
Contents of Lecture 1

A definition of an Operating System
Command line interpreters
Processes
Implementing a simple command line interpreter in UNIX (Lab 1)

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 1 / 33

js@cs.lth.se

A definition of an Operating System

An OS is an abstract machine which can run a number of programs.
The programs can talk to the OS using special functions called system
calls.
The OS is also a government/police which controls the hardware so
that:

the processes do not destroy each other — provide protection,
the hardware is used efficiently — e.g. using multiprogramming, and
it is convenient for programmers — e.g. using virtual memory.

An OS is not about user interfaces although all operating systems
should have a nice user interface (e.g. a command line interpreter with
vi-compatible editing commands (vi is the standard UNIX editor)).

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 2 / 33

js@cs.lth.se

Some terminology

A program is an executable file stored on disk and when it is running
in the computer it is called a process.
There can be hundreds of system calls dealing for instance with

loading a file from disk and start executing it (execve)
creating a file (creat)
reading and writing a file (read/write)
removing a file (unlink)
asking what time it is (gettimeofday)
creating a new process (fork)
terminating execution (exit)
killing another process (kill)

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 3 / 33

js@cs.lth.se

Some more terminology

Protection: a process can only read and write its own memory. Earlier
systems such as MS-DOS did not offer this facility.
Multiprogramming: while one process is waiting for some event such
as disk access being completed, instead of just doing nothing, the OS
runs another process in the mean time. This is to make more efficient
use of the hardware.
Virtual memory: a technique to make the RAM look much larger
than it actually is so that programmers don’t have to worry (so much)
about how much memory is used.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 4 / 33

js@cs.lth.se

Three aspects of a modern computer

Dual mode processor: user-mode and supervisor-mode.
Supervisor-mode is police-mode which can do anything. User-mode is
for running normal programs. If something exceptional/illegal is
attempted, the processor automatically switches to supervisor-mode.
The ”mode” is stored in a one-bit hardware register in the processor.
A real-time clock: the clock interrupts the processor (say, 100 times
per second) and lets the OS decide if the current user process has run
for too long. By switching user processes often, the user thinks all
programs are running in parallel but this is not true (on a
uniprocessor).
A kernel: the kernel is a program, often implemented in C and
assembler, and acts as the government/police.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 5 / 33

js@cs.lth.se

More about the kernel

The kernel has four main things to do:

Scheduling: decide which process run next
React to system calls from the running process: the kernel knows e.g.
how to open a file
React to exceptions from the processor: e.g. a divide by zero, or,
TLB fault (TLB = translation lookaside buffer, a part of the VM
system (VM = virtual memory)), or
React to interrupts from peripheral devices: e.g. take care of a
network packet and forward it to the proper user process.

The main difficulty in writing a kernel is the same as for much other
software: getting it correct, fast, and easy to maintain

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 6 / 33

js@cs.lth.se

But why do we really need a kernel in the first place?

Without process scheduling and protection, chaos will reign. Bad.
Without the abstraction of the system calls, user programs would have
to deal with e.g. disk access interfaces. Too messy and not portable.
With centralised control, all processes running e.g. emacs on a
machine can share parts of memory in a read-only fashion. All
processes using printf can share the same copy in RAM.
Sharing the memory for instructions in system libraries such as printf is
done through shared libraries and dynamic linking.
The alternative is static linking in which the compiler produces a
complete file with all instructions.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 7 / 33

js@cs.lth.se

Definition of a process

A process is an entity which can execute a program (note that it can
decide to execute another program by loading a different file —
registers and memory contents are lost but e.g. opened files remain
open).
Each process has among other things:

instruction pointer (PC), integer and floaing-point registers,
memory,
process state: one of running, ready, waiting, etc
credentials: privileges associated with the process owner

The scheduler in the kernel decides which process should run.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 8 / 33

js@cs.lth.se

Measurement Hardware

Machine used for performance measurements

power.ludat.lth.se

Apple PowerMac Quad G5
2 x IBM 970MP Power/AltiVec microprocessor, i.e. 4 CPU’s
2.5 GHz
6 GB RAM
OS: Linux 3.3.4
Measurements are made using lmbench-3.0 available at

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 9 / 33

js@cs.lth.se

Getting services from the kernel: system call

The caller’s code for a system call is exactly like a normal function call.
The details are hidden in a user-level library code in the C library
(assembly code).
In addtion to the normal parameters, a special parameter, the system
call number is stored in a CPU register.
Instead of using the normal function call machine instruction, a special
system call instruction machine instruction is used in the assembler
routine.
The system call instruction does two things:

1 switches from user to supervisor mode
2 jumps to a predefined address in the kernel

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 10 / 33

js@cs.lth.se

More about system calls

Once the process has exectued the system call instruction, it hands
over control to the kernel
It takes 0.53µs (or 290 clock cycles) to do a ”null” system call (just
entering and leaving the kernel) on the PowerBook.
Avoid system calls if possible.
How to avoid system calls???
If possible, use buffered I/O (along with fflush(FILE*) when output is
required). If not possible, try at least line-buffered I/O.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 11 / 33

js@cs.lth.se

Example of using buffered I/O 1(2).

#include <assert.h>
#include <stdio.h>
#include <stdlib.h>

#define BUFFER_SIZE (2<<15) /∗ 32 KB ∗/

/∗ Three buffer ing a l te rnat ives provided by the C standard l i b r a r y :
∗ _IOFBF −− f u l l y buffered .
∗ _IOLBF −− l i n e buffered .
∗ _IONBF −− no buffer ing .
∗/

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 12 / 33

js@cs.lth.se

Example of using buffered I/O 2(2).

int main(int argc, char** argv)
{

void* buf; /∗ User−supplied buffer for stdout. ∗/
char line[1000]; /∗ One line of input . ∗/

buf = malloc(BUFFER_SIZE);
assert(buf != NULL);

setvbuf(stdout, buf, _IOFBF, BUFFER_SIZE);
printf("how are you? ");
fflush(stdout); /∗ flush output to screen. ∗/

fgets(line, sizeof line, stdin);
printf("%s? --- good to hear.\n", line);

/∗ no fflush needed since exit wil l do that . ∗/
return 0;

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 13 / 33

js@cs.lth.se

Processes in UNIX

Process states
Process context
User credentials
Data structures: u area and proc structure

Signals
Creating new processes

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 14 / 33

js@cs.lth.se

UNIX Process States

initial
(idle)

ready
to run

stopped
stopped
+ asleep

asleep

kernel
running

user
running

zombie

stop continue stop continue

fork

fork

wakeup

wakeup

syscall or
interrupt

return from
syscall or
interrupt

exit

sleep

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 15 / 33

js@cs.lth.se

Process context

Integer and floating-point CPU registers (and vector registers on
G4/G5).
Memory: code, data, stack
Special hardware registers: MMU data, processor status word, etc
Credentials: real and effective UID/GID
u area and proc structure: where process info is stored
Environment variables: HOME, PATH, LD_LIBRARY_PATH, etc

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 16 / 33

js@cs.lth.se

Credentials

Every user has a user id (UID) and a group id (GID)
Every process has a pair of IDs called real and effective which are set
at login to UID.
The Superuser, (root), has UID = 0 and GID = 1 and may access any
file
Effective UID/GID are used when a file is opened to check privileges
A suid mode program sets the effective UID/GID to the programs
owner

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 17 / 33

js@cs.lth.se

Suid programs 1(2)

Suppose you have a file A which should only be modified in some
controlled way.
Start by setting the access rights to read-only for everyone except
yourself:
$ chmod 644 A (results in rw-r–r–).
Then write a program P which the others can use to modify the file
(such as adding their name at the end of the file).
Let the others run your program: chmod 511 P. (results in r-x–x–x)
But, when they run your program, their processes will not have
permission to modify your file!

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 18 / 33

js@cs.lth.se

Suid programs 2(2)

When running your program, the process needs your write permission.
Solution: Make your program SUID: $ chmod +s P. (r-s–x–x).
Now the kernel will set their processes’ effective user id to the owner of
the program P, which is you, and you can modify A so they can as well.
In Kernighan/Pike ”The UNIX Programming Environment” 1984 (the
classic introduction to UNIX), they suggest protecting high-score files
using a SUID program.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 19 / 33

js@cs.lth.se

U Area

CPU registers for a process which is waiting for soon being scheduled.
Real and effective UID/GID
Pointer to the proc structure
Argument to system calls and a stack for executing a system call
Pointer to the current directory
Information about signals, opened files, and memory

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 20 / 33

js@cs.lth.se

Proc Structure

Process id (pid), process group, process state, priority, and a pointer
to the u area
Pointers to other processes in a doubly linked list in one of the
scheduler’s priority queues.
Sleep channel for a blocked process.
Information about signals
Pointers to other procs to make a tree: parent, first child, and sibling.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 21 / 33

js@cs.lth.se

Process groups

Every process belongs to a process group.
A process group is identified with the pid of the leader of the group.
Every command in a shell creates a new process group, e.g.:

$ grep -i unix *.tex | awk -F: ’ { print $1; } ’ | uniq

The execution of process groups can be controlled with commands
such as: Ctrl-C, Ctrl-Z, bg, fg as we will soon see.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 22 / 33

js@cs.lth.se

UNIX Signals

Signals is a mechanism of notifying a process that something has happened
Signal Cause Default effect
SIGINT Ctrl-C Terminate the process
SIGSTOP Ctrl-Z Stop the process
SIGSTOP kill -SIGSTOP <pid> Stop the process
SIGCONT kill -SIGCONT <pid> Resume the process
SIGILL invalid instruction Terminate the process
SIGSEGV eg access of kernel data or addr 0 Terminate the process
SIGBUS eg non-alignad memory access Terminate the process
SIGFPU eg division with zero Terminate the process
SIGKILL kill -SIGKILL <pid> Terminate the process
SIGKILL kill -9 <pid> Terminate the process

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 23 / 33

js@cs.lth.se

More about signals

A process can send a signal to another process with the same real UID.
kill -9 on others’ processes don’t work unless you are root.
A process can register a signal handler which will be executed instead
of the default effect (except SIGKILL which cannot be overridden).
The system call kill(pid, s) sends the signal s to pid if pid > 0;
and if pid < 0 the signal is sent to all processes in the process group
-pid.
It takes 1.6 µs, or 900 clock cycles, to install a signal handler on the
PowerBook.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 24 / 33

js@cs.lth.se

Job control

Every terminal window has a process group in the foreground.
Ctrl-Z stops the process group in the foreground.
The shell command bg moves a stopped process group into the
background and resumes it.
The shell command fg moves a process group into the foreground.
With multiple process groups in the background, they are named
either with job number eg %3 or pid.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 25 / 33

js@cs.lth.se

Creating new processes in UNIX

A new process is created with the system call fork.
Time to fork is 460 µs or 253000 clock cycles (on the PowerBook).
Fork returns -1 on failure, 0 to the child, and the child’s pid to the
parent.
The child process is a copy of the parent with a few exceptions:

the child gets its own process ID
the forking process becomes the parent of the child (in the proc struct).
the child gets its own file descriptors (referring to the same files
though)
waiting signals are removed (ie signals not yet delivered to the parent).

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 26 / 33

js@cs.lth.se

Using the fork System Call

int main()
{

int child_pid; /∗ Child process id . ∗/
int child_status; /∗ Exit status from the child . ∗/

if ((child_pid = fork()) < 0)
error("fork failed");

else if (child_pid == 0)
printf("i am the child with pid: %d\n", getpid());

else if (want_to_wait)
waitpid(child_pid, &child_status, 0);

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 27 / 33

js@cs.lth.se

Finding and loading an executable file 1(3)

The UNIX shell uses the environment variable PATH to search for
commands.
PATH is a colon-separated list of directories. In C/C++:

char* s = getenv("PATH");

Suppose the shell is searching for the command gcc.
The system call access() tells whether a file exists and the process
has suitable rights.
The system call execv() loads an executable file into the process’
memory and starts executing it (dropping the previous program).

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 28 / 33

js@cs.lth.se

Finding and loading an executable file 2(3)

char* command; /∗ Command we are looking for , eg "gcc". ∗/
char* directory; /∗ Pathname of a directory , eg "/usr/bin". ∗/
char file[BUFSIZ]; /∗ File to load. ∗/

/∗ Produces eg "/usr/bin/gcc" in f i l e . ∗/
sprintf(file, "%s/%s", directory, command);
if (access(file, X_OK) == 0) {

/∗ We found the f i l e and we are allowed to exec it . ∗/
argv[0] = file; /∗ First element of argument vector is the path. ∗/
execv(argv[0], argv); /∗ Path and argument vector to the program. ∗/
/∗ Should not come here unless execv fa i l s . ∗/

}

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 29 / 33

js@cs.lth.se

File descriptors

Files in UNIX are referred to by the process using integers.
These integers are indices into the process table of open files.
The table elements have references to opened file data structures.
0 is stdin, 1, stdout, and 2 is stderr.
When a new file (or pipe, see next slide) is opened the first free
position in the open-file-table is returned to the process as return
value from the kernel.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 30 / 33

js@cs.lth.se

Pipes 1(2)

To count the number of Java files in a directory, we can do:

ls *.java > javafiles
wc -l < javafiles

A pipe is a special anonymous file which is used to let two processes
communicate with each other.
Command to count the number of Java files in a directory: $ ls
*.java | wc -l

Here ls prints all Java file names on its stdout which becomes the
stdin of wc, which count the number of lines of input.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 31 / 33

js@cs.lth.se

Pipes 2(2)

The system call pipe(int fd[2]) creates a pipe with fd[0] for
reading and fd[1] for writing.
To setup the pipeline ls | wc, the shell must organise file descriptors
as follows:

File descriptor 1 of ls should be referring to what fd[1] refers to.
File descriptor 0 of wc should be referring to what fd[0] refers to.

The int dup2(int oldfd, int newfd) system call copies the
pointer in the open-file table at position oldfd to position newfd (if
newfd referred to an open file, it is first closed).

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 32 / 33

js@cs.lth.se

A simple command interpreter: Lab 1

Fetch the PATH environment variable using getenv(PATH") and make
a list of directory names (already done for you in the Lab).
Read a line from stdin and parse it and split it up into items separated
by the pipe symbol |. This is also done for you already.
For each item, the first ”thing” is a command name. Search for it. The
rest are arguments.
The interesting part is setting up the pipes.

Jonas Skeppstedt (js@cs.lth.se) Lecture 1 2014 33 / 33

js@cs.lth.se

