
© 2009 Tomas Akenine-Möller and Michael Doggett 1

EDA075
Mobile Computer Graphics

Michael Doggett
Department of Computer Science

Lund University

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett

My Background

2

Ph.D., Sydney

PostDoc, Tübingen, Germany

GPUs, Boston

My Background

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett

My Background

• Hardware design
– Volume Rendering Hardware

– Displacement Mapping

– GPUs - ATI
• Xbox360
• Radeon 2xxx-5xxx

3

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 4

Quiz: which game is the world’s
most played electronic game?

• Halo? Mario? Final Fantasy ...? World of Warcraft? Tetris?

• It might be “Snake”
• According to The Guardian: “it took Nintendo 10

years to sell 100M Game Boys whereas Nokia sold
128M handsets last year alone (2003)”

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 5

Introduction
• LUGG=Lund University Graphics Group

– Magnus Andersson
– Björn Johnsson
– Jim Rasmusson
– Lennart Ohlsson
– Petrik Clarberg
– Jakob Munkberg
– Tomas Akenine-Möller
– Research

• Mobile computer graphics
• Shadows and visibility
• Rasterization algorithms
• Ray tracing-based algorithms
• Graphics hardware

Intel Lund
 - Larrabee

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 6

Why mobile graphics?

• Phone is not just a phone!
– Calendar, camera, messages, images, animations,

games, surfing, email, sounds+music, radio, tv,
addresses, notes etc.

• BIG market: ~1 billion mobile phones/year (2007/09)
– Phones 9% decrease, smartphones 13% increase -Q109
– Only games on mobiles: $300Mn in 2006 (est.)
– Mobile games: $7.2Bn market in 2010 (Informal)

• The visual is a strong differentiating factor
Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 7

Do the visual well,
and your device will sell

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 8

• Used to be one-bit graphics @ ~50x80 pixels
• Today 16-18 bits is common

– Satio has 24 bits
• Resolution:

– Today ~208x176 – 800x480...
– QVGA (320x240) is the norm...
– Nokia

• series 90 is 640x320, N95 is 320x240
• N900 800x480

– Sony Ericsson
• P990, M600i, K800i: 320x240
• Satio 640x360

– Apple Iphone is 480x320
• We’ll get 1024x768 in the future...
• Makes graphics possible!

Displays

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett

Displays in the near future?
• Real 3D displays are around the corner
• Large increase in 3D movies, Ice Age, Up, ...
• Big breakthrough might be mobiles
• Simple principle:

9

St
er

eo
 p

rin
ci

pl
e

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett

Costly with 3D
graphics on 3D
displays

• There are displays with, e.g., 9 views

10
Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 11

Some examples where 3D graphics
key technology

User interfaces (simpler, smoother, more intuitive)
Simple stuff: screen savers

Maps:

Library

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 12

E-commerce

More applications...
Data mining/visualization?

more
info

RENTAL
€ 200.00

4.5 l/100 km
Climate control

next
car

Gaming, game development

More?

You decide!
Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 13

Slide copyright by Kari Pulli, Nokia

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett

iPhone/iPod Touch Apps
• 1.5 billion downloads
• In 1 year, 65,000 apps
• 100,000 memberships of dev program

14
Source: Edge magazine October 2009

Flight Control and Real Racing by Firemint

Rolando 2 by ngmoco

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett

• OpenGL ES 1.0
– 100s millions of phones

• OpenGL ES 2.0
– Imagination Technologies PowerVR SGX

• iPhone 3GS/iPod Touch
• Sony Ericsson Satio
• Nokia N900

– Nvidia Tegra
• ZuneHD

Mobile 3D Graphics Hardware

15
Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 16

Why is it hard to do 3D graphics
on mobile devices?

• Small amount of memory
• Limited instruction set
• Low clock frequency

– 100-200 MHz ARM9
– 400-600 MHz ARM11
– 600 MHz ARM CortexA8

• Small area on the chip for CG
• Must be cheap and physically small
• Powered by batteries!

– A memory access is one of the most
expensive operations

– Battery growth: 9% per year
• Performance growth: 40% per year

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett

order to access off-chip memory (such as system RAM), one need to drive high-capacitances for the buses,

and this costs a lot in terms of energy. Hence, memory accesses are very expensive in terms of energy

compared to computation in mobile phones [Fromm 1997], and we will see how this observation is used

later in the article.

The resolution of mobile phone displays has increased steadily in recent years. Figure X plots a diagram for

a set of models from Sony Ericsson (T68m, T610, K600, K800i and W880i), where the angle between two

pixels to one point on the retina is plotted against the year the handset was first sold. PlayStation Portable

(PSP), iPod Video (“apple1”) and the iPhone (“apple 2”) are also shown. A viewing distance of 30 cm was

used for all portable units, and 60 cm was used for the 24” desktop display of 1920x1200. As can be seen in

the diagram, while at first mobile phones had vastly inferior resolution, they are now starting to surpass that

of desktop displays. Naturally, it is not meaningful to increase resolution further than the resolution of the

eye. While the resolution of the eye depends on contrast and viewing conditions, it is in the order of 1 arc

minute (1/60th of a degree, plotted in the diagram in black) [Deering1998].

Fig X. The resolution of mobile phone displays has increased rapidly, and their corresponding retinal angle

has surpassed or is on par with that of large desktop displays even considering the fact that they are viewed

at half the distance.

It should be noted that the display is a major power consumer in a mobile device, and it has been reported

that about 30% of the power is consumed by the display in a laptop [Margi et al. 2005], mainly due to that

inefficient backlighting is needed. Exactly how much is consumed by graphics-intensive applications, such

as games, is not well-known, but it can be expected to be a high percentage of the remaining consumption.

In this survey, we do not consider algorithms or technology for reducing power consumption in the display.

However, it should be noted that using LEDs (light emitting diodes) offers promise for highly energy-

efficient displays. Each pixel would then “consist” of several LEDs, and the issue of backlighting would be

avoided altogether. Examples include organic LEDs [Shinar 2004] and nanoLEDs [Appell 2002].

In the following, we will first discuss application programming interfaces (APIs) specifically developed for

mobile devices, and why this is so. After that we will discuss high-level algorithmic improvements for

handheld GPUs.

2007 statistics

17

Small display, but very close to eyes
• Our measurements [in 2003]:

– Average eye-to-pixel angle is 1-4 times
larger for mobile than for a laptop/desktop

pixel

eye

angle

Still, about the
same requirements
as for desktop (where
resolution has
increased as well)

So, we need about
the same image
quality as for desktop
graphics

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 18

Our mobile graphics research (1)

• We have an improved variant called ”Ericsson Texture
Compression” (used to be called iPACKMAN)
– Is an ”optional extension” in OpenGL ES. Supported by PowerVR SGX

in iPhone 3GS

• Jacob Ström from Ericsson Research will be here for one lecture to
talk about (all) texture compression schemes

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 19

Our mobile graphics research (2)

• We are also doing:
– Buffer compression (color/depth)
– HDR texture compression
– Culling mechanisms
– Stereo rendering
– and more...

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 20

Info about the course
• EDA075 Mobile Computer Graphics

– It is really quite a bit about graphics hardware too
• 7.5 points (in my mind, the project is 3p, the rest 4.5p)
• How to fulfill the course requirements:

– Two programming assignments (C++)
• 2 persons per group

– A small project (C++) - 2 options
• 2 persons per group
• Write a 2-4 page report on what you did

– Pass the written exam
• There will be guest lecturers in this course

– Jacob Ström, Ericsson Research
– Carl Loodberg, Illusion Labs
– Jim Rasmusson, Ericsson Mobile Platforms
– Erik Månsson, TAT

• Literature: no book – instead research papers + some new material.
– Could be of interest for people that have not worked much with

graphics: ”Real-Time Rendering”, 2008, by Akenine-Möller, Haines, and
Hoffman

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 21

More info about the course
• Two parts:

1. APIs and how to write applications today on
a mobile phone

2. Graphics hardware for mobiles
• We will learn about the underlying algorithms

used in hardware, and not so much about the
hardware itself!
– Algorithms are interesting! The rest is implementation!

• Also performance analysis

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 22

Two programming assignments

• A1: SceneGraph
– Hi-level C++ API for 3D graphics
– We will use new iPod Touch

32GB
• A2:

– Implement parts of a software
rasterizer

– Measure memory bandwidth
• Improve

– Same framework could be used
in the project

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 23

About the project
• Two persons per project
• Two different paths (do one of them):

– P1: iPod Touch/iPhone app
• Make a cool game, application, or demo
• Use Assignment 1 framework

– P2: SW Rasterization
• Minimize memory bandwidth given a certain amount of onchip memory
• More challenging! Possibility to create new algorithms. Invent!

• Competition! (more info later)
– P1: a jury will decide in December who wins
– P2: the group that uses least memory bandwidth to render a given

scene wins!
• You must write a short (2-4 page) report
• Time to start thinking about nice projects now...

– You need to clear projects of type P1 with me. Write ½ page and send
as an email.

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 24

M3G projects from 2005

• Winner: Low rider
– by Magnus Borg and Erik Zivkovic

• Look at Stanford iPhone course for
ambitious ideas

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 25

Course schedule
• W1

– Intro (today)
– Mobile API Overview [Release of A1]

• W2
– A1 seminar/lecture: SceneGraph Framework (Magnus Andersson)
– How to rasterize a triangle and interpolate [Release of A2]

• W3
– A2 seminar/lecture, fixed math, texturing+mipmap+tcache+framework [Show solution A1]-Pluto Lab
– Texture Compression (Jacob Ström, Ericsson Research) [Project start]

• W4
– Performance analysis + Buffer compression + Zmin+Zmax-culling [Show solution A2]-Pluto Lab
– Real-time buffer compression

• W5
– (Carl Loodberg, Illusion Labs), Mobile phones (Jim Rasmusson, Ericsson Mobile Platforms)
– Existing graphics architectures

• W6
– Antialiasing + 3D User interfaces (Erik Månsson, TAT)

• W7
– Competition + project finished + Summary [Projects finished]

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 26

2nd hour of intro lecture

• Quick overview of real-time graphics
• Sign up on thursday
• Competition is optional
• SceneGraph framework ‘should’ work on

linux, mac

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 27

The Real-Time Rendering Pipeline
• [Chapter 2 in the the Real-Time Rendering book, which is not required]

• The pipeline is the ”engine” that creates
images from 3D scenes

• Three conceptual stages of the pipeline:
– Application (executed on the CPU)
– Geometry
– Rasterizer

Application Geometry Rasterizer

3D
sceneinput

Image

output

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 28

Rendering Primitives
• Use graphics hardware for real time…

– Though, mobile phones have either software rendering, or
dedicated hardware, or a mix

• The available APIs can render points, lines, triangles.
– For mobiles: OpenGL ES (embedded systems)

• A surface is thus an approximation by a number of
such primitives.

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 29

You say that you render a
”3D scene”, but what is it?

• First, of all to take a picture, it takes a camera –
a virtual one.
– Decides what should end up in the final image

• A 3D scene is:
– Geometry (triangles, lines, points, and more)
– Light sources
– Material properties of geometry
– Textures (images to glue onto the geometry)

• A triangle consists of 3 vertices
– A vertex is 3D position, and may

include normals and more.

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 30

Virtual Camera
• Defined by position, direction vector, up

vector, field of view, near and far plane.

point
dir

near
far

fov
(angle)

 Create image of geometry inside gray region
 Used by OpenGL, DirectX, ray tracing, etc.

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 31

Back to the pipeline:
The APPLICATION stage

• Executed on the CPU
– Means that the programmer decides what happens

here
• Examples:

– Collision detection
– Speed-up techniques
– Animation

• Most important task: send rendering primitives
(e.g. triangles) through the graphics API (which
then executes in SW or HW)

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 32

The GEOMETRY stage
• Task: ”geometrical” operations on the input data

(e.g. triangles)
• Allows:

– Move objects (matrix multiplication)
– Move the camera (matrix multiplication)
– Compute lighting at vertices of triangle
– Project onto screen (3D to 2D)
– Clipping (avoid triangles outside screen)
– Map to window
– Vertex shaders (allows the developer to do arbitrary

tasks per vertex)

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 33

The RASTERIZER stage
• Main task: take output from GEOMETRY

and turn into visible pixels on screen

 Also, add textures and various other per-pixel
operations

 And visibility is resolved here: sorts the
primitives in the z-direction

 Pixel shaders (also called fragment shaders)

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 34

Rewind!
Let’s take a closer look
• The programmer ”sends” down primtives

to be rendered through the pipeline (using
API calls)

• The geometry stage does per-vertex
operations

• The rasterizer stage does per-pixel
operations

• Next, scrutinize geometry and rasterizer

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 35

The GEOMETRY
stage in more detail

• The model transform
• Originally, an object is in ”model space” or

”object space”
• Move, orient, and transform geometrical objects

into ”world space”
• Example, a sphere is defined with origin at

(0,0,0) with radius 1
– Translate, rotate, scale to make it appear elsewhere

• Done per vertex with a 4x4 matrix multiplication!
• The user can apply different matrices over time

to animate objects

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 36

GEOMETRY
The view transform
• You can move the camera in the same

manner
• But apply inverse transform to objects, so

that camera looks down negative z-axis

z x

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 37

GEOMETRY
Lighting
• Compute ”lighting” at vertices

light

Geometry

blue

red green

Rasterizer

 Try to mimic how light in nature behaves
– It’s hard to use empirical models, so use hacks, and

some real theory

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 38

GEOMETRY
Projection

Application Geometry Rasterizer

• Two major ways to do it
– Orthogonal (useful in few applications)
– Perspective (most often used)

• Mimics how humans perceive the world, i.e.,
objects’ apparent size decreases with distance

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 39

GEOMETRY
Projection
• Also done with a matrix multiplication!
• Pinhole camera (left), analog used in CG

(right)

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 40

Ultraquick review of
homogeneous notation

• Why?

• Solution: and in general:

• Projection:

Using homogenous coordinates,
translation becomes:

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 41

GEOMETRY
Clipping and Screen Mapping
• Square (cube) after projection
• Clip primitives to square

 Screen mapping, scales and translates square
so that it ends up in a rendering window

 These ”screen space coordinates” together
with Z (depth) are sent to the rasterizer stage

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 42

GEOMETRY
Summary

model space world space world space

compute lighting

camera space

projection
image space

clip map to screen

Application Geometry Rasterizer

Vertex Shader: does this and any other per-vertex operation

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 43

The RASTERIZER
in more detail
• Scan-conversion (primitive traversal)

– Find out which pixels are inside the primitive
• Texturing

– Put images on triangles
• Interpolation over triangle
• Z-buffering

– Make sure that what is visible from the camera really
is displayed

• Double buffering
• Pixel shaders (also called fragment shaders)
• And more…

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 44

The RASTERIZER
Scan conversion (traversal)

• Triangle vertices from GEOMETRY is input
• Find pixels inside the triangle

– Or on a line, or on a point
– We will study algorithms for this later

• Do per-pixel operations on these pixels:
– Interpolation (lecture)
– Texturing (lectures on how to reduce BW)
– Z-buffering (lecture on how to compress)
– And more…

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 45

The RASTERIZER
Interpolation
• Interpolate colors over the triangle

– Called Gouraud interpolation
blue

red green

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 46

The RASTERIZER
Texturing

• Uses and other applications
– More realism
– Bump mapping
– Pseudo reflections
– Store lighting
– Almost infinitely many uses

+ =

 One application of texturing is to ”glue”
images onto geometrical object

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 47

The RASTERIZER
Z-buffering

• The graphics hardware is pretty stupid
– It ”just” draws triangles

• However, a triangle that is covered by a
more closely located triangle should not
be visible

• Assume two equally large tris at different
depths

Triangle 1 Triangle 2 Draw 1 then 2

incorrect

Draw 2 then 1

correct

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 48

• Would be nice to avoid sorting…
• The Z-buffer (aka depth buffer) solves this
• Idea:

– Store z (depth) at each pixel
– When scan-converting (traversing) a triangle,

compute z at each pixel on triangle
– Compare triangle’s z to Z-buffer z-value
– If triangle’s z is smaller, then replace Z-buffer

and color buffer
– Else do nothing

• Can render in any order

The RASTERIZER
Z-buffering

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 49

The RASTERIZER
Double buffering
• The monitor displays one image at a time
• So if we render the next image to screen,

then rendered primitives pop up
• And even worse, we often clear the screen

before generating a new image
• A better solution is ”double buffering”

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 50

• Use two buffers: one front and one back
• The front buffer is displayed
• The back buffer is rendered to
• When new image has been created in

back buffer, swap front and back

The RASTERIZER
Double buffering

Application Geometry Rasterizer

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 51

Shaders
• Programmable shading has

become a hot topic
– Vertex shaders (arbitrary per-

vertex ops)
– Pixel shaders (arbitrary per-

fragment ops)
– Adds more control and much more

possibilities for the programmer

Application Geometry Rasterizer

HARDWARE

Vertex shader
program

Pixel shader
program

Real-time screenshot from
another course: Advanced
Shading And Rendering,
VT2, LTH

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 52

Another pipeline diagram
with shaders

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 53

What you should know by now

• You should have the rendering pipeline
fresh in mind

• If this still feels a bit odd:
– play with OpenGL for a while

• Example program on web page

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 54

Next few lectues
• Focus on SceneGraph Framework

– First lecture: API overview: OpenGL ES and Scene
Graphs

– Second lecture (given by Magnus Andersson)
• Is about the first programming assignment
• Should be available on 2009-10-29 (see course website

for more details)

Friday, 30 October 2009

© 2009 Tomas Akenine-Möller and Michael Doggett 55

The end

Check course website regularly

http://cs.lth.se/eda075/

Friday, 30 October 2009

http://www.cs.lth.se/EDA075/
http://www.cs.lth.se/EDA075/

