
Contents of Lecture 12 on Linux

Minix
Linux

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 1 / 37

js@cs.lth.se


Minix

Minix was an educational operating system released in 1987.
Initially it had about 12,000 lines of C code and 800 lines assembler.
The author, Prof. Andrew Tanenbaum, rejected many requests for
enhancements to keep it small.
Quickly more than 40,000 persons used Minix.
Starting with Minix 3.0 from 2004 its focus has changed to reliability
instead of ”educational”.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 2 / 37

js@cs.lth.se


First Linux Versions

Linus used a Minix machine to develop his Linux 0.01 kernel and
announced its existance firstly to the Minix community on August
25th, 1991.
Originally Linux was written for the Intel 386.
Linux is not written in ISO C but rather in GNU C, ie using GCC’s
extensions to ISO C.
The kernel can be compiled at least by Intel’s compiler in addition to
GCC.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 3 / 37

js@cs.lth.se


Linux Version 1.0 1994

Linux version 1.0 was released in 1994 and consisted of 165,000 lines
of code.
Ext2 file system
Memory mapped files
Networking with sockets and TCP/IP
Many additional device drivers

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 4 / 37

js@cs.lth.se


Linux Version 2.0 1996

Linux version 2.0 was released in 1994 and consisted of 470,000 lines
of code.
Support for other architectures than X86, e.g. PowerPC
Support for 64-bit architectures
Support for multiprocessors, using a giant-lock

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 5 / 37

js@cs.lth.se


Kernel Overview

System call interface
Kernel components

Process management
Memory management
I/O

Interrupts and dispatcher

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 6 / 37

js@cs.lth.se


Three Classes of Threads

Real-time FIFO
Real-time round robin
Timesharing
A thread has a priority in 0..139 with 0 being the top priority

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 7 / 37

js@cs.lth.se


Scheduling Real-Time Threads

Linux provides two classes of soft real time threads with priorities in
0..99
Linux implements the POSIX P1003.4 extension to UNIX.
No deadlines can be specified
Real-time FIFO have highest priority
Only preemptable by other real-time FIFO threads with higher priority
Real-time round-robin have a time-quanta
Real-time round-robin are preemptable by the system clock.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 8 / 37

js@cs.lth.se


Scheduling Timesharing Threads

The time quantum is specified as the number of clock ticks the thread
may execute
A clock tick is 1 ms
Each CPU has its own runqueue
Each runqueue has two arrays of 140 elements
There are two pointers active and expired which point to one of
these arrays
A thread whose time quantum is expired is moved to the array pointed
to by expired
When all threads are expired, the two pointers are swapped

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 9 / 37

js@cs.lth.se


Priorities

The scheduler takes a thread from the lowest active queue
Threads at a higher (ie lower number) priority are given a larger time
quantum
For example: a priority 100 thread may run 800 ms before it must wait
for all other processes quanta to expire while a priority 139 only may
run 5 ms

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 10 / 37

js@cs.lth.se


Scheduler Heuristics

Each thread has a static and a dynamic priority
The purposes of the dynamic priority are:

increase the priority of interactive threads
reduce the priority of CPU-bound threads

The dynamic priority is a ”bonus” which is added to the static priority
The dynamic priority is in the range -5..+5

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 11 / 37

js@cs.lth.se


Multiprocessor Scheduling

As is commonly used (eg Mach 3.0 as we saw earlier) the kernel uses
affinity scheduling
There are system calls to specify that a thread should run on a
particular CPU

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 12 / 37

js@cs.lth.se


Booting Linux

After the Power-On-Self-Test the Master Boot Record (ie the first
sector) of the boot device is read and the boot loader, e.g. GRUB, on
the active partition is fetched which fetches the kernel.
The startup code of the kernel is written in assembler and performs:

identifies the CPU type
disables interrupts
enables the MMU (memory management unit)
calls the main C function of the kernel

main continues the initialization and allocates data structures and
probes devices

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 13 / 37

js@cs.lth.se


Dynamically Loading Device Drivers

Linux, and many other OSes including MS-DOS, can load device
drivers dynamically while the kernel is running
This is convenient but unpleasant in security sensitive environments
such as banks
At a bank which uses dynamically loaded device drivers, a system
administrator might be able to insert a module which accidently (or
intentionally) corrupts the system.

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 14 / 37

js@cs.lth.se


The First Processes

After initialization the kernel ”manually” creates the first process
(manually since it cannot create a process using fork yet)
Process 0 then mounts the root file system and programs the real time
clock
It then forks to create the init process and the page daemon process
The init process either enters single-user mode by forking a shell or
multiuser, and forks the program getty for each attached terminal
Getty makes initializations and then prints login:. After somebody has
written a user name it execs the login program which reads and
checks the password
If the password is correct login execs the shell specified in
/etc/passwd for the user

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 15 / 37

js@cs.lth.se


Linux Memory Management

A process has the three usual UNIX segments:
Text
Data
Stack

Recall that data with static storage duration is by default initialized to
zero
Also recall that such data is initialized when the program is started —
to avoid writing lots of zeroes in the executable file
The kernel has a zero page which all page table entries of such data
pages refer to, and which is copied-on-write when such data is
modified

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 16 / 37

js@cs.lth.se


Linux Memory Zones

Three types of physical memory zones:
Pages that can be used for DMA: ZONE_DMA
Normal pages: ZONE_NORMAL
Temporarily mapped pages at high addresses: ZONE_HIGHMEM

The details of each zone is specific to the architecture and differs
between X86 and Power for instance
On X86 DMA uses the first 16 MB
The zones use the buddy memory allocator described earlier and
allocate a number of full pages, ie the queue at k holds blocks of 2k

pages

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 17 / 37

js@cs.lth.se


Linux Memory Usage

Three kinds of usage:
By the kernel: always in memory
Memory map: also always in memory: see below
The rest: including text, data, stack, page tables

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 18 / 37

js@cs.lth.se


Data Structures

A 32 byte page descriptor contains
a pointer to the address space the page belongs to,
pred and succ pointers to make up a list (eg of free pages in the buddy
allocator)
some other attributes

mem_map is an array of page descriptors (less than 1% of all
memory)
The mem_map is equivalent to the coremap in Lab 3.
A node descriptor is used for NUMA multiprocessors (NUMA =
non-uniform memory access time, ie a interconnection topology that is
more complex than a bus)
The purpose of the node descriptor is to help the kernel to allocate
memory close to where a thread will execute to reduce cache miss
performance penalties

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 19 / 37

js@cs.lth.se


More on Data Structures

Earlier kernel versions used three-level page table
With 2.6.10 a four-level page table was introduced
Recall that the kernel itself is always in RAM
To allocate memory for a kernel module (which can be of any size) the
buddy allocator is very useful

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 20 / 37

js@cs.lth.se


Page and Paging Caches

The page cache holds file blocks which either
have recently been used, or
predicted to soon to be needed

The size of the page cache is determined dynamically
The page cache competes for pages just as the processes’ address
spaces
With this approach the Linux kernel can allocate pages to where they
are most useful
The paging cache is the set of user pages which are on their way to
the swap (but may be reclaimed before being written)

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 21 / 37

js@cs.lth.se


The Slab Allocator

Recall that the buddy allocator easily causes internal fragmentation: if
you need 33 pages, you must request 64 pages
The Slab allocator allocates memory using the buddy allocator
Each slab is used for a certain type of object (with the same size)
When an object is needed from a slab, it is removed
When all objects taken from a slab are deallocated, the slab is
returned (and the memory can be used eg for some other object type)

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 22 / 37

js@cs.lth.se


The kmalloc and vmalloc Functions

When the kernel needs some memory it can request them using
kmalloc which itself is implemented upon the slab allocator
The vmalloc allocator is used for allocating virtual addresses which
not need to be contiguous in RAM

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 23 / 37

js@cs.lth.se


Address Spaces

The address space of a process consists of a number of memory areas
All pages in a memory area are consecutive and have the same
protection
Examples of regions are: text, data, stack, a memory mapped file
Each area is described by a vm_area_struct
The areas of a process form a linked list sorted by virtual address
When the number of areas exceeds 32, a tree is used instead of a list
Attributes of an area include: pageable or not, growth direction (down
for stack and up for data), read/write protection, and private/shared

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 24 / 37

js@cs.lth.se


Private vs Shared Areas

An area can be either private to a process or shared with others
At fork, the kernel copies the list of memory areas but the child’s refer
to the same page tables
For copy-on-write, the pages are marked as readonly and when a write
occurs the kernel sees that the memory area has write permission (ie if
it has that) and copies the page and page table and mark the entries
as read/write
Swap or backing store for a memory areas depends on which areas it
is

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 25 / 37

js@cs.lth.se


Backing Store

The text areas uses the executable file as backing store, ie when a
text page is paged out it is simply dropped on the floor and when
needed next time it is fetched from the executable file
a memory mapped file not too surprisingly uses the file
Stack and data areas use swap space when a page is paged out
The swap space is allocated when needed
To find the swap space an attribute in the memory area is used
On top of the list of memory areas a struct mm_struct holds
additional information about all memory in an address space

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 26 / 37

js@cs.lth.se


Paging in Linux

A Linux process is in memory if both of the u area and the page
tables are in memory, ie no pages are necessary since they will be
fetched when needed
When process 2, the page daemon, wakes up it checks if there are too
few free pages and if so, it will look for pages to take from processes
Taking a page means scheduling it for being written to the swap area
The swap area is either the swap partition or a normal file used for
swapping.
A swap partition is faster due to no indirect blocks and more efficient
I/O
A swap area uses a bit map to keep track of free pages

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 27 / 37

js@cs.lth.se


PFRA: The Linux Page Frame Reclaiming Algorithm

This is the page replacement algorithm in the Linux kernel
There are four classes of pages for the page daemon:

unreclaimable: pages which can never be paged out
swappable: must be written to swap before being reused
syncable: must be written if they were modified
discardable: can be reclaimed directly

The page daemon is called kswapd
The init process (number 1) starts one page daemon for each memory
node (recall a memory node is for NUMA architectures)

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 28 / 37

js@cs.lth.se


Page Daemon: One per Memory Node

Usually about 32 pages are reclaimed each time it is woke up
The page daemon reclaims easy pages first:

Discardable and unused pages are immediately moved to the zone’s
freelist
Not recently referenced pages with an assigned backing store using an
approach similar to the clock algorithm
Shared pages which no process seems to be using
Ordinary not-shared user pages (ie modified or without backing store)
Other pages are skipped: if used in DMA transfer, shared and used,
locked

Shared pages require more work to page out since the page tables of
all areas sharing the page must be updated

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 29 / 37

js@cs.lth.se


Active and Inactive Lists

Each page is on either an active or inactive list
When the page daemon finds a page whose referenced bit was zero
that page is moved to the inactive list
Instead of the normal clock algorithm’s two states (referenced true or
false), Linux uses four states combining the referenced and an active
flag

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 30 / 37

js@cs.lth.se


I/O in Linux

Linux is similar to other implementations of UNIX with respect to I/O
Each I/O device is assigned a file name in /dev
For example, a line printer might be called /dev/lp and can be
accessed using normal system calls to open, write to, and be closed in
order to write a file to it
On some systems the following might work:

$ cp radix.c /dev/lp

Devices are classified as either block special files or character
special files

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 31 / 37

js@cs.lth.se


Special Files

A block special file represents a device with addressable blocks such as
a hard disk
A character special file represents devices with a byte stream of input
or output, such as a keyboard or network interface
Each special file is assigned a major and minor device number
The major device number identifies which device driver is used
The minor device number identifies one of similar devices
The system call ioctl controls numerous aspects of different special
devices

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 32 / 37

js@cs.lth.se


The Generic Block Layer

To avoid as many block special file accesses as possible, a cache of
blocks is maintained
Before the Linux version 2.2 kernel there were two separate page and
block caches but they are now unified
Disk writes therefore go to the cache and not to the disk
Twice per minute are dirty blocks written to the disk

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 33 / 37

js@cs.lth.se


The Linux I/O Scheduler

The disk I/O scheduler is a version of the scan algorithm
For each disk there is a list sorted on block number
When the scheduler is about to issue an I/O operation, requests for
adjacent blocks are merged
In addition to the main list, there are two more lists for ensuring that
a read request must wait at most 0.5 s and a write request at most 5 s

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 34 / 37

js@cs.lth.se


Line Disciples

Usually a process wants line editing
A tty_struct contains information eg on how delete or newline
characters should be interpreted
This is called cooked mode
Eg editors on the other hand want deal with every key stroke
For this purpose a terminal can be set up in a so called raw mode

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 35 / 37

js@cs.lth.se


Linux Kernel Modules

To avoid enforcing static linking of all device drivers, Linux can
dynamically load kernel modules
While usually used for device drivers, they can be used for any kernel
extension such as a performance measurement tool
To insert a module the command insmod is used
The first step to do is to link-edit the module: the addresses of the
symbols used by the module from the rest of the kernel must be set to
the actual values (for the module, they are just undefined symbols
before the module is inserted)

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 36 / 37

js@cs.lth.se


More about Inserting Kernel Modules

After link-editing, the resources needed by the module must be
examined to check that they are available (including interrupt request
level)
Interrupt vectors are set up to map the interrupt to code in the module
A device driver table entry for a new major device number is set up to
refer to code in the module
Then the module is invoked to let it initialize itself
After this, the module is a part of the running Linux kernel
Other modern versions of UNIX have similar features

Jonas Skeppstedt (js@cs.lth.se) Lecture 12 2014 37 / 37

js@cs.lth.se

