Contents of Lecture 3

@ UNIX Shell programming

@ UNIX commands

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 1/ 39

js@cs.lth.se

Why Shell Programming?

@ A program written for a shell is called a shell script.

@ Shell scripts are (almost always) interpreted (there is a company in the
USA which sold shell-compilers but they now focus on selling C++
compilers instead).

@ Shell programs have some advantages over C programs:

e More convenient to write when dealing with files and text processing.

e The building blocks of the shell are of course all the usual UNIX
commands.

e More portable.

@ However, the shell is slower than compiled languages.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 2/ 39

js@cs.lth.se

Different Shells

@ There are a number of shells.

@ Bourne shell is the original but lacked many features eg name
completion.

@ The csh and tcsh have different syntax but were more advanced.

@ The Korn shell was written at Bell Labs as a superset of Bourne shell
but with modern features.

@ The GNU program Bourne Again Shell, or bash, is similar to Korn
shell.

@ We will focus on bash.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 3/ 39

js@cs.lth.se

Bash as Login Shell

@ Every user has a path to the login shell in the password file.

@ When you login, and have bash as login shell, bash will process the
following files:

o /etc/profile
o First found in $HOME of .bash_profile, .bash_login, .profile.

@ When the login shell terminates, it will read the file .bash_logout.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 4 / 39

js@cs.lth.se

Interactive Non-Login Shell

@ An interactive shell is, of course, one which one types commands to.
@ A non-interactive shell is one which is executing a shell script.

@ An interactive shell which is not the login shell executes the file
.bashrc.

@ There is a file /etc/bashrc but it is not automatically read.

@ To read it automatically, insert source /etc/bashrc in your
.bashrc.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 5/ 39

js@cs.lth.se

Non-Interactive Shell

@ Non-interactive shells do not start with reading a specific file.

@ If the environment variable $BASH_ENV (or $ENV if the bash was
started as /bin/sh) contains a file name, then that file is read.

@ The first argument to bash itself, contains the program name, so echo
$0 usually prints bash.

2014 6 / 39

Lecture 3

Jonas Skeppstedt (js@cs.lth.se)

js@cs.lth.se

Source Builtin Command

@ To ask the current shell to read some commands use the source
filename command.

@ You can use . instead of source.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 7/ 39

js@cs.lth.se

Aliases and Noclobber

UNIX commands perform their tasks without asking the user whether
he/she really means what he/she just typed. This is very convenient
(most of the time).

For instance the rm command has an option -i to ask for
confirmation before a file is removed.

Sometimes people put the command alias rm=’rm -i’ in a bash
start file.

A similar feature is to use the command: set -o noclobber which
avoids deleting an existing file with |/O redirection (eg 1s > x).

All such features should be avoided (in my opinion) since they just
reduce productivity and make people think UNIX is a safe place.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 8/ 39

js@cs.lth.se

|/O Redirection

Jonas Skeppstedt (js@cs.lth.se)

Common directives include:

< file: Use file as stdin.

> file: Use file as stdout.

>> file: Append output to file.

2> file: Use file as stderr.

2>&1 : Close stderr and dup stdout to stderr.

Lecture 3

2014

9 / 39

js@cs.lth.se

Shell Script Basics

The first line should contain the line #!/bin/bash
To make the script executable, use chmod a+x file.
A line comment is started with #.

Commands are separated with newline or semicolon.
Backslash continues a command on the next line.

Parenthesis group commands and lets a new shell execute the group.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 10 / 39

js@cs.lth.se

More about Parenthesis

@ A subshell has its own shell variables such as current directory.
@ The builtin cd does not read from stdin, so we can pipe as follows:

@ We can now type
(cd ; 1s) | (cd “/Desktop; cat > ls-in-home)

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 11 / 39

js@cs.lth.se

Shell Variables

@ Shell variables do not have to be declared — just assign to them:

$ a=unix

$ echo $a

$ b=wrong rm can have unexpected results such as disaster
$ c="wrong rm can have unexpected results such as disaster"

@ The difference between the last two assignments is significant.

@ A shell variable is by default local to the shell but can be exported to
child processes using: $ export a.

@ C/CH+ programs get the value using char* value =
getenv("VAR") ;.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 12 / 39

js@cs.lth.se

Using Shell Variables

@ Use a dollar sign before the name to get the value: $HOME.
@ If you wish to concatenate a shell variable and a string, use
${VAR}suffix
without it you would get the wrong identifer

VARsuffix

2014 13 / 39

Lecture 3

Jonas Skeppstedt (js@cs.lth.se)

js@cs.lth.se

More about Using Shell Variables

@ The value of ${var-thing} is $var if var is defined, otherwise thing
were thing is not expanded. Value of var is unchanged.

@ The value of ${var=thing} is $var if var is defined, otherwise
thing; and var is set to thing.

@ The value of ${var+thing} is thing if var is defined, otherwise
nothing.

@ The value of ${var?message} is $var if var is defined, otherwise a
message is printed and the shell exits.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 14 / 39

js@cs.lth.se

PS1 and PS2

@ The prompts, $ and > are called the primary and secondary prompts.
These were the original values of these and they are stored in PS1 and

PS2.

@ For the root user, the prompt is #.

@ It is possible to get a more informative prompt by using the escapes:
\$ #if root, otherwise dollar.

\! Current history number (see below).

\w Pathname of working directory.
\W Basename of working directory.

\h Hostname.

\H Hostname including domain.

\u User.
\t 24-hour time.
\d Date.

Lecture 3

Jonas Skeppstedt (js@cs.lth.se)

2014

15 / 39

js@cs.lth.se

Reexecuting Commands with a Builtin Editor

@ To reexecute a command, use either the builtin editor (vi or emacs) as
specified in your .inputrc file.

@ .inputrc can contain eg set editing-mode vi.

@ Using the editor is very convenient since you can change the command
if it didn't work as expected. Simply hit ESC (for vi).

@ This is a convenient way to experiment with new commands.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 16 / 39

js@cs.lth.se

Reexecuting Commands with an Exclamation

@ Commands available include:
1 Reexecute most recent command.

I'n Reexecute command number n.

' —n Reexecute the nth preceding command.

Istring Reexecute the most recent command starting with string.

1 ?string Reexecute the most recent command containing with string.

@ The last word on the previous command can be refered to as !'$

$ 1s -1 f9.tex
$ vi !'$

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 17 / 39

js@cs.lth.se

Quotation Marks

There are three kinds of quotation marks:
in a string enclosed by ": variables are expanded.

in a string enclosed by ': variables are not expanded.

the value of ‘string* is the stdout from executing string as a
command and removing each trailing newline character:

$ rm -rf ‘du -ks * | sort -n | awk " { print $2 } " # remove big
file/directory

@ You will find the last form useful during Lab 4.

@ Note: the last form is equivalent to $(command).

Jonas Skeppstedt (js@cs.lth.se) Lecture 3

js@cs.lth.se

Here Documents

@ Sometimes it can be useful to provide the input to a script in the
script file. The input is right "here”.
$ cat phone
grep "$x" <<End
Office 046 222 9484
Mobile 0767 888 124

$X
End

@ Above script contains both the command and the input.

@ The variable X is expanded; suppress this behaviour by preceding End
with a backslash on first line.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 19 / 39

js@cs.lth.se

Functions

function fun()

{
echo $1 # echo first argument
echo $2 # echo second argument

@ The keyword function is optional.
@ A function must be declared before it can be used.

@ A function can be used as if it was any other UNIX command, ie no
parenthesis when the function is called (ie not even for passing
arguments).

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014

20 / 39

js@cs.lth.se

Simple Shell Syntax

@ a && b executes b only if a succeeds (ie returns 0).
@ a || b executes bonly if a fails (ie returns nonzero).

@ The following commands can cause harm if you run out of disk space
during tar:

$ tar cf dir.tar dir; rm -rf dir; bzip2 -9v dir.tar
@ This is better:
$ tar cf dir.tar dir && rm -rf dir && bzip2 -9v dir.tar

e Edit-compile-run without leaving the keyboard: vi a.c && gcc a.c
&& a.out

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 21 / 39

js@cs.lth.se

@ lterate through certain files in your the current directory:

for x in *.c
do

lpr $x
done

@ or through all argumets passed to a script:

for x in $*
do

lpr $x
done

Jonas Skeppstedt (js@cs.lth.se) Lecture 3

2014

22 / 39

js@cs.lth.se

More for Loops

@ You can also iterate through a string:

a="x y 7 !l
for s in $a
do

echo $s
done

@ Or simply a list:

for s in a b c
do

echo $s
done

Jonas Skeppstedt (js@cs.lth.se) Lecture 3

2014

23 / 39

js@cs.lth.se

While and Until

while command
do

body # do body while command returns true
done

until command
do

body # do body while command returns false
done

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014

24 / 39

js@cs.lth.se

If-T hen-Else-Fi

1f command

then

then-commands
[else

else-commands]
fi

if ' command

then

then-commands
[else

else-commands]
fi

Jonas Skeppstedt (js@cs.lth.se)

Lecture 3

2014

25 / 39

js@cs.lth.se

Case

case word 1n
patternl) commands;;
pattern2) commands;;
*) commands; ;
esac

@ Nothing happens if no pattern matches: putting *) last makes a
default.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014

26 / 39

js@cs.lth.se

cmp, diff, and ndiff

@ cmp reports whether two files are equal.
@ diff does the same but also shows how they differ.

@ ndiff is a variant for which one can specify numerical differences
which should be ignored.

@ ndiff is not standard but easy to find.

Lecture 3 2014

Jonas Skeppstedt (js@cs.lth.se)

27 / 39

js@cs.lth.se

Jonas Skeppstedt (js@cs.lth.se)

cut cuts out characters from each line of stdin

1ls -1 | cut -c2-10 prints the rwx-flags of the files.
The first character on a line is c1.
Multiple ranges can be specified:

ls -1 | cut -c2-10 -c51-55 also prints five characters from the
file name.

Lecture 3 2014 28 / 39

js@cs.lth.se

@ Example: find . -name ’*.c’. The output will be a list of files
(with full path) with suffix c.

@ We can feed that list to wc using:
wc ‘find . -name ’*.java’

@ The default action is to print the file name.

@ A number of criterions can be specified, including

© -anewer filename selects files newer than filename.

@ -type type selects files of type type which is one of b,c,d,f, |, p, or s
(with the same meaning as printed by 1s -1: block special file (eg
disk), character special file (eg usb port), directory, ordinary file,
symbolic link, name pipe, or socket).

2014 29 / 39

Lecture 3

Jonas Skeppstedt (js@cs.lth.se)

js@cs.lth.se

find . -name *.tac.??? -exec rm {1}’ \;
find . -name *.pr -exec rm ’{}’ \;

find . -name cmd.gdb -exec rm ’{}’ \;
find . -name *.ps -exec rm ’{}’ \;

find . -name *.dot -exec rm ’{}’ \;
find . -name *.aux -exec rm ’{}’ \;
find . -name *.0 -exec rm ’{}’ \;

find . -name out -exec rm ’{}’ \;

find . -name x -exec rm ’{}’ \;

find . -name y -exec rm ’{}’ \;

find . -name a.out -exec rm ’{}’ \;
find . -name cachegrind.out.* -exec rm ’{}’ \;

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 30 / 39

js@cs.lth.se

@ Stands for Aho (from the Dragonbook), Weinberger (from hashpjw in
the Dragonbook), and Kernighan (the K in K&R C).

@ Each line of input is separated into fields and are denoted $1, $2,

@ Assume a variable is called X and has value 2. Then $X refers to the
second field.

@ The entire line is $0, number of fields on a line is denoted NF, and line
number is NR.

@ Each line in an awk program has a pattern and an action.

@ If a line in the input matches the pattern, the action is executed.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 31/ 39

js@cs.lth.se

Example awk programs

$ awk ’{ print $1, $5; }° # print first and fifth item.
$ awk ’$1 > 10 { print $1, $2; }’> # print first two items if $1 is > 10.
$ awk ’NR == 10’ # print tenth line.
$ awk °NF > 4° # print each line with > 4 fields.
$ awk °NF > 0 ? # print each nonempty line.
$ awk ’$NF > 4 ° # print each line with last field > 4.
$ awk ’/abc/ ’ # print each line containing abc.
$ awk ’/abc/ {n =n + 1; }\

END { print n;}’ # print number of lines containing abc.
$ awk ’length($0) > 80’ # print each line longer than 80 bytes.

@ The END pattern matches at EOF. There is also a BEGIN pattern
which is matched before the first character is read.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 32/ 39

js@cs.lth.se

head and tall

Jonas Skeppstedt (js@cs.lth.se)

head prints the first 10 lines of a file (or stdin).

head -100 prints the first 100 lines of a file (or stdin).

tail prints the last 10 lines of a file (or stdin).

tail -100 prints the last 100 lines of a file (or stdin).

tail -f file like normal tail but at EOF waits for more data.

Lecture 3 2014

33 / 39

js@cs.lth.se

Octal dump
od file dumps the file contents on stdout in as octal numbers.

od -c file prints file as characters.

od -x file prints file as hex numbers.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 34 / 39

js@cs.lth.se

@ sed stands for stream editor.

@ It can be useful for eg changing prefixes in a Yacc generated parser:

@ sed ’s/yydebug/pp_debug/g’ y.tab.c > tmp;mv tmp y.tab.c

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 35/ 39

js@cs.lth.se

@ Grep searches for a pattern in files.
@ GNU grep has the useful -r option which traverses directories.

@ In basic regular expressions 7, +, braces, parentheses and bar (ie |)
have no special meaning. Backslash them to get that.

@ In extended regular expressions, enabled with -E, above characters are
special. More about that on next slide.

$ grep abc # matches line with abc.

$ grep -e ’[abc]’ # matches line with any of a, b, or c.

$ grep -e ’["abc]’ # matches line with none of a, b, or c.

$ grep -e ’["ab-d]’ # matches line with none of a, b, c, or d.
$ grep ab*c # matches line with ac, abc, abbbbbc.

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 36 / 39

js@cs.lth.se

grep -E -e ’alb’
grep -E -e ’albc’

$
$
$
$
$
$
$

grep -E -

(0]

@ Without -E use backslash before above metacharacters.

@ Without ' the shell will try to setup a pipe.

Jonas Skeppstedt (js@cs.lth.se)

matches line with a or b.
matches line with a or bc.
grep -E -e ’(alb)c’ # matches line with a or b, followed by c.
grep -E -e ’(alb)?c’ # 7 denotes optional item.
grep -E -e ’(alb)+c’ # + denotes at least once.
grep -E -e ’(alb)*c’ # + denotes zero or more.
>(alb){4}c’> # {4} matches pattern four times.

Lecture 3

2014

37 / 39

js@cs.lth.se

@ sort file sorts a file alphabetically.
@ sort -n file sorts a file numerically.

@ uniq removes duplicates line if found in sequence

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 38 / 39

js@cs.lth.se

vi -c /$1 ‘egrep -e $1 *.[ch] */*.[ych] |
awk -F: ’> { print $1; } ’ |
uniq |
sort®

@ What does this script do?

Jonas Skeppstedt (js@cs.lth.se) Lecture 3 2014 39 / 39

js@cs.lth.se

