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Dynamic Memory Allocation

The C library functions malloc and free are used for dynamic
memory allocation.
So, malloc is called to request size bytes of memory and returns
either

a pointer ptr to the allocated memory, or
NULL, if the request could not be performed.

The memory area is returned by calling free(ptr).
While these things probably are well-known, it’s important to note
that the problem becomes interesting because:

1 the allocations can request different sizes
2 calls to malloc and free can come in any order

How could we implement malloc/free without these constraints?
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Dynamic Memory Allocation in TAOCP

TAOCP = The Art of Computer Programming
Volume 1, Section 2.5 of Knuth’s work discusses dynamic memory
allocation.
We will discuss two techniques for implementing malloc/free:

Linked-lists
Buddy system
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List Approach to Dynamic Memory Allocation

Assume we have a large pool of memory of size N bytes (e.g. 100KB).
At a malloc(n) call, we request n bytes.
At a free(pointer) call, we return a pointer to n bytes. To let free
figure out that we are returning n bytes, we may store n at the address
pointer - sizeof(size_t).
After a number of malloc and free calls, the memory pool will consist
of a number of reserved and available blocks.
In each available block is stored the size and a pointer to the next
available block.
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Example in C

#include <stddef.h>

#define N (8 * 1024*1024 / sizeof(size_t))

typedef struct list_t list_t;
struct list_t {

size_t size; /∗ s i ze including l i s t_t ∗/
list_t* next; /∗ next ava i lab le block . ∗/
char data[]; /∗ C99 f l e x i b l e array . ∗/

};

static size_t pool[N] = { N * sizeof pool[0] };
static list_t avail = { .next = (list_t*)pool };

The first bytes in pool are interpreted as a list struct.
Using size_t for the pool elements, we can align and initialize it
easier.
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C Code for Allocation using First Fit

TAOCP Algorithm A: First-fit method.
Requested size is size.
We start with incrementing size by the size of a list_t.
Use two pointers, p = &avail and q = p->next

Search the list until a sufficiently large block is found or end of list.
Issues:

What should we do if we find a block with q->size == size?
What should we do if instead q->size is larger than size?
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C Code for Deallocation

The list is sorted by address, i.e. ”relative position” in pool.
First we need to find the list from which our data comes.
Find the list struct from the returned address by subtracting the size
of a list.
Why should you not do as follows? — data is a void pointer.

list* r = (list_t*)data - sizeof(list_t);

or

list* r = data - sizeof(list_t);

but rather:

list* r = (char*)data - sizeof(list_t);
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Inserting r into the List

Use two pointers, p = &avail and q = p->next.
Search the list while q != NULL and r < q.
Check whether the block pointed to by r can be merged with either
that pointed to by p or q, or both.
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Alignment

The code you saw does not take alignment into account.
A requested size larger than A should be aligned on A if A is not
greater than the maximum alignment requirement.
The maximum alignment requirement might be 8 for double and 16
for long double or a SIMD vector register.
You must assure that the memory pool itself is aligned.
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Increasing the Pool Size

UNIX has a system call brk which sets the address of the end of the
heap.
There is a suitable library function sbrk which is preferable to use.
With sbrk(size) we request size of additional heap space and then
sbrk will call brk.
Areas allocated with different calls to sbrk can be merged but malloc
must be aware of that other functions also may call sbrk.
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Other Problems and Solutions

Problem: If only a few words remain in a block, we will create a very
small block which will probably be useless but take up time to skip the
during search.
Solution: Allocate these words too. We now need to save the real size
of the block for deallocation (void free(void*) needs that anyway).
Problem: The first few blocks tend to become split into very small
pieces which always must be skipped when searching for a larger block.
Solution: See the Next-fit method on the next page.
Problem: Deallocating blocks requires us to search the list to
determine whether we can merge with the previous block.
Solution: Use a doubly linked list.
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Variants

Next-fit remembers the where the search stopped last time and starts
the next search there.
Best-fit searches the entire list to find the smallest block which is
sufficiently large (may be too time-consuming).
Quick-fit uses an array of lists for blocks with known popular sizes —
typically adapted to your application.
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Buddy System Illustration

Operation Memory pool # Available blocks
0 64 128 192 256 320 384 448

Start 512 1
Allocate 70 256 256 2

A 128 256 2
Allocate 35 A B 64 256 2
Allocate 80 A B 64 C 128 2
Deallocate A 128 B 64 C 128 3
Allocate 60 128 B D C 128 2
Deallocate B 128 64 D C 128 3
Deallocate D 256 C 128 2
Deallocate C 512 1
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Buddy System Data Structure

memory: array of 2N bytes assumed to start at address 0.
You must compensate for this by subtracting the real start from a
block address.
freelist[K ] refers to the freelist with available blocks of size 2K

Each block has the following fields:
unsigned reserved:1; /* one if reserved. */
char kval; /* current value of K. */
list_t* succ; /* successor block in list. */
list_t* pred; /* predecessor block in list. */
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Buddy System Allocation

Increase size to be the smallest power of two: size = 2K

Find the first list J with an available block; J ≥ K
If no such J exists, then return NULL.
For each I : K < I < J split the block in two pieces, set their kval,
reserved, succ and pred attributes, and put them into freelist[I − 1]
Return the first block in freelist[K ].
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Deallocation

Increase size to size = 2K

Then find address of buddy:

buddy = pointer ^ (1 << K); // i f pool at address 0 . . .

Correct:

buddy = start + ((pointer - start) ^ (1 << K));

Check if buddy is free and has the same kval, if so
merge the two blocks, i.e. update pointers and kval
call deallocate recursively with the merged block and doubled size.
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Explanation of Deallocation

Assume the pool starts at address 0 and that both pointer and buddy
point to a block of size 2K .
We have the address to one block, pointer, and want to find its
buddy.
We either have pointer buddy or buddy pointer

The addresses to these are xxxxx 0 K zeros and
xxxxx 1 K zeros , but we don’t know which one is which and we

don’t want to test using compare and branches.
2K = 1 << K, i.e. 000001 K zeros

pointer XOR 2K == buddy
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Analysis of the Buddy System

Both allocation and deallocation are fast.
Can create large fragmentation, e.g. allocate(513) will reserve 1024
bytes. (actually, we must also account for the sizes of each block’s
attributes too).
Inefficient with alternating allocate/deallocate: first lots of splits and
then lots of merges.
Modifierad version is used in the UNIX System V Release 4 kernel
which delays the merging in the hope that the small blocks will be
useful.
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Fragmentation

The linked-list methods may create useless available blocks.
This is called external fragmentation.
The buddy system on the other hand may allocate too much for each
request. This also happens with large pages in a virtual memory
system, and is called internal fragmentation.
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The Linux Kernel Slab Allocator

As you will soon learn, the memory is divided into pages of e.g. 4 KB.
The worst problem with the buddy allocator is that it easily causes
internal fragmentation: if you need 33 pages, you must request 64
pages
The Slab allocator allocates memory using the buddy allocator
Each slab is used for a certain type of object (with the same size)
When an object is needed from a slab, it is removed
When all objects taken from a slab are deallocated, the slab is returned
(and the memory can be used e.g. for some other object type)
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Multiprogramming without Virtual Memory

Using two extra hardware registers for base and limit, we can have
multiple processes in RAM at the same time and these processes
cannot write in each others’ memory.
So we have achieved support for:

Multiprogramming — which enables switching processes while waiting
for I/O.
Protection — fewer insane problems.

The main problem left to solve is dynamic memory allocation.
The main restriction left possible maximum process size — big
problem.

We want to have a better memory system than this!
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What is Virtual Memory?

Primary memory (RAM) is smaller and faster than secondary memory
(hard disks) so if the RAM is too small we can copy things to the disk.
Alternative view: RAM is a cache for the disk.
Without virtual memory, unless RAM is sufficiently large, the
programmer must use both memories and write code to transfer code
and data between them.
There usually are system libraries to help with this (mess) and the
feature is called managing overlays.
You reserve some memory areas and make sure different parts of the
program loaded from disk are not needed simultaneously.
It has actually came back: the SPU’s of the Cell processor have only
256 KB RAM which can be ”extended” with overlays.
Virtual memory is a technique to do this automatically and was
invented in 1956.
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History of Virtual Memory

Invented in 1956 by Fritz-Rudolf Güntsch for his PhD thesis.
First implemented in the Atlas computer 1959-1962 at U. of
Manchester in England.
First commerical machine with VM was the Burroughs B5000 from
1961 from the US.
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Symbol Addresses in Programs

With the invention of virtual memory, programmers could think of only
one level of memory instead of both.
Much more convenient.
Essentially, RAM is divided into blocks of 4 KB or 8 KB pages.
The addresses produced by the CPU are virtual addresses.
The key issue is: where is the data of a virtual address located?
It’s obviously either on disk or in RAM — or both.
Every address can be split into a page number and an offset within
that page.
Assume the page size is SIZE.

page = addr / SIZE;
offset = addr % SIZE;
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Mapping from a Virtual to a Physical Page Number

A huge array indexed by virtual page numbers can be used to map to
a physical page number.
This array is called the page table.
It contains information about each virtual page of a process.

typedef struct {
unsigned int page:26; /∗ Swap or RAM page. ∗/
unsigned int inmemory:1; /∗ Page is in memory. ∗/
unsigned int ondisk:1; /∗ Page is on disk . ∗/
unsigned int modified:1; /∗ Page was modified while in memory. ∗/
unsigned int referenced:1; /∗ Page was referenced recently . ∗/
unsigned int readonly:1; /∗ Error i f written to. ∗/

} page_table_entry_t;

For every memory access, this table can be used to find whether the
data is in memory.
If it’s not in memory, it must first be fetched from disk.
Actually, it might not be in the disk either — in which cases??
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Accessing the Page Table

With the page table, the address from the CPU has its virtual page
number replaced with the physical page number stored in the page
table:

static void translate(unsigned virt_addr, unsigned* phys_addr, bool write)
{

unsigned virt_page;
unsigned offset;

virt_page = virt_addr / PAGESIZE;
offset = virt_addr & (PAGESIZE - 1);

if (!page_table[virt_page].inmemory)
pagefault(virt_page);

page_table[virt_page].referenced = 1;

if (write)
page_table[virt_page].modified = 1;

*phys_addr = page_table[virt_page].page * PAGESIZE + offset;
}

Hardware must do this translation otherwise too slow.
It’s still too slow to read the page table in RAM every access.
How would you solve this problem?

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 26 / 67

js@cs.lth.se


The TLB

A special hardware table called the translation lookaside buffer is
used to remember recent virtual to physical page translations.
The TLB might have 64 or 128 entries.
All entries are checked concurrently to increase speed.
There is one TLB for instructions and one for data.
Thus the CPU sends in the virtual page number and either receives a
physical page number or a hardware exception is triggered.
The exception is called a TLB fault.
The kernel then looks up the virtual page in the page table, store the
translation in the TLB and re-executes the faulted instruction.
Some machines, including Power, do the TLB miss handling in
hardware for increased speed (MIPS does it in the kernel).
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Page Faults

Suppose a TLB page fault has happened and the data is not in RAM.
Then the kernel must decide on a page in RAM to overwrite and read
the needed data from the disk.
How can we inform the page table entry of the previous owner that
it’s page has disappeared (or been moved to the disk to be correct)?
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Example TLB Attributes

valid bit for the translation
virtual page number
physical page number
process identifier: not UNIX PID — MIPS TLB use a 5-bit id
write protection
modified bit
referenced bit to help page replacement algorithms
size of translated area: e.g. ARM11 uses two bits for

4KB,
64 KB,
1 MB and
16 MB.
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Core Map

Every physical page in RAM has a struct with which we can find the
current owner:

typedef struct {
page_table_entry_t* owner; /∗ Owner of this phys page. ∗/
unsigned page; /∗ Swap page of page i f assigned. ∗/

} coremap_entry_t;

If the current data in that page was modified, it must first be written
to disk.
We will next go through some parts of a simple implementation of a
virtual memory system and the next lecture we will look at problems
with this implementation.
This code is the basis for Lab 3.
After this, we will learn how link-editors assign addresses to symbols.
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Link-Editor Terminology

Compile time: The time when one file is translated to object code
(machine code or a Java class file).
Load time: It is actually normally called link-time. The link-editor
program /usr/bin/ld combines object modules to produce an
executable program (for most languages e.g. C/C++).
Execution time: While the program is running.
Static linking: The link-editor creates an executable file with all
symbols included. Results in larger executable files. Command: gcc
-static file.c.
Dynamic linking: The link-editor creates an executable file, but some
symbols are missing and must be found during execution-time. Eg
finding printf is postponed.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 31 / 67

js@cs.lth.se


The ELF Format for Object and Executable Files

ELF stands for Executable and Linkage Format.
ELF describes the following file types on Linux and Solaris:

Relocatable files: file name extension .o, produced with gcc -c
file.c. Such files are output from the assembler and are input to the
link-editor.
Statically and dynamically linked executables.

An ELF file consists of an ELF header, an array of program headers, an
array of section headers, and the data corresponding to each header.
In general, program headers are used by the kernel and the section
headers are used by the link-editor.
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ELF Sections

Example sections: instructions, global variables, symbol table,
relocation entries for instructions, relocataion entries for global
variables.
There are three instruction sections (.init, .text and .fini) but
the program header refers to all three: the linker need to know the
details but not the OS.
Optional sections include debugging information — the most
sophisticated format is DWARF3 which will become an IEEE standard.
GDB implements most of this.
One can also easily add new sections which can be useful when some
extra information should be passed to the execution environment.
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The ELF Header of a File

byte e_ident[]; /∗ 0x7f ’E’ ’L’ ’F’ ∗/
short e_type; /∗ Eg relocatable . ∗/
short e_machine; /∗ Eg PowerPC32. ∗/
int e_version; /∗ ELF version . ∗/
int e_entry; /∗ Address of f i r st instruction . ∗/
int e_phoff; /∗ Where is prog header array? ∗/
int e_shoff; /∗ Where is section header array? ∗/
int e_flags; /∗ Endianness, 32/64. ∗/
short e_ehsize; /∗ Sizeof ELF header. ∗/
short e_phentsize; /∗ Sizeof prog header. ∗/
short e_phnum; /∗ Number of prog header. ∗/
short e_shentsize; /∗ Sizeof section header. ∗/
short e_shnum; /∗ Number of section header. ∗/
short e_shstrndx; /∗ Section number for string table . ∗/
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The Program Header

int p_type; /∗ Read to process memory or not. ∗/
int p_offset; /∗ Where in ELF f i l e is data. ∗/
int p_vaddr; /∗ Load at this address. ∗/
int p_paddr; /∗ Load at this address (rarely used). ∗/
int p_filesz; /∗ Length of data in the f i l e . ∗/
int p_memsz; /∗ Length of data in memory (see below). ∗/
int p_flags; /∗ Eg read, write , execute permissions in memory. ∗/
int p_align; /∗ Maybe must start on a new page. ∗/

Explanation to why p_memsz may be greater than p_filesz: Global
variables with no explicit initialising expression are always initialised to
zero. The difference between p_memsz and p_filesz tells the OS how
many bytes should be initialised to zero at program startup. This
technique reduces file sizes by avoiding to store zeroes in a file.
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The Section Header

int sh_name; /∗ Offset into data of string table section . ∗/
int sh_type; /∗ Eg progbits (code and data) , symbol table . ∗/
int sh_flags; /∗ Eg readonly or executable. ∗/
int sh_addr; /∗ Virtual address when known. ∗/
int sh_offset; /∗ Where in ELF f i l e is data. ∗/
int sh_size; /∗ Sizeof section data. ∗/
int sh_link; /∗ Pointer to other relevant section . ∗/
int sh_info; /∗ Pointer to other relevant section . ∗/
int sh_addralign; /∗ Eg 8 i f data contains a double. ∗/
int sh_entsize; /∗ Eg 32 bytes for symbol table entries . ∗/

Relocation sections (should actually be called
fill-in-the-now-known-address sections) use link and info to find the
section to modify and the symbol table which now knows the
addresses.
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Link Editing

Input is a set of object files, library names, and a list of directories
which are used to look for libraries.
The object files are checked for missing symbols which then are
searched for in the libraries.
The command gcc main.c -L. -lmath will search for missing
symbols in the archive called libmath.a in the directory . (dot, i.e.
the current directory).
When all symbols have been found, we have a set of object files to
”concatenate”.
Each object file will contribute with data and instructions to the final
executable file (which has the default name a.out (also for dynamic
linking)).
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Creating the Executable File

Conceptually all sections of the same type from all files are
concatenated, and is put into the output file.
So, first come instructions from file 1, then instructions from file 2, etc
and then data from file 1, data from file 2, etc.
Using this ordering, each section can be assigned an address.
Each symbol is located at an offset from its section and can now be
given a virtual address which is the address of its home section plus
the offset.
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UNIX Archive Files

Libraries are stored in a different format: the UNIX archive which
contains a set of relocatable files, and a symbol table describing its
files.
An archive is produced e.g. like this: ar rcv libmath.a sin.o
cos.o.
Common arguments to ar are:

r Replace previous file in the archive.
c Create the archive if it does not exist already.
x Extract a file from the archive: ar x libmath.a tan.o will try to
copy a file tan.o from the archive to the current directory.
v Be verbose.
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Page Table Implementation Strategies

A one-dimensional dense array is too large to store in RAM

1 Split the page table into two or three levels — costly at page faults.
2 Use a one-dimensional array but put it in virtual memory — needs a

page table in RAM to map the other page tables.
3 Clustered page tables — one page table entry for several physical

pages.
4 Inverted page tables — basically a coremap with a hash chain to find

the translation from virtual to physical pages. See next page.
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Inverted Page Tables

An inverted page table has one entry per physical page, and contains
information about which virtual page it is, and who owns it.
To find out which physical page a virtual page is stored in, the
inverted page table is organized as a hash table.
There is one such table in the system in contrast to one normal page
table per process. However, to find a page not currently in memory, we
do need a normal per process page table. This table can be stored in
virtual memory since it is not needed so often.
More complex to implement shared pages since page table entry says
which process owns the physical page.
Used by IBM’s UNIX System V version called AIX.
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Segmentation

Instead of linear addresses, with segmentation, an address is a pair of
a segment number and an offset.
Segmentation is normally (e.g. on x86) implemented with paging:

4KB pages and up to 16K segments per process (Linux/x86 uses only
six segments however).
The segment number is 16 bits: 13 bits index, 1 bit local/global, 2 bits
protection.
Of the two protection bits, Linux uses one: kernel vs user mode.
The 13 bits index can address 8K segments.
There is a Local Descriptor Table and a Global Descriptor Table
where each entry contains a base address and a size limit.
The base address is added to the offset to form a linear address which
is then translated using a two-level page table.
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Fork

When a new process is created, it is (in UNIX) a copy of the parent
process.
Usually the first thing the child does is to start executing a different
program.
Physically copying the parent during fork is therefore often wasted.
Instead the page tables of both the parent and child can point to the
same physical page, and be made readonly.
The first who wants to modify the page must first copy the page and
modify the new page instead. This is called COW or copy-on-write.
Possible development in Linux is to make also the page table entries
copy-on-write — any volunteer for an interesting exjobb?
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Page Replacement Algorithms

When a process needs a new physical page, we might need to take one
currently in use by that or another process. Being smart here is
extremely important since page faults are very expensive.
The simplest (and very stupid) method is to use reuse physical pages
in a FIFO order. Simply have an index which is incremented modulo
the number of pages.
An impossible to implement but optimal algorithm takes the page
which will not be needed in the near future. This can be used as a
benchmark: if our algorithm performs within 99.9% of the optimal we
cannot expect to improve our algorithm very much. Using an optimal
algorithm as a benchmark is often a very useful in numerous
circumstances, e.g. the SGI compiler team once discovered that their
software pipeliner performed almost optimally so they were happy and
could spend time on other things...
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LRU

Taking the least-recently used page has turned out to be a good
approximation of the Optimal algorithm. This is used for many
replacement algorithms: TLB, cache, virtual memory, disk cache, etc.
However, for virtual memory it is difficult to implement:

We can time-stamp every page when it is accessed and then search for
the least recently used page. Bad time-consuming idea for virtual
memory since there are so many pages — it works for hardware caches
though.
We can maintain a stack in software: when a page is accessed it is
moved to the top of the stack. The page at the bottom is the least
recently used. Horrible idea to update pointers at every memory access
instruction — works for disk caches though. Not worthwhile to
implement in hardware.
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Approximation of LRU

The Second-chance page replacement algorithm approximates
LRU.
Each page table entry has a referenced bit which indicates whether
the page was referenced since it was cleared the last time by the kernel.
Setting this bit can be done by hardware or by taking an exception to
let the kernel set the bit: e.g. mark the TLB entry as invalid to cause
the exception at the next access.
Pages are scanned in a FIFO order but if their Ref bit is set, it is
cleared and they get a second chance.
If the Ref bit was not set that page is taken to the pool of free pages,
but the contents is remembered just in case it is needed soon.

Jonas Skeppstedt (js@cs.lth.se) Lecture 5 2014 46 / 67

js@cs.lth.se


The Clock Algorithm

The Second-chance algorithm is often called the clock algorithm.
A problem with large physical memories (actually a large number of
pages) is that many referenced bits tend to be set and then the clock
algorithm degenerates to FIFO.
If we instead use two clock arms:

one to clear reference bits, and
another to check them, then

by adjusting the distance (measured in pages) between the clock arms,
the algorithm can overcome this problem.
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Page Table Entries

If the page table entries also have a Modified bit then we get four
classes of pages:

Referenced Modified Comment
false false Ideal candidate for replacement.
false true Second best candidate.
true false Will probably be used soon again.
true true Bad candidate for replacement.

Explain how the false/true case can happen! (not very difficult...)
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Page Faults

When a process gets a page fault, it is not a good idea to start
looking for a page to replace.
Instead, the kernel keeps a pool of free pages so that one can get one
quickly.
One can also keep a pool of modified pages and write them out while
the paging disk is idle.
UNIX remembers the contents of the free pages and checks the pool
first when a page fault happens.
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ISA and VM

The instruction set architecture (ISA) determines the absolute
minimum number of pages that a process must be allocated — RISCs
need two (one for the instruction and one for possible data accessed)
Machines e.g. IBM 370 which can do memory copy in hardware and
may need more (the IBM 370 MVC instruction may need eight pages).
Usually it is best to let all processes compete for all the pages — this
is called global allocation.
If a process has too few pages in memory it will suffer from too
frequent page faults. With too many such processes in memory, they
will steal from each other (and themselves) and the system basically
halts. This is called thrashing and is solved by swapping out entire
processes.
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Memory Mapped Files

To avoid the system call overhead when reading/writing/seeking (i.e.
moving to another position in the file) one can memory map a file.
The file (or parts of it) will then be accessible using memory accesses
so read/write a word take only one machine instruction. Seek is simply
a user-mode pointer increment (also one instruction).
The data structures and algorithms for virtual memory can be used for
buffering files this way.
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Page Size

A large page size leads to:

Smaller page table.
Internal fragmentation since not all of the page might be used.
More efficient I/O with one large rather than many small requests are
used.
Higher TLB hit-rate since the TLB reach (pagesize × number of TLB
entries) is increased. The TLB reach can be increased by using a
variable page size.
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Linux Memory Zones

Three types of physical memory zones:
Pages that can be used for DMA: ZONE_DMA
Normal pages: ZONE_NORMAL
Temporarily mapped pages at high addresses: ZONE_HIGHMEM

The details of each zone is specific to the architecture and differs
between x86 and Power for instance
On x86 DMA uses the first 16 MB
The zones use the buddy memory allocator described earlier and
allocate a number of full pages, i.e. the queue at k holds blocks of 2k

pages
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Linux Memory Usage

Three kinds of usage:
By the kernel: always in memory
Memory map: also always in memory: see below
The rest: including text, data, stack, page tables
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Data Structures

A 32 byte page descriptor contains
a pointer to the address space the page belongs to,
pred and succ pointers to make up a list (e.g. of free pages in the
buddy allocator)
some other attributes

mem_map is an array of page descriptors (less than 1% of all
memory)
The mem_map is equivalent to the coremap in Lab 3.
A node descriptor is used for NUMA multiprocessors (NUMA =
non-uniform memory access time, i.e. a interconnection topology that
is more complex than a bus)
The purpose of the node descriptor is to help the kernel to allocate
memory close to where a thread will execute to reduce cache miss
performance penalties
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More on Data Structures

Linux uses a three-level page table — but there are patches for using a
fourth level e.g. for x86-64.
Recall that the kernel itself is always in RAM
To allocate memory for a kernel module (which can be of any size) the
buddy allocator is very useful
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Page and Paging Caches

The page cache holds physical pages and file blocks which either
have recently been used, or
predicted to soon to be needed

The size of the page cache is determined dynamically
With this approach the Linux kernel can allocate pages to where they
are most useful
The page cache is the set of user pages which are on their way to the
swap (but may be reclaimed before being written)
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The Slab Allocator

Recall that the buddy allocator easily causes internal fragmentation: if
you need 33 pages, you must request 64 pages
The Slab allocator allocates memory using the buddy allocator
Each slab is used for a certain type of object (with the same size)
When an object is needed from a slab, it is removed
When all objects taken from a slab are deallocated, the slab is returned
(and the memory can be used e.g. for some other object type)
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The kmalloc and vmalloc Functions

When the kernel needs some memory it can request it using kmalloc
which itself is implemented upon the slab allocator
The vmalloc allocator is used for allocating virtual addresses which
don’t need to be contiguous in RAM
The latter is used for loading modules but it’s preferred by the kernel
to use physical pages since they will not pollute the TLB.
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Kernel Memory Allocation Flags

The memory allocation functions take options specified by the type
gfp_t and contains or-ed bit values.
The caller of e.g. kmalloc tells it what it may do, including action
modifiers:

__GFP_WAIT – may go to sleep during the allocation
__GFP_HIGH – may use emergency pools
__GFP_IO – may start disk I/O
__GFP_FS – may start file system I/O
__GFP_NOFAIL – will retry until it succeeds

zone modifiers:
__GFP_DMA – use DMA zone
__GFP_DMA32 – use DMA32 zone
__GFP_HIGHMEM – use HIGHMEM or NORMAL zones
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Type Flags

The action and zone modifiers are combined into commonly used
types, including:

GFP_ATOMIC = __GFP_HIGH
– High priority and may not sleep; used e.g. by interrupt handlers.
GFP_KERNEL = __GFP_WAIT | __GFP_IO | __GFP_FS
– Normal allocation which may block.
GFP_USER = __GFP_WAIT | __GFP_IO | __GFP_FS
– Allocation for user processes.
GFP_NOFS = __GFP_WAIT | __GFP_IO
– May do I/O but not file system operations — used by file systems
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Address Spaces

The address space of a process is represented by a mm_struct and
contains of a number of memory areas
All virtual pages in a memory area are consecutive and have the same
protection
Examples of regions are: text, data, stack, a memory mapped file
Each area is described by a vm_area_struct
The areas of a process are represented both by a linked list and a
balanced tree.
Attributes of an area include: pageable or not, growth direction (down
for stack and up for data), read/write protection, and private/shared
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Private vs Shared Areas

An area can be either private to a process or shared with others
At fork, the kernel copies the list of memory areas.
For copy-on-write, the pages are marked as readonly and when a write
occurs the kernel sees that the memory area has write permission (i.e.
if it has that) and copies the page and page table and mark the entries
as read/write
Swap or backing store for a memory areas depends on which area it
is (memory mapped file or a normal memory area e.g. the stack).
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Backing Store

The text areas use the executable file as backing store, i.e. when a
text page is paged out it is simply dropped on the floor and when
needed next time it is fetched from the executable file
a memory mapped file not too surprisingly uses the file
Stack and data areas use swap space when a page is paged out
The swap space is allocated when needed
To find the swap space an attribute in the memory area is used
On top of the list of memory areas the struct mm_struct holds
additional information about all memory in an address space such as:

How many threads are using it?
Where are the page tables?
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PFRA: The Linux Page Frame Reclaiming Algorithm

This is the page replacement algorithm in the Linux kernel
There are four classes of pages for the page daemon:

unreclaimable: pages which can never be paged out
swappable: must be written to swap before being reused
syncable: must be written if they were modified
discardable: can be reclaimed directly

The page daemon is called kswapd
The init process (number 1) starts one page daemon for each memory
node (recall a memory node is for NUMA architectures)
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Page Daemon: One per Memory Node

Usually about 32 pages are reclaimed each time it is woke up
The page daemon reclaims easy pages first:

Discardable and unused pages are immediately moved to the zone’s
freelist
Not recently referenced pages with an assigned backing store using an
approach similar to the clock algorithm
Shared pages which no process seems to be using
Ordinary not-shared user pages (i.e. modified or without backing store)
Other pages are skipped: if used in DMA transfer, shared and used,
locked

Shared pages require more work to page out since the page tables of
all processes sharing the page must be updated
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Active and Inactive Lists

Each page is on either an active or inactive list
When the page daemon finds a page whose referenced bit was zero
that page is moved to the inactive list
Instead of the normal clock algorithm’s two states (referenced true or
false), Linux uses four states combining the referenced and an active
flag
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