Fragment Shader Unit”

— The Xbox only had little flexibility there...
— Register Combiners (programmable)

* Finally, result from TXs, RCs, shading
interpolation, fog interpolation is merged into

a final color for that pixel 8

Xbox rasterizer:
Fragment merge

The combiner produced a final color for the pixel
on a triangle

FG merges this with:

— Color in color buffer (alpha blending)
— Respect to Z-buffer

— Stencil testing

— Alpha testing

Z-compression and decompression is handled
here as well

Writes final color over the system memory bus

19

Questions on XBOX?

20

Tiling architectures

* There is an ongoing battle between
traditional architectures (what we've
looked at so far) and tiling architectures
— Which is best?

— Depends... X

 Sort-Middle architecture!

SORT

L & &

FM | |EM| | FM

\ 7

DISPLAY

Examples of existing tiling
architectures

* Imagination technologies
— Kyro Il (PC graphics card)
— Sega Dreamcast
— PowerVR MBX (for mobiles)
— PowerVR SGX (for mobiles)

« Falanx (Norway) [now owned by ARM]
— Mali architectures
— For mobiles as well

* |ntel Larrabee
— Software Tiled based rasterizer
— Coming soon ...

22

Tiling: basic idea (1)

* Apply vertex shader (incl. projection) to
vertices B

.

E
* Create a triangle list for each tile

— Holds pointers to all triangles overlapping a tile
A >

ZA
cd Vi
D>
ED

F VA 2

Tiling: basic idea (2)

Al :

YA . Erocess one tllg at a
cd Vi time, and rasterize
DD~ triangles in tile’s

ED 4 triangle list

FYA

Screen color buffer

—

On-chip buffers (color, depth, etc)

Start with tile A’s triangles

When all triangles in list have

been processed, copy on-chip color buffer

to screen color buffer

Need to write out depth buffer as well! Because, the programmer may

want to access it ”

Tiling: basic idea (3)

Al B

B4 | A C

cd Vi 5

D D

my

ED

FVA

Screen color buffer

v

On-chip buffers (color, depth, etc)

Then tile B’s triangles

When all triangles in list have
been processed, copy on-chip color buffer
to screen color buffer

25

Tiling: basic idea (4)

Al B

B4 | A C

cd Vi 5

D D

my

ED

FVA

Screen color buffer

On-chip buffers (color, depth, etc)

En

Then tile C’s triangles

When all triangles in list have AN D
been processed, copy on-chip color buffer
to screen color buffer SO

ON...

KYRO - a PowerVR-based
tiling architecture

For KYRO ll: tile=32x16 pixels

Tiling advantage: can implement
temporary color, stencil, and Z-buffer in

fast on-chip memory for a single tile

* Saves memory and memory bandwidth!

— Claims to save 2/3 of bandwidth compared
to traditional architecture (without Z-
occlusion testing, no buffer compression...)

27

KYRO architecture overview

Local Memory

Tile data and textures

t Kyro 11 t

e = age S » ¢ & Shading i
CPU julp| Tile Accelerator (TA) i Image Synthesis - lexture & Shading . Video

Processor (ISP) Processor (1SP) Memory

 CPU sends triangle data to KYRO I
* Tile Accelerator (TA)

— Needs an entire scene before ISP and TSP blocks
can start

— So TA works on the next image, while ISP and TSP
works on the current image (i.e., they work in a
pipelined fashion)

— TA sorts triangles, and creates a list of triangle
pointers for each tile (for tris inside tile)

28

Local Memory
Nile data and textures

KY RO t K."ro - t
e & sad . « & Shading Vi

M Tile Accelerator (TA) Image Synthesis Texture & Shading ideo

Precessor (ISP) .

Processor (1SP) Memory

 Tile accelerator:

— When all triangles for entire scene are sorted into tiles, the
TA can send tile data to next block: ISP

— And the TA then continues on the next frame’s sorting in
parallel

* Image synthesis processor (ISP):
— Implements Z-buffer, color buffer, stencil buffer for tile
— Depth testing:
» Test 32 pixels at a time against Z-buffer
« Records which pixels are visible

— Groups pixels with same texture and sends to TSP

« These are guaranteed to be visible, so we only texture each pixel

once
29

mory
and textures
KYRO . I S P t Kyro - t
u - . mage Svnthesis Texture & Shading
(e Accelerastor (‘
recessor (ISP) “rocossor (ISP)

Texture and Shading Processor (TSP):

— Handles texturing and shading interpolation

Has two pipelines that run in parallel
— 2 pixels per clock

Can use 8 textures at most

— Is implemented by "looping” in TSP

Texture data is fetched from local memory
Supersampling: 2x1, 1x2, and 2x2

— Renders a larger image and filters and scales down

— For 2x2: Need only 4x the size of tile (or rather, render 4x
as many tiles, i.e., need not 4x memory)

30

PowerVR MBX and SGX

Kyro was for the PC market...
MBX and SGX are designed for the mobile market

Tiling: creates depth buffer first, then applies pixel shader

— Does not apply pixel-shader for hidden fragments: called "deferred
shading”

Uses PVR Texture Compression

SGX (newest): uses unified shaders
— Programmable vertex and pixel shaders

LEE POWERVR SGX

Control and Register Bus

Systom Memory Bus
- - 31

Traditional vs Tiling

Traditional Tile-Based Mode

Traditional Immediate Mode

Prim itives
Prim itives

Tile Usts

Primitivess Por Tike

B e
Read Texture
"""""" VisiblePrimitives
Memory Per Tile
—_———
Read ARGE/Z Read Texture
............ csnsasssmmnsde
Tile

Falanx Mali Architecture

 Tiling architecture (tile size=16x16)
Falanx Architecture

 Does not create Z-buffer

first, and then apply pixel (& R . . @ B
shader (as do PowerVR) { Scene Data T Geometry
* Instead two other . NSNS, |
‘ . i 2 ¥
techniques to reduce BW: T R g
— Efficient Zmax-culling . | ol THbw ‘
Eliminates ~50% of

occluded pixels [this
varies, of course...] Memory

— 2 bits-per-pixel texture |
compression (FLXTC) Lobrdduc bl
« Plus fantastic antialiasing g i o
(more about that next - d . 3
lecture) |

Frame Buffer On-chio Bufere

Questions on tiling
architectures?

34

Bitboys’ G40 architecture

Not a tiling architecture
S

3IT30YsS

G40 - Main development guidelines

e Target volume market mobile phones in 2007-2010 timeframe

- We expect 3D graphics breakthrough in mobile phones in 2006
timeframe - Japan first, then Europe, followed by US

e Industry standard content creation tools and game art will be largely
based on the use of shaders

— Don't want to stray from this path

e Scene complexity and performance target
- 60 FPS
-~ 20-30k polygons/frame
- QVGA or VGA display resolution
— Depth complexity 5
- Relatively complex pixel shaders
High sustained pixel fillrate

<2,

3SIT30vYS

G40 — Rendering features

e 2D graphics rendering
- BitBlts, fills, ROPs (256)
— Small separate core for rendering bitmap-based user interfaces

e Vector graphics rendering
— SVG Basic level feature set, targeting OpenVG
— Anti-aliased rendering of concave and convex polygons
— Rasterization integrated into the 3D pipeline
— Support for linear and radial gradients
— Arbitrary clip paths
— 10-50x performance over software rendering

e 3D graphics
— Transformation and lighting in hardware
— Floating-point vertex and pixel shaders
— Multitexturing: Four textures per pixel
— Fully programmable architecture, no fixed-function pipeline
— FLIPQUAD full-screen anti-aliasing
PACKMAN hardware texture decompression

<,

ST a0vYS

Architecture e

e Rendering pipeline based on
OpenGL® 2.0 shader architecture

Triangle setup

Triangle rasterizer

e Fully floating-point, programmable, well
integrated architecture

e Fixed function fully emulated using the
programmable pipeline

e Designed from ground up to power mobile
phones and other handheld devices

What can we expect?

Enabling the Visual Mobile

38

To tile or not to tile? (1)
 Tiling:
— Good:
« Uses a small amount of very fast memory
— 16x16x (4 (color) + 4 (depth) + 1 (stencil))=2304 bytes

 Bandwidth to z-buffer, color buffer, stencil for free
» Design is parallel (add more pipes)

— Bad:
More local memory is needed (for tile sorting)
Bandwidth increase since geometry needs sorting

State changes: what happens when you need to switch from one
long pixel-shader program to another? (several times per tile...)

Harder to predict performance

A triangle covering several tiles, is processed several times
— E.g., triangle setup...

— Ugly:
« Amount of local memory places a limit on how many triangles can
be rendered

* Overflow?
« 3 MB can handle a little over 30,000 triangles (info from Kyro II)

39

To tile or not to tile? (2)

 Traditional:
— Good:

* More straightforward to implement
» Easier to predict performance

» Other bandwidth reduction techniques can be used (buffer
compression, zmin/zmax-culling, e.g.)

* No (big) problems with state changes
— Bad:

« Cannot have the entire framebuffer in on-chip memory
» Buffer accesses costs!

» Have to execute pixel shader unnecessarily for some occluded
fragments [but Zmax/Pre-Z pass can help]

— Ugly:

* Too traditional — not that exotic...

40

To tile or not to tile? (3)

* Who knows?
— Definitely scene-dependent!

41

Unified shader architecture

First on XBOX 360 (2005)

— DirectX10 uses unified shader model

 All PC graphics unified from Radeon 2xxx and GeForce
8XXX up

IPhone’s PowerVR SGX

Made possible since vertex shaders and
fragment shader instruction set converged
Basic idea:

— Have n "unified shader units”

— Can be used for either vertices or fragments
Why?

— Load balancing!

— Increasing vertex processing 42

Unified Shader: XBOX 360

* 48 unified shader units
— e.g 16 used for vertices, and 32 for fragments

— Scheduling is dynamic
— Split depends on what is being rendered

« Consequence: can run at ~100% efficiency all the time,
rather than having some pipeline instructions waiting for

others
— Non-unified shader pipeline based high-end
PC chips can run at 50-60% efficiency.

43

Unified shaders

e Sequencer’s
goal:

— Keep all 48
unified shader
units busy
~100% of the
time in the
most efficient
way possible.

— Threads are
grouped in
sets of 64 and
run together

Memory Hub
Texture Cache
3 3 $ 3
llllllll wtwrel [Texture] [Texturel
Pipe Pope Pipe Pipe
Command
Processor IT 1 1
L 4
Vertex shader
Grouper Interp
1
Sequencer Shaderf, Shadcr__. Shader
Pipe Pipe Pipe
(x16) (x16) (x16)
v 1
Primitive shadill
Assembly Interp
Scan
Converter t t T

Vertex Cachg_

XBOX 360

— |f a thread needs to wait for data, another
thread can be processed and sent to the

unified shader units.

ATl Radeon 2900
(R600)

® Merge the XBOX360 unified shader with
X1800 (R520) series

® Support Microsoft’s DirectX Direct3D 10
® Unified shader language
® New Geometry Shader pipeline stage

® Supported on mobiles chips

® |aunched 2007

R600
Top Level

Red - Compute
Yellow - Cache
Unified shader
Shader R/W
Instr./Const. cache
Unified texture cache

Compression

August 2007

Setlup.

Jnt

z essellatorl

BINEE RERREQIEIINN Hirs
" " r

wiin s

t * +

R

T L L L L S BN B N S

*

R Shader Export |

B T R T R T A

ATI Radeon™ 4800 Series Architecture Aym[?cﬂ

* 10 SIMDs
* 1.2 teraFLOPS

= 10 SIMDs x o
16 ALUs X BOEHPORSEEBEDEDD
5 (32bit FP) x o L
20ps (muladd) x
750MHz

e e e i e
sNg 1sanDay vIvQ
- - -

et Lt et |ttt ettt et St ettt

" — o — "

E

Radeon 4800 Series (R770)

e Launched 2008
e 260mm?
* 956 MTransistors

|- 1]

Radeon 4800

Radeon 4800 Series A!ﬁ%‘:’!

* Launched 2008
e 260mm?

* 956 MTransistors
* 64 z/stencil

* 40 texture

* 10 SIMDs

— Increasingly larger
percentage of chip

Radeon 4800

ATl Radeon 5870
(R800)

® Released 23 September 2009
® First Direct3D || GPU
® 2x 10SIMDs

from http://
1 . www.anandtech.com/
video/showdoc.aspx?
L] B i=3643&p=5

[Memory Controller J L Memory Controller J L Memory Controller] [Memory Controller
Iy 14 |] 1y 19 1y 14 1%

http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5
http://www.anandtech.com/video/showdoc.aspx?i=3643&p=5

Intel’s Larrabee

® n (16-32) Pentiums with |16 wide 32bit SIMD
® 1024 bit ring bus

Multi-Threaded Multi-Threaded
Wide SIMD a = = Wide SIMD

Fixed Function
Display Interface

L2 Cache

Memory Controller

3
©
-]
c
3
§

Multi-Threaded Multi-Threaded
Wide SIMD Wide SIMD

Texture Logic
System Interface

The end

53

