
Contents of Lecture 9

Protection: between users on the same system
Security: external attacks

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 1 / 30

js@cs.lth.se


Protection domains

A domain describes what somebody (called a principal) may do
In UNIX domains are defined by pairs of user and group identifiers:
UID and GID
A domain is a set of (object, rights) pairs
An object can be a file and the rights can be read, write, execute
permissions
We can view all domains and objects as a huge matrix with one
column per object and one row per domain
The question is: how should the matrix be implemented?

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 2 / 30

js@cs.lth.se


UNIX file protection bits

The basic mechanism in UNIX is for each file to list the rights of three
domains:

what the owner of the object (eg file) may do
what users which belong to the same group as the owner may do
what everyone may do

The list is sorted!
See next slide

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 3 / 30

js@cs.lth.se


UNIX file protection bits are sorted

$ cat > secret
top secret
$ chmod 004 secret
$ ls -l secret
-------r-- 1 js staff 11 May 7 09:06 secret
$ cat secret
cat: secret: Permission denied
$ rm secret
override ------r-- js/staff for secret?
$ rm secret
override ------r-- js/staff for secret? y
$ rm secret
rm: secret: No such file or directory

using rm -f secret avoids the question

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 4 / 30

js@cs.lth.se


Access control lists

With access control lists, ACLs, each object has a list of who may do
what with that object, usually in addition to the usual UNIX list
Access control lists are supported in Linux eg through the Security
Enhanced Linux from the US National Security Agency

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 5 / 30

js@cs.lth.se


Capabilities

Storing the matrix by rows instead leads to each principal having a list
of which objects it may operate on and how
Such stored right is called a capability
Capabilities are often implemented by letting a principal have a
”pointer” to an object with the rights and a check field
When a capability is to be removed, certain bits in the object are
changed which makes the check field obsolete and thereby removing
the capabilities
A problem with capabilities is to selectively remove capabilities from
one or a group of principals, since changing the check bits destroys all
capabilities

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 6 / 30

js@cs.lth.se


Logic bombs

Logic bombs are code installed by someone with access to the system
If certain events occur (or do not occur eg pay salary), the logic bomb
explodes
For example: one installed program checked the payroll and if the
author was not listed for two consecutive months, the bomb exploded
Which kinds of bombs are there? For example Modifying payments
and Encrypting or removing important files
Encrypted or deleted files can then be restored as a ”consultancy
service”
Such black mail is serious because even if the police arrests the
criminal the company still needs the lost information and might prefer
to pay

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 7 / 30

js@cs.lth.se


Trap doors

Special code can be inserted in the source code for checking login and
passwords
Less likely in open source code???
Code reviews reduce this problem
Ken Thompson suggested a clever way to insert trap doors:

Modify the compiler to recognize the login code
Make the compiler generate the trap door code for the recognized
source code

This is impossible to detect using code reviews and must be prevented
by controlling the compiler

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 8 / 30

js@cs.lth.se


Buffer Overflow Attacks

Suppose a program has an array and reads input to it without
checking array index out-of-bounds
If data is written at indices after the array, the behaviour is undefined
in C
The input can be carefully crafted and possibly change the behaviour
to enable an attack
For instance, many attacks have overwritten the current function’s
return address to instead jump right into the array and execute the
bits there interpreting them as instructions
The simple rule for C programmers to avoid all such problems is to
not trust untrusted input sources and code appropriately

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 9 / 30

js@cs.lth.se


Format String Attacks

Suppose your program reads a string from an untrusted source and
then prints out the string.
The following code introduces a security risk:
char* s = read_string_from_bad_guy();

printf(s);

The string read can of course contains formatting commands
What does the formatting command %n do? Writes number of output
bytes to an address which can be exploited in an attack

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 10 / 30

js@cs.lth.se


Using strcpy

The two previous methods require that the stack is executable which
it usually is not
The C library function strcpy copies a string to a destination address
By setting up the input on the stack as the source address to strcpy
and using some suitable address as destination, and setting up the
return address of strcpy to jump to the destination, the input will be
copied and then executed
The data segment is executable

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 11 / 30

js@cs.lth.se


Arithmetic overflow

By providing input which results in arithmetic overflow a program can
be made to allocate too little memory for a buffer which enables more
buffer overflow attacks
For instance a program may allocate a buffer to hold an image and
multiplies the width and height of the image
Always check for overflow in security critical programs and untrusted
input sources

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 12 / 30

js@cs.lth.se


Code Injection Attacks

The C library function int system(const char* cmd) executes the
command given as argument
Which errors are made in following code?
int main(void) {

char src[40], dest[40], cmd[85] = "cp ";
gets(src);
gets(dest);
strcat(cmd, src);
strcat(cmd, " ");
strcat(cmd, dest);
system(cmd);

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 13 / 30

js@cs.lth.se


Answer

gets is dangerous
The dest file might be named: file2; rm -rf /
The same problem exists in many situations including reading and
executing SQL commands

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 14 / 30

js@cs.lth.se


Malware

Botnets
Keyloggers
Trojan horses
Viruses
Worms
Spyware
Rootkit

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 15 / 30

js@cs.lth.se


Botnets and keyloggers

A botnet is a number of machines which have been taken over by
some criminal
They are ordinary machines and the owners are usually not aware of
the attack
Typical uses is to send spam from them
A keylogger is software which logs and sends the sequences of keys
pressed by the user at the terminal (PC)
For example passwords and credit card numbers obviously are exploited
Especially passwords to Internet banks
Never be a customer of a bank which forces use a password to log into
it

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 16 / 30

js@cs.lth.se


Trojan horses

The problem for malware writers is installing it on others’ machines
A Trojan horse is a program which does something useful and in
addition something bad, eg installs malware (or is the malware itself)
Typical examples are games that are installed or web pages
downloaded
A machine with a Trojan horse that is in contact with the criminal for
further instructions is called a zombie
Trojan horses can also be installed by hoping that somebody makes a
typing error and types eg c instead of cd. With proper file modes the
command c cannot be installed eg in /usr/bin

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 17 / 30

js@cs.lth.se


Viruses

A virus is a small piece of code that is attached to some program, and
when run, the virus copies itself into other programs etc
When it has infected other programs it perform its own criminal
operations in the attacked machine
A virus is usually first spread using a Trojan horse
It is easy to write a virus for Linux once you know how the executable
file format
Add the virus eg at the end of the text segment and change the
startup code to call it before main

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 18 / 30

js@cs.lth.se


Boot sector viruses

A virus which installs itself by modifying the master boot record or
first sector of the active partition can of course be powerful
It can take a few disk sectors and write the original sector there (so
that it can boot the OS) along more malware code
Taking a disk sector can be done by taking an unused sector and eg
marking the appropriate bit in the file system so that it looks like a
normal sector in use
When run fsck (or some other disk checking software on a non-UNIX
system) will discover this since no file uses it and take it back though

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 19 / 30

js@cs.lth.se


Other kinds viruses

If a device driver can be infected, the kernel will kindly load the virus
at every boot which makes it more convenient
A macro virus is executable ”macro” code in eg a Microsoft Word
document which when opened can spread a virus
So, it’s very easy to write such viruses and less skilled persons can do it
In June 2000 a virus of this kind with an email subject of ”I love you”
made damages exceeding one billion US dollars

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 20 / 30

js@cs.lth.se


The Morris Internet worm

A worm is a self-replicating program
A graduate student at Cornell, Robert Morris, discovered two bugs in
BSD UNIX
He wrote a self-replicating program which spread in November 1988
and put almost all Sun and VAX UNIX machines on the Internet to a
halt within a few hours by overloading them
Morris is now a professor at MIT

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 21 / 30

js@cs.lth.se


Two programs

The worms consisted of a bootstrap program and the worm
The bootstrap program (99 lines of C code) was compiled and
executed on a remote machine and it fetched the worm from the
machine it came
The worm then looked for new machines to spread to
Morris could easily have done malicious on the infected machines (ie
almost UNIX machines) but it didn’t
By replicating itself enough times the host machine got too many
processes and crashed

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 22 / 30

js@cs.lth.se


Spreading the bootstrap program

Three techniques were used to spread the bootstrap program

Using rsh to login to a machine which trusts the originating machine
— ssh is much better
A buffer overflow in the finger daemon

Typing finger username@host.example.com requests the finger
daemon to print out info about username such as when mail was read
last time
The finger daemon didn’t expect too long usernames and Morris
constructed a 536 byte long name which caused a buffer overflow
The buffer overflow resulted in interpreting and executing the user
name as machine instruction which started a shell as root

A bug in the sendmail program which made it possible to start a shell
as root

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 23 / 30

js@cs.lth.se


More about the rsh attack

A user can specify a host on which it can execute commands without
giving a password
But to perform this attack from a machine A to machine B the worm
needs to crack passwords on machine A
So the worm did to do so
To find out which passwords are popular Morris could read a well
known paper by Ken Thompson and his own father, a security expert
at NSA

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 24 / 30

js@cs.lth.se


Replication

If a machine which already was infected was attacked again, the
attack was cancelled 6/7 times
The 1/7 probability of replication was enough to halt the machine

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 25 / 30

js@cs.lth.se


Spyware

Is software which

hides
collects data about the users
sends the collected data
avoids being deleted

Spyware is typically spread as Trojan horses
Microsoft’s activeX controls are plugins to Internet Explorer
Eg it pops up and asks if user wants a faster Internet?
Click OK and download and install the spyware

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 26 / 30

js@cs.lth.se


Rootkits

A rootkit is software which is very difficult to locate and remove, and
usually contains malware too
For example, if libc and a kernel module are infected then it is very
difficult to detect and remove the malware since you cannot trust
much
Sony once distributed a 12 MB rootkit on some music CDs for
Windows machines
When Windows sees a CD inserted, it looks for a file autorun.inf and
runs it
Usually music CDs don’t have such files
The idea of Sony was to distribute the rootkit in order to detect music
piracy

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 27 / 30

js@cs.lth.se


Detection

Mark Russinovich was developing a rootkit detection program and ran
it on his own machine
Surprisingly for him (and Sony perhaps) he found there already was a
rootkit on his machine!
The Sony rootkit intercepted all system calls to read the CD drive and
made it impossible to read music CDs (except for Sony’s player)
It did other actions to try to avoid its discovery
More than 500,000 machines were infected

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 28 / 30

js@cs.lth.se


The uninstaller

Sony agreed to publish an uninstaller but to download it people had to
accept future promotional material from Sony
The uninstaller was buggy and made it easier for attackers to infect
the machine
As a compensation users were allowed to download three music albums
Later it was discovered that the rootkit reported back on people’s
listening habits which is a violation of US law
Each damaged machine’s owner was compensated by USD 150

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 29 / 30

js@cs.lth.se


Anti-virus programs and polymorphic viruses

To remove viruses, anti-virus programs look for byte sequences of
known viruses
A polymorphic virus mutates and uses different but equivalent
instruction sequences when it infects itself to make detection more
difficult
There will always be a war between anti-virus programs and virus
makers much as for submarines and anti-submarine warfare (using
warships, aircraft and other submarines)

Jonas Skeppstedt (js@cs.lth.se) Lecture 9 2014 30 / 30

js@cs.lth.se

