
Contents of Lecture 2

OS implementation languages
Monolitic kernels
Microkernels
Threads
Signals
Interprocess communication

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 1 / 40

js@cs.lth.se


Preferred implementation language for operating systems

A long time ago (before UNIX) operating systems were written in
assembler code to improve speed.
Multics was written in IBM’s PL/1 during the 1960’s but their
compiler was buggy.
MPC was written in Algol for a Burroughs machine.
The first successful OS written in a high-level language, C, was UNIX.
MS-DOS was written in 8086 assembler.
BSD UNIX, Linux and Windows XP were written in C.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 2 / 40

js@cs.lth.se


Why C?

Advantages over assembler language:
Easier to write in C than in assembler, of course.
Portable — that was in fact the reason for using C for UNIX.
Faster code in reasonable time. The programmer should not waste time
on things the compiler can do faster and often usually better.
Some things have no support in C and must be written in assembler.

Advantages over other high-level languages:
Reliable mature compilers are available.
Easier to debug if you write carefully (because you have complete
control).
Easier to write fast code because you have complete control.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 3 / 40

js@cs.lth.se


Structure of operating systems

In MS-DOS, applications have access to everything including BIOS.
BIOS stands for Basic I/O System, and for MS-DOS was used to do
I/O.
Nowadays, BIOS is used to initialise the hardware and to fetch the so
called boot loader (a small piece of software) which will fetch and
start the kernel.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 4 / 40

js@cs.lth.se


Monolitic UNIX

The UNIX kernel was written as one C program.
The advantage is that it potentially can be faster.
A disadvantage is that it potentially can be less well structured.
Linux is monolitic but supports dynamic loading of modules, eg to
load a device driver into kernel memory.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 5 / 40

js@cs.lth.se


Microkernels

In a microkernel only the most essential parts are left in the kernel and
the remaining system calls are supported by servers, eg file systems.
Typically interprocess communication, processes, and memory are
handled by the microkernel.
The advantages include

Improved robustness (a crash in a server does not need to crash the
system — the microkernel can restart the server)
Faster porting to other hardware — see eg what Apple did with Mach
for the iPhone (new hardware).
A microkernel can support multiple operating systems’ interfaces
simultaneously — eg one server for MSDOS, one for Windows 7, and
one for UNIX.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 6 / 40

js@cs.lth.se


More about microkernels

For an application program, the familiar UNIX system calls look the
same.
A system call instruction causes the microkernel to execute.
If the microkernel should not service that system call, it will compose
and send a message to the appropriate server.
So a disadvantage of microkernels is that they imply a lot of message
passing which makes them slower, but if your program mostly
computes instead of makes system calls, that will not be noticable for
most persons.
In my limited experience Linux is often faster than MacOS X but not
enough to affect which OS I decide to boot.
Windows NT started out as a microkernel design but became more
and more monolitic.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 7 / 40

js@cs.lth.se


Modules

An alternative to a monolitic kernel with everything needed compiled
into the kernel at build time, is the concept of modules.
In Linux and Solaris, one can add code to a running kernel.
Such code pieces are called modules.
The advantage of this approach over a microkernel is that the message
passing overhead is removed — ie a faster kernel.
The reason modules are faster is that communication between the
different subsystems is through normal function calls instead messages.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 8 / 40

js@cs.lth.se


MacOS X

The MacOS X uses both a microkernel and modules.
On top of the microkernel mach is the FreeBSD kernel.
In addition MacOS X has kernel extensions (Apple term) which are
loadable modules. These are used for device drivers.
As expected, Apple is the company which has sold most UNIX
systems.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 9 / 40

js@cs.lth.se


Virtual machines

Suppose we wish to run different operating systems concurrently on
the same machine.
One way to do so is to have lower level software below the kernel
which provide a virtual machine.
The kernels (and the rest of each OS) think they have their own
machine.
For decades, IBM has had such a system in their IBM VM operating
system.
One issue to deal with is disk space. The disks must also be virtual
and each OS is given a part of a disk — IBM calls these minidisks.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 10 / 40

js@cs.lth.se


More about virtual machines

In IBM VM user instructions are executed on the real machine and
privileged instructions are simulated.
Virtual machines are perfect for OS development since a crash does
not require rebooting the real machine.
A popular VM is VMware which abstracts an X86 machine.
Suppose you are testing an application on Linux, FreeBSD, and a
Windows version. Either buy three machines, or boot each OS one
after the other, or run all three OSes on VMware virtual machines and
test the application much cheaper and efficiently.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 11 / 40

js@cs.lth.se


Limitations of Processes

Traditional UNIX (and other OSes) processes are single-threaded.
Many important applications contain parts which can run concurrently.
With only processes, it’s difficult and inefficient to parallelize them.
With multicores it becomes even more important to have threads.
Modern UNIXes support threads.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 12 / 40

js@cs.lth.se


Writing Parallel Servers without Threads

A server, eg for a database, had the following structure.
The server listens to client requests.
At a request, the server forks a new process.
The new process services the client request.

Advantage: concurrent I/O for different processes
Disadvantages:

fork is an expensive system call
more work to set up sharing of memory between processes
sharing eg network connections between processes is not supported

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 13 / 40

js@cs.lth.se


Using threads

Threads are units of execution which share an address space.
Disadvantages:

data must be protected from other threads
and (therefore) not all compiler optimizations can be performed
for details read about memory consistency models — see eg EDAN25

Advantages:
sometimes easier programming
concurrency among threads especially on multicores
for uniprocessors: while one thread is waiting another can execute

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 14 / 40

js@cs.lth.se


More about performance benefits of using threads

Responsiveness: Multithreaded applications can proceed while one
part is blocked waiting for I/O, eg web browsers or servers.
Efficiency:

On Solaris, creating a process is 30 times slower than creating a thread,
and
also on Solaris, context-switching between processes is 5 times slower
than between threads.

Parallelism on a multicore: To achieve high-performance on a
multicore we need one thread per processor. Useful eg in numerical
computations but also eg in VLSI simulation, and many other areas —
but often you must parallelise the program by hand.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 15 / 40

js@cs.lth.se


A multithreaded server

A process contains resources and threads.
The process’ credentials are shared by all threads.
To serve a client C1 with certain permissions, the server must use
system calls setuid, setgid and setgroups to match C1.
To concurrently serve another client C2, the server must therefore
switch credentials to match C2

Therefore the security checking operations must be serialized.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 16 / 40

js@cs.lth.se


Kernel threads

The kernel has threads which need not be associated with a user’s
thread.
They can access the kernel text and global memory, and each has a
separate stack.
A kernel thread can be used for a specific task eg asynchronous I/O
Asynchronous I/O means nonblocking reads and writes for which the
request is queued and a SIGPOLL signal is delivered when the request
is completed.
Older UNIX kernels had separate processes for eg taking back page
frames from processes (the pagedeamon) — this task is better
implemented using kernel threads.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 17 / 40

js@cs.lth.se


Lightweight processes (LWP)

Based on kernel threads.
Kernel-supported user thread.
Initially a lightweight process supported multiple user threads but the
trend is to have a one-to-one mapping of user thread to lightweight
process (or kernel thread).
Linux uses a one-to-one mapping and Solaris has switched to it.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 18 / 40

js@cs.lth.se


User threads

Based on lightweight processes.
There is a user level scheduler which is responsible for scheduling user
threads without kernel knowledge.
This is invoked when a user thread blocks eg waiting for a lock.
Asynchronous I/O is complex and avoided by providing a synchronous
interface (the usual read and write) which uses asynchronous I/O and
switches user threads while waiting for the queued I/O request.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 19 / 40

js@cs.lth.se


Upcalls

The kernel schedules the LWP but knows nothing about what the user
thread is doing
The user thread might own a spin lock.
An upcall is a call from the kernel to the user thread library and is
used to let the thread library schedule a new thread at a blocking
system call.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 20 / 40

js@cs.lth.se


Interrupt handling using threads

Interrupt handlers may modify critical kernel data which must be
protected.
Traditionally the interrupt priority level (IPL) was used to block
interrupts (or other interrupts) when such data was modified.
On multicores, this is particularly inefficient — since the IPL must be
changed on all CPUs.
Blocking urgent interrupts can slow down the system.
In Solaris interrupts are handled by kernel threads which have the
highest priority and are synchronized with the rest of the kernel using
normal facilities such as mutexes.
For this, Solaris has a pool of interrupt threads ready to be used.
Interrupts are relatively infrequent but changing the IPL was frequent,
so using threads optimizes the common case.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 21 / 40

js@cs.lth.se


Signals and Threads

Solaris and other systems distinguishes between two types of signals:
Synchronous signals called traps, and
Asynchronous signals called interrupts.

Synchronous signals include SIGSEGV, SIGILL, SIGBUS, and SIGFPU.
Asynchronous signals include SIGPOLL, SIGTERM and SIGKILL.
Synchronous signals are delivered to the thread causing it, while
asynchronous are delivered to the first thread with them enabled.
A thread can install its own handler for synchronous signals.
Asynchronous signals have a common set of handlers.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 22 / 40

js@cs.lth.se


UNIX Signals

A signal is a simple way for the kernel to tell a process that an event
has occured.
When a signal is delivered to the process either a default action of
killing the process, or a function in the process is called.
The original design had some problems making them unreliable (see
below) which were fixed in an incompatible (with System V from
AT&T) way Berkeley in 4.2BSD.
Today all UNIX implementations are POSIX-compliant and portable.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 23 / 40

js@cs.lth.se


Generating and Delivering a Signal

A signal is generated when an important event occurs.
It is said to be pending until it is delivered to the process.
The kernel calls issig to check whether a process has a pending
signal:

Before the process blocks on an interruptable event.
Immediately after the process wakes up from an interruptable event.
Before returning to user mode from kernel mode.

If there is a pending signal, the kernel calls psig to either terminate
the process or to call the signal handler using sendsig.
The function sendsig manipulates the process’ stack so that it
almost looks as if the signal handler was called from the program.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 24 / 40

js@cs.lth.se


Leaving a Signal Handler

Normally a signal handler returns when it is finished but there are
other options.
The signal that was delivered is blocked while executing the handler.
The previous slide said it almost looks as if the signal handler was
called from the program.
The delivered signal should be unblocked when the handler returns.
If the signal handler returns, execution is resumed where the process
was stopped.
If the signal handler instead calls longjmp/exit/abort the signals
blocked for the duration of the handler remain blocked — see
sigaction below.
If the process was in a system call it usually fails and errno is set to
EINTR.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 25 / 40

js@cs.lth.se


Reasons for Generating a Signal

Some hardware exceptions — eg trying to access an invalid address
Other process uses kill or sendsig
Terminal interrupts — user sends CTRL-C to the foreground process
Job control — a back ground process doing terminal I/O gets a signal
Quotas — when a quota is exceeded the process is notified with a
signal
Notification — of eg a device being ready for I/O
Alarms — the time for an alarm has been reached (see alarm).

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 26 / 40

js@cs.lth.se


Example Signal Delivery

The user hits CTRL-C. The terminal driver is run to service the
interrupt and sees it was CTRL-C.
The terminal driver of this terminal then sends the SIGINT signal to
the foreground process (or processes if its eg a pipeline).
When a receiving process is scheduled to run and returns to user mode
from the kernel, the issig function discovers the signal.
Previous point also works properly if the receiving process was the
interrupted process.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 27 / 40

js@cs.lth.se


Two Kinds of UNIX Sleep

Sleep means a process being blocked and UNIX distinguishes between
two kinds:

Interruptable — long term sleep such as waiting for terminal input
Uninterruptable — short term sleep such as waiting for a disk block

The kernel wakes up the process if it was interruptable and delivers
the signal
The signal becomes pending in the other case.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 28 / 40

js@cs.lth.se


Unreliable Signals

Before 4.2BSD signals were unreliable.
The problem was that the signal handler was removed at delivery.
Signal handlers therefore usually reinstalled the handler.
If there should be a handler for SIGINT and a user hits CTRL-C very
quickly the result could be a terminated process!
Signal handling as specified by POSIX is used in Linux:

Handlers are persistent — they remain until another is installed
Masking (or blocking) — a signal can be temporarily blocked
Some signal information is moved from the u area to the proc
structure to avoid having to wake up a process to see if it has a
handler for a signal.
The sigpause system call atomically unmasks signals and waits for a
signal.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 29 / 40

js@cs.lth.se


UNIX System V Release 4 Signal Functions — used in Lab 2

int sigprocmask(int how, const sigset_t *set, sigset_t *oldset);

sigprocmask manipulates the set of blocked signals
The values of how determine the behavior:

SIG_BLOCK — the signals specified in the set are added to the set
SIG_UNBLOCK — the signals specified are removed from the mask
SIG_SETMASK — the set becomes the new mask.

the old set is saved in oldset if non-null.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 30 / 40

js@cs.lth.se


More SVR4 Signal Functions: sigaction

int sigaction(
int signum,
const struct sigaction* act,
struct sigaction* oldact);

The sigaction function is used to specify a signal handler for the
signal signum.
The handler is specified as a field of act.
A mask for this signal number: which additional signals should be
temporarily blocked until the handler returns.
Thus these signals remain blocked if the handler calls longjmp instead
of returns.
A set of flags to specify other actions (see Lab 2).
Hint: declare act as struct sigaction act = { 0 };

Otherwise, since act usually is a stack variable, it will initially contain
garbage which, unless properly cleared, is likely to annoy the kernel —
and the kernel to annoy you.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 31 / 40

js@cs.lth.se


More Signal Macros and Functions

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);
int sigaddset(sigset_t *set, int signum);
int sigdelset(sigset_t *set, int signum);
int sigismember(const sigset_t *set, int signum);

The macro sigemptyset clears a set of signals.
The macro sigfillset adds all signals to a set.
The macros sigaddset and sigdelset modify a set.
The macro sigismember can then be used to see if a specific signal is
pending:

returns 0 if signum is valid but not a member of set.
returns 1 if signum is valid and a member of set.
returns -1 otherwise — useful in Lab 2.

The above are macros for manipulating signal sets (sigset_t).
The system call sigpending fills in a set of pending signals.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 32 / 40

js@cs.lth.se


Interprocess Communication

Shared memory
Issues in message passing
Sockets
Remote Procedure Calls (RPC)

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 33 / 40

js@cs.lth.se


Shared Memory

This is the most convenient and efficient method of communication.
It is useful for either multiprocessors or uniprocessors, and
either for multithreaded programs or for separate processes on the
same machine.
With shared memory, communication is through writing and reading
from memory, and this must be protected using synchronisation such
as locks.
With a multithreaded program, no special action has to be taken by
the programmer — the memory is shared from the start.
With separate processes, the shared memory must be attached to the
program eg using the UNIX shmat system call (shared memory
attach).

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 34 / 40

js@cs.lth.se


Issues in Message Passing

Direct vs indirect communication: send a message to a process or
to a mailbox (the latter is more convenient),
Blocking vs nonblocking: if both send and receive are blocking we
have the equivalent of the Ada rendezvous primitive, and
Buffering:

Zero-capacity: forces the sender to block
Bounded-capacity: forces the sender to block if queue is full
Unbounded capacity: the sender never blocks.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 35 / 40

js@cs.lth.se


Message System Example 1: Mach (MacOS X)

Mach was developed at Carnegie-Mellon University in a project on a
microkernel-based UNIX for multiprocessors.
A mailbox is called a port in Mach and has exactly one receiver.
The receive rights of a port can be given away to another process.
The contents of a message is a fixed header with a reply port, and
typed data (ie, not just a stream of bytes).
The sender can send port rights by referring to a process-local port
number, and then the kernel translates this port number to another
process-local port number in the receiver.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 36 / 40

js@cs.lth.se


Message System Example 2: Windows

Two types of ports: connection ports and communication ports.
Connection ports are known to all processes and are used to initiate
communication with a subsystem by creating two communication
ports, one for the client and another for the server.
The maximum size of the data to be sent must be known before
starting the communication: short messages are sent by copying the
data into the message while long messages instead send a pointer to
data to avoid the copying.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 37 / 40

js@cs.lth.se


Sockets

A pair of sockets are used to communicate a stream of bytes
between two processes.
A socket is identified by an IP address and a port number (this port
number is local to the machine, as opposed to Mach-process port
numbers mentioned before).
Port numbers ≤ 1024 are regarded as well-known eg: ssh is 22 and
http is 80.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 38 / 40

js@cs.lth.se


More structured than sockets: RPC

The main problem with sockets is that there is no type system.
Data is just a stream of bytes, but representing eg a short int in
binary is not portable!

short int s = 0x1234; Assume s is 16-bits, or two bytes.
Think now of s as an array of two bytes: char s[2];
Which element contains 0x12 and which contains 0x34?
On a big-endian machine eg Power s[2] = { 0x12, 0x34 }.
On a little-endian machine eg X86: s[2] = { 0x34, 0x12 }.
A common representation is required, eg the External Data
Representation, XDR from Sun (in which they defined data should be
transmitted as big-endian).

Sockets are messy to program with — normal function calls are easier.

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 39 / 40

js@cs.lth.se


Remote Procedure Calls

The goal is to hide the IPC from the source code and let
programmers think of normal procedure calls.

Some issues:

Data representation (eg endian-ness and structure layout).
Finding the port of the server (eg port 111 is a portmapper which is
asked)
Complicated data structures: pointers and eg graphs are difficult to
support

Jonas Skeppstedt (js@cs.lth.se) Lecture 2 2014 40 / 40

js@cs.lth.se

