
Contents of Lecture 7 on File Systems

More about file systems

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 1 / 41

js@cs.lth.se


File System Implementations

A traditional UNIX file system: s5fs
Berkeley fast file system: FFS

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 2 / 41

js@cs.lth.se


The System V File System: s5fs

A partition contains a complete file system and is an array of disk
blocks.
A disk block is either 512, 1024, or 2048 bytes in s5fs.
The first parts of a partition contain a boot area and a superblock
with meta information about the file system
Then follows an array of inodes
Then follows all data blocks of the files including directories
A s5fs directory had 14 character file names and 2 byte inode numbers.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 3 / 41

js@cs.lth.se


Inodes

Two different types: on-disk inodes and in-core inodes.

di_mode 2 type and permissions
di_nlinks 2 ref count
di_uid 2 owner UID
di_gid 2 owner GID
di_size 4 bytes
di_addr 39 13 3-byte block numbers
di_gen 1 generation
di_atime 4 access time
di_mtime 4 modification time
di_ctime 4 inode change time except atime and mtime

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 4 / 41

js@cs.lth.se


Finding the data blocks from an inode

There are different approaches including a linked list (cached in
memory) in FAT in MS-DOS
In UNIX an array of 13 blocks are used
The 10 first elements directly refer to data block numbers
The next refers to a block with data block numbers — called indirect
block
The next refers to a block with block numbers with data block
numbers — double indirect.
The next refers to a block with block numbers with block numbers
with data block numbers — triple indirect.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 5 / 41

js@cs.lth.se


File holes

A UNIX file may contain holes due to the process issued an lseek
No data blocks are allocated for holes
Reading the hole returns zeroes.
Backup programs which work at the file level (and not disk level) will
not be aware of the hole and write zeroes.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 6 / 41

js@cs.lth.se


The s5fs super block

The super block contains

size in blocks of the file system
size in blocks of the inode array
number of free blocks and inodes
partial list of free inodes

An inode with di_mode == 0 is free.
When the partial list becomes empty the array of inodes is scanned to
find more free inodes.

partial list of free blocks: the first part of the list is in the superblock
and the remaining in other blocks — it’s not possible to inspect a
block to see if it’s in use or not.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 7 / 41

js@cs.lth.se


Analysis of s5fs

Poor reliability due to single copy of the super block
Poor performance due to accesses of a file which need both the inode
(may be cached in memory) and the data blocks requires long seeks
since the inodes and their data are stored in different places.
Poor performance due to related inodes (eg in the same directory) are
not allocated near each other.
Poor performance due to the data blocks of a file may be anywhere on
the disk and can cause long seeks.
Serious restrictions in file name size and only 65535 files per file
system.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 8 / 41

js@cs.lth.se


Disk Layout Optimization in Berkeley FFS

A partition consists of a number of consecutive cylinders.
FFS divides a partition into a number of cylinder groups.
A cylinder group contains both the inode and the data blocks of a file
which reduces the time waste on seeks.
The super block is split in two parts with one readonly part describing
file system parameters and one part describing the status of a cylinder
group.
The readonly part is duplicated in each cylinder group for improved
reliability.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 9 / 41

js@cs.lth.se


FFS Block Sizes and Fragments

For improved I/O throughput larger disk blocks are possible, often up
to 8196 bytes.
Since each file in average wastes a half disk block and there are
numerous small files on UNIX systems this can be a waste.
The block size is therefore a parameter of the file system so disk can
have different block sizes.
Further, a disk block is divided into a number of fragments.
It is the fragments which are addressed and allocated but the kernel
tries to use all fragments in a block to one file.
Applications can help the kernel by using large buffers and full
buffering when writing to files (see setvbuf from first lecture).

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 10 / 41

js@cs.lth.se


FFS Allocation Optimizations

Try to allocate both inode and data blocks of a file in one cylinder
group.
Try to allocate all files in a directory in one cylinder group.
To do so, use a different cylinder group for a newly created directory.
When a file grows too much in a cylinder group it is moved to a
different cylinder group.
New blocks of a file are allocated to reduce rotational wait.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 11 / 41

js@cs.lth.se


FFS Functional Improvements

Long file names: up to 255 characters.
Symbolic links.
New system call rename which was previously done with link and
then unlink.
Quota system.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 12 / 41

js@cs.lth.se


Analysis of Berkeley FFS

Read throughput increased from 29KB/s on s5fs to 221 KB/s on FFS.
Write throughput increased from 48KB/s on s5fs to 142 KB/s on FFS.
Modern disks eg SCSI and later have varying number of sectors per
track which BSD is unaware of and thus some optimizations to reduce
rotational delay are in vain.
The grouping into cylinder groups is still useful though.
Berkeley FFS quickly became more popular than s5fs.
There are better file systems as we will see soon.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 13 / 41

js@cs.lth.se


The Traditional UNIX Buffer Cache

Instead of writing data directly to a hard disk, the data is copied to a
kernel buffer and then the application can continue.
Disk reads usually find the data in this cache and can avoid disk I/O.
Most file accesses are reads.
The buffer cache is copy back and modified blocks are marked as dirty.
Dirty blocks are written periodically.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 14 / 41

js@cs.lth.se


File System Consistency

The problem with the buffer cache is lost writes if the kernel ”crashes”
eg due to a power failure.
The system call sync schedules all dirty blocks to be written out —-
but does not wait for completion.
If writes of file system meta data is lost, the file system normally
becomes corrupt and useless until it is repaired which takes time or is
impossible.
To limit the severity of corruption the kernel orders the writes — for
example, to add a link to a file the operations are:

add an entry to a directory
increment the link count of the inode

In which order should these writes be carried out?
If the new directory entry is written and the system then crashes, then
after reboot the file has more names than indicated in the inode,
which is bad.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 15 / 41

js@cs.lth.se


Slow write performance

Even if the kernel wants the writes to be ordered so that the link
count is written first, the device driver may find it more optimal to
perform the writes in the opposite order to make the system faster.
Therefore, the kernel can only give the device driver one write at a
time for critical meta data, ie the writes must be synchronous.
For this reason meta data writes in traditional file systems are slow.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 16 / 41

js@cs.lth.se


Limited use of ordering meta data writes

The purpose of ordering writes is not to eliminate the risk of a corrupt
file system.
The purpose is to make a corrupt file system recoverable after reboot,
ie to repair it.
The program file system check, fsck does the following:

Check that the data blocks of a file are used exactly once
Check that the link count is correct by inspecting directories
Move lost files to the lost+found directory.

Such operations could take hours for file systems on modern large
disks.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 17 / 41

js@cs.lth.se


Advanced file systems

Design goals

Improved performance over Berkeley FFS
Crash recovery
Support for larger files and file systems.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 18 / 41

js@cs.lth.se


Improving performance beyond that of Bekreley FFS

Most file accesses are reads.
Most disk accesses are writes.
Why?

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 19 / 41

js@cs.lth.se


Improving the speed of write accesses

The main performance problem is that meta data writes must be
synchronous.
The meta data writes typically modify data at different disk locations
which waste time waiting for seeks and rotations.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 20 / 41

js@cs.lth.se


Improvements to FFS by Sun

An extent is a large sequential disk area.
Storing files in extents allows faster I/O but complicates file growth —
the dynamic memory allocation problem.
Sun made some minor modifications to FFS to improve performance
using extents, called clusters.
Basically file writes are delayed until a cluster is filled.
The performance was doubled for sequential reads and writes.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 21 / 41

js@cs.lth.se


The 4.4BSD Log-Structured File System LFS

Most file reads are from kernel memory and writes must be improved.
A partition is divided into segments and one segment is the current.
All writes are done sequentially into the current segment until it is full.
In BSD FFS each inode is in a fixed position.
In LFS, an inode has no fixed position — it is written at the end of
the log when it is modified.
To find the correct version of an inode an inode map is used.
The inode map is stored on disk but is cached in kernel memory.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 22 / 41

js@cs.lth.se


Reading and Writing Files

Writing is delayed until a full segment can be written, but sometimes
partial segments must be written.
For each modified file that will use the segment its logical data blocks
are sorted and are assigned physical block numbers which are noted in
the new inode version.
A cleaner process reclaims storage of obsolete data blocks.
The segment usage table contains information about the number of
live (not yet overwritten) bytes each segment contains, and is used to
decide which segments should be reclaimed (and live data moved).
Reading a file is identical to BSD FFS with the exception of how the
inode is located: in FFS its address is calculated (from the inode
number) while in LFS it is looked up in the inode map.
Most file reads can be serviced from the buffer cache.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 23 / 41

js@cs.lth.se


Crash recovery

The inode map and the segment usage table are in memory but is
periodically written to disk as a readonly normal file called ifile.
The ifile is a checkpoint: to recover a LFS file system the following is
done:

the most recent checkpoint is located on the disk
the checkpoint is used to initialize the inode map and the segment
usage table
the log is scanned forward and the two tables are updated to reflect
what is in the log.

The difference with FFS or s5fs or EXT2 are:
LFS recovery is simpler
LFS recovery is much faster

EXT3 also uses a log but retains the structure of EXT2.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 24 / 41

js@cs.lth.se


The Cleaner Process

The log wraps around after the last segment has been written.
The cleaner process makes sure there are available segments.
A segment may be used directly if:

The blocks have been overwritten — and are in other segments
The files have been deleted

If parts of some segments are still live, the cleaner may decide put
them in new segments to free the old segments.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 25 / 41

js@cs.lth.se


Awkward Problems in LFS

If meta data writes are put in two different segments but the system
crashes after only the first segment has been written.
File blocks are allocated when the segment is written to disk and are
not reserved when the file write is performed to kernel memory buffers.
Therefore a write system call may return a positive value but fail later
due to the disk is full.
Large RAM memory is required but that should not be a big problem
today.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 26 / 41

js@cs.lth.se


Analysis of the Berkeley LFS

Superior performance to Berkeley FFS in most situations.
Much faster error recovery.
Requires complete rewrite of some software: newfs and fsck.
Approximately the same performance improvement as with Sun’s FFS.
The benefits of Berkeley LFS then is the fast recovery time.
There are easier ways to achieve this as we will see next.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 27 / 41

js@cs.lth.se


Meta Data Logging

We want faster recovery and faster writes by avoiding the synchronous
meta data modifications.
File systems such as EXT3 add a meta data log to the normal file
system.
Meta data modifications are now done twice:

directly in the meta data log
at a later time in the normal file system data structures — called the
in-place modifications

Some in-place modifications can be merged or will never be needed.
If the log becomes full the file system must wait until the log can be
reused after performing the in-place modifications.
To recover from a crash the last part of the log is redone.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 28 / 41

js@cs.lth.se


Journals vs log-structured file systems

As we saw previously two purposes of a log-structured file system are:
faster writes
faster recovery after a crash

Switching to a log-structured file system from a traditional might be a
good idea but there a practical aspects which sometimes make such a
switch unattractive, for instance whether the file system is trusted
An alternative is to extend an existing file system with a log
This was done eg with ext2 by Tweedie which resulted in ext3

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 29 / 41

js@cs.lth.se


The key motivation for designing ext3

The key motivation for improving ext2 into ext3 was faster recovery
Issues in reliably recovering data after a crash:

Preservation — the recovery should obviously not modify files already
written to the disk before the crash
Predictability — it is easier to recover after a crash if there are
guarantees about the order in which disk writes occured just before the
crash
Atomicity — the file operations should either not happen at all or
happen completely: suppose there is a crash while moving a file from
one directory to another — then after recovery the moved file should
be in exactly one of the directories

Ext2 is neither predictable nor atomic

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 30 / 41

js@cs.lth.se


Achieving predictability

Predictability becomes an issue when multiple disk blocks are modified
due to some file operation
When fsck tries to recover the file system it must try to figure out
what was happening just before the crash
How can the disk writes be performed in a predictable order?
Although the kernel might issue the disk writes in a particular
predictable order, the disk scheduler may optimize the order and
change it
The approach of the BSD FFS to this problem is to write all
meta-data one block at a time, and this approach has inspired many
UNIX file systems including ext2

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 31 / 41

js@cs.lth.se


Synchronous meta-data writes

The disadvantage of writing meta-data synchronously of course is poor
performance
An alternative is to buffer the requests in memory and let the system
call proceed and then writing the blocks sequentially
This is the same idea for how relaxed consistency memory models
work on multicore processors (by placing data in a write buffer which
is later written to the cache)
If there is a crash the in-memory buffers will get lost of course
Recovering the file system still must scan the entire file system which
takes time

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 32 / 41

js@cs.lth.se


Journaling file systems

To avoid the time consuming file system recovery while still using the
traditional file system disk layout, recall that journaling file systems
do the following:

As in log-structured file systems, newly written data is written to a log
Once the data is safely in the log on the disk, it is copied to its normal
disk blocks in the file system

Ext3 works like this
To do recovery, only the part of the log which has not yet been written
to the normal file system blocks needs to be checked and written

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 33 / 41

js@cs.lth.se


Database transaction vs file systems

A database transaction protects modifications and ends either with
commit or abort
A file system transaction must protect modifications eg of

data blocks
inode blocks
bitmap of free blocks

Writing to a file system is similar but simpler than writing to a
database
Eg there is no abort for file systems, and database transactions can be
much larger
In a journaling file system, several file operations can be put into one
transaction which can improve performance

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 34 / 41

js@cs.lth.se


More about Ext3

An ext3 partition can be mounted by a kernel which only knows about
ext2
The ext2 file system has reserved inodes and one of these is used for
the journal
A new compatibility bit is used to mark a partition as ext3
Ext3 is the most widely used file system on Linux
An optional feature is a B-tree for storing directory entries

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 35 / 41

js@cs.lth.se


ext4: the next generation of the ext3 file system

Based on an article by Avantika Mathur (IBM), Mingming Cao (IBM)
and Andreas Dilger (Cluster Filesystems)

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 36 / 41

js@cs.lth.se


The Ext4 file system

The goals with the ext4 file system include:
improved scalability (ext3 is limited by inode reference counter type,
and data block index type (16 TB file system))
improved performance
smooth migration from ext3 to ext4

Work on ext4 started June 2006 by Theodore Ts’o.
Linux kernel 2.6.28 released in December 2008 contains ext4.
Google switched from ext2 to ext4 in January 2010 for some disks —
but they have their own file system as well.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 37 / 41

js@cs.lth.se


Extents in Ext4

An extent is a block of contiguous disk blocks
An extent is up to 128 MB
The ext4 inode can store four extent addresses and additional in an
extent tree
The performance improvement of extents compared with normal UNIX
inode blocks for large files (eg DVDs) was found to be approximately
25%
The buddy algorithm is used for allocating blocks to extents

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 38 / 41

js@cs.lth.se


The design goals of ZFS from Sun

”Sufficiently” large file system (to fill it with data needs energy
sufficient to boil the oceans — don’t)
Pooled storage which according to Sun is as important for disks as
VM is for memory
End-to-end data integrity
Based on transactions
Eliminate the RAID-5 ”write hole” (a crash at certain point is
problematic in RAID-5)

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 39 / 41

js@cs.lth.se


Security and integrity

Based on transactions
Data is never modified but rather copied:

When a data block is to be modified by a write system call, the data is
written to new blocks and the inode then points to the new block
The inode is also not modified but copied

Neither a log nor a journal is needed
A side-effect of this copying is that the file system trivially can support
versioning or backup similar to the Time Machine in MacOS X
The Time Machine is useful for accidental deletes but does not replace
backup or GIT.

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 40 / 41

js@cs.lth.se


Pooled storage

Traditionally a UNIX file system is on a partition or multiple partitions
and controlled by a volume manager
In ZFS a number of devices (partitions) contribute with storage to a
storage pool
Between the file systems are a data management unit and a
storage pool allocator
This makes it more convenient to administrate the file systems

Jonas Skeppstedt (js@cs.lth.se) Lecture 7 2014 41 / 41

js@cs.lth.se

