
Exam in EDA050 Operating Systems

May 27, 2010, 14-19

Inga hjälpmedel!

Examinator: Jonas Skeppstedt

30 out of 60p are needed to pass the exam.

1. (10p) Traditional UNIX File Systems

(a) (2p) Why is the system call to remove a file from a directory called
unlink and not remove?

Answer: The system call removes only the directory entry and
not the file itself, unless it was the last directory entry referring
to that file.

(b) (4p) Except for mount points, why can a normal UNIX directory
not contain files stored in a file system (hard disk partition) dif-
ferent than the directory itself is stored in?

Answer: The directory contains mappings from file names to in-
ode numbers, and in particular there is no attribute which speci-
fies a partition.

(c) (2p) How can the kernel know whether an executable file is a shell
script or, for instance, an ELF executable file?

Answer: By looking at the first few bytes, which are called the
magic number. Scripts start with #!path while the first four bytes
of an ELF executable are 0x7f, ’E’, ’L’, and ’F’.

(d) (4p) Which is the most frequent file operation and which is the
most frequent disk access operation and why are they not the
same?

Answer: Reads are the most frequent file operation and writes
are the most frequent disk operation and the reason is the high
read hit rate of the buffer cache.

2. (10p) Modern File Systems

(a) (2p) The BSD Log-Structured File System (LFS) needs an inode
map. Why?

Answer: A modified inode is written in the log and to find the
current version of an inode the inode map is needed. An inode
thus has no permanent location on the disk in LFS as on eg EXT2
and EXT3.

1



(b) (2p) What does the cleaner process do with LFS?

Answer: The purpose of the cleaner process is to perform garbage
collection in order to create fresh segments that can be used for
writing in the log. It does so as follows: the parts of a segment
that contain dead data (overwritten data blocks of a file, or re-
moved files) need no action. If a segment S1 has live data (ie still
in use) that and live data from other segments can be collected
and copied to a segment S2 in order to make S1 reusable.

(c) (3p) What is the key idea behind EXT3 as opposed to BSD LFS
and EXT2?

Answer: Instead of as in BSD LFS using an entire disk partition
as a log, EXT3 keeps the EXT2 file system structure but extends it
with a small log to which writes first a performed. Subsequently
the data is copied to the normal disk blocks.

(d) (3p) EXT4 supports fast accesses to large files. How?

Answer: By using so called extents which are areas of size up to
128 MB consisting of consecutive disk blocks. I/O is faster with
larger disk blocks.

3. (20p) Virtual memory.

(a) (1p) In which decade was virtual memory invented?

Answer: 1956.

(b) (4p) Translating virtual to physical page numbers for every user
program memory access seems to significantly degrade perfor-
mance. Why does it usually not?

Answer: The TLB’s cache translations and usually a translation
can be found in a TLB in which case the translation costs no addi-
tional clock cycles. It is very important that the hit ratio in a TLB
is very high, otherwise performance degrades quickly.

(c) (2p) What is a TLB-fault and what does the kernel (if it is involved)
do about it?

Answer: A TLB-fault is an exception triggered when a translation
was not cached in the TLB. The kernel will look up the page table
entry, and replace some other translation in the TLB with the new
one. If the page was not in RAM more processing is required.

(d) (5p) What is a multilevel page table and what is its disadvantage
in a 64-bit architecture when there is a TLB-fault?

Answer: To look up a translation in a multilevel page table re-
quires a fixed but relatively large (depending on the number of
levels) number of memory accesses to find the page table en-
try. With a 64-bit address space the number of levels typically
is larger than for a 32-bit address space.

2



(e) (3p) When a physical page is replaced and used for another virtual
page, how can the kernel find the previous owner of the physical
page and why would it want to find it?

Answer: The coremap, indexed by physical page number, con-
tains a pointer to the owning page table entry, which must be
updated so that its data can be found on the swap when needed
in the future.

(f) (3p) Describe the second-chance page replacement algorithm.

Answer: The coremap array is searched and when a page table
entry with reference bit zero is found, then that physical page is
used. When the reference bit is one, it is instead set to zero. The
search wraps around after the last page has been inspected.

(g) (2p) What is a linear page table and where is it stored ?

Answer: A linear page table is an array of page table entries and
since it is so large, it is stored in virtual memory.

4. (10p) Synchronization.

(a) (4p) How can false cycles be avoided in distributed deadlock de-
tection when there is a central coordinator that detects cycles?

Answer: The nodes maintain the partly resource allocation graphs
which are sent to the central coordinator when requested. Since
there can then be false cycles due to a deletion of an edge from
a resource allocation graph may happen before an addition of an
edge but may actually be observed by the coordinator in to have
happended after the addition. To avoid false cycles, the local re-
source allocation graphs can contain a time stamp in both the
head and tail of edge and when a nodes

(b) (6p) What is a ticket-based spinlock and what hardware feature
does it require? Which performance problem does this lock have,
if any?

Answer: Atomic fetch-and-increment is needed. A disadvantage
with ticket-based spinlocks is that at an unlock, all waiting CPUs
will fetch the counter telling whose turn it is, while it would be
better that only the CPU which will get the lock should be in-
formed.

5. (10p) Scheduling

(a) (6p) What is priority inheritance and how does Solaris implement
it? Does their implementation have any limitations, and in that
case which?

Answer: See slides.

3



(b) (4p) What is affinity scheduling and what is its purpose?

Answer: To schedule a thread on the same CPU as it was running
last time in order to have some useful data in the cache left.

4


