
Appendix A

Video Surveillance System

Presently this chapter contains the course project, formulated in general and
system independent terms. A project assignment typically involves several
persons that do analysis, design, implementation, testing, and documentation
over a period of several days. Four persons spending one to two weeks (or
more, depending on earlier experiences) is normal.

A.1 Introduction
Low-cost video cameras are today widely used in consumer electronics and for
web-based interaction. Another common use, using cameras with a somewhat
higher quality but still reasonably priced, is surveillance of public or restricted
areas.

Before the evolution of Internet and Intranet solutions, such systems typi-
cally consisted of a number of distributed cameras connected to some type of
control room as depicted in Figure A.1. Neither computers nor networks were
parts of these systems. Such a system does not scale up very well; cabling gets
expensive and captured pictures cannot easily be handled for specific analysis
and documentation.

Then with the widespread availability of computer networks, the natural
development is to have digital camera nodes with built-in network connection.
Hence, the camera acts as a web server for obtaining video frames/pictures via
the net. A straightforward implementation of such a camera node is simply
achieved by connecting a video camera to a PC equipped with a framegrabber
board, as shown in Figure A.2. The project proposed in the sequel can be
carried out based on such camera nodes, which also simplifies test and debug-
ging in that the development tools can be used directly on the computer that
grabs the video frames.

A device with more dedicated hardware is, however, more appropriate
for the majority of applications; the camera unit gets cheaper, more reliable,
requires less space, and is less visible. Such web-camera products have also

155



A. Video Surveillance System

Figure A.1: Distributed cameras connected to an operator for surveillance/-
supervision, possibly using pure analog techniques that today is unnecessarily
expensive.

Figure A.2: A camera node consisting of camera, computer, and a connector
for the local area network. Software is run on ordinary computers.

156 2012-10-29 10:05



A.1. Introduction

been developed, which has resulted in a variety of applications1. There are
constantly new functions and serviced being developed based on such camera
devices, and we see both manual and automatic use cases, for instance in
following two directions:

• Applications where humans are set to observe on-line pictures. There is
a need to assist the operator in detecting and handling certain situations,
possibly occurring seldom but requiring immediate action.

• Applications where the camera information is used by other comput-
ers or machines in an automatic manner, either for feedback control of
motions or for computerized supervision of automatic operation.

Considering the technical aspects, there are three important development
issues: algorithms, hardware, and software. We are concerned with the soft-
ware issue, which gets especially important when so called intelligent cameras
are part of a system including other types of equipment. Then we need to
have software that can be easily reconfigured to meet new requirements from
adjacent equipment and from operator preferences. There is also a need for
open systems, that is, the user of the products must be able to introduce new
functionality which may not have been foreseen by the manufacturer of the
camera or camera server.

Properties such as portability, superior networking support, and dynamic
loading of additional classes and object, make the Java software technology
particularly well suited for the software aspects. In the proposed project, we
want to gain experience from different software solutions. That is, rather than
going for the ultimate high performance system, we want to build a prototype
that let us easily change the software and reason about properties of different
solutions. Full efficiency is left for those working with optimized products.

From the perspectives of this real-time programming course, we focus on
programming techniques that are mainly beneficial for control software and
for multimedia software. A supervision system with advanced camera nodes
represent the multimedia approach. Still, in terms of demands on timing and
distributed computing, our experience should form a good basis for further
work on control software, which the project hopefully inspires you to. To
conclude, the supervision system we are about to develop is illustrated in
Figure A.3.

Specifically, it was found that the Axis 211A (or most other types of Axis
models) camera is a suitable platform/device for development of the proposed
type of system. It features an embedded Linux-based computing, with em-
bedded Java programming supported by the free LJRT platform.

Although this project was formulated and carried out well before similar
products were available, there are now surveillance systems such as the AXIS

1See the Network Camera Servers at http://www.axis.com/products/video/index.htm

157



A. Video Surveillance System

Figure A.3: Computer controlled web-cameras handled from an operator
workstation.

Camera Station, which is an IP-Surveillance software that works with Axis
network cameras and video servers to provide video monitoring, recording
and event management functions. Users can record video continuously, on
schedule, on alarm and/or on motion detection. The proposed project can be
viewed as creating a portable (Java-based) subset of that type of product, but
with the aim of getting experience rather that products or prototypes.

A.2 Requirements

Since just a prototype should be developed, the requirements are more about
functionality than performance, even if we want to learn how design influences
performance. Specifications:

1. Camera units are referred to as servers since they serve client applica-
tions with video images. After being started, a server should permit
clients to connect and disconnect during operation.

2. One camera unit only needs to serve one connected client at a time.

3. The client software should be able to concurrently handle two camera
units. Optionally, more units may be handled but, of course, with de-
creased performance.

158 2012-10-29 10:05



A.2. Requirements

4. The application should be written in 100% pure Java, except for avail-
able hardware interfaces which are accessed via available classes with
methods declared as native.

5. Communication is accomplished via TCP/IP or UDP/IP using sockets
in Java. Possibly, the UDP support may be missing, and additional
support software supporting the communication might be provided.

6. The hardware supports different image/streaming formats but we only
use JPEG for the compressed images sent over the network. Supporting
classes and guidelines will be provided via the course web.

7. By default, the frame- grabber hardware gives 320 by 240 sized images
with 24-bits color depth. We only need to work with that size also in
the client software.

8. To obtain higher frame rate also for the case of a slow or loaded network,
images are transferred streamed in JPEG format via sockets (see items
5 and 6) which should remain connected until the operator explicitly
disconnects. It should be possible to reconnect thereafter.

9. Below the display area of each video picture, there should be an indicator
or number showing the current delay (from capture time until received
by the client) of the image. If the delay difference between received
images are below a certain value which we denote the synchronization
threshold, say 0.2 s, the images should be shown synchronized.
The following implies that when we receive an image from a camera,
we might have to delay displaying it for a time up to or equal to the
synchronization threshold. When we have one image from each camera
matching the synchronization condition, the oldest image should be dis-
played. Then, after a period of time equal to the time passed between
the two images, the second image should be displayed.
By synchronized display we mean:

• Images from the same camera are to be displayed by the client in
the same temporal order as they were captured at the servers.

• Two image streams captured by two different cameras shall, if pos-
sible, be displayed at the client such that frames captured simul-
taneously at a certain real time should be displayed at the same
time too. The different cameras and frame grabbers at the different
servers are, however, not synchronized, and network delays can be
different. Therefore, looking at two specific frames from two dif-
ferent cameras, display should be separated in time with as much
time as passed between capturing the two images. For instance, if

159



A. Video Surveillance System

one image was captured 0.1 second before the second image, the
second image should be displayed 0.1 s after the first.

• Captured images come with a time stamp from the device driver.
You may assume that clocks on different servers are synchronized,
or optionally you can include clock synchronization (at startup) in
your communication protocol.

If the difference in image delay between the two cameras is larger than
the synchronization threshold, the system shall enter asynchronous mode
and display the images as soon as they arrive at the client. The system
shall automatically alternate between synchronous and asynchronous
mode as the delays change. The user shall be clearly informed of the
current mode of operation, synchronous or asynchronous.

It is reasonable to accept a few frames out-of-sync without entering asyn-
chronous mode. The purpose of this requirement is that two cameras
that are mounted and displayed side-by-side to visualize a wider scene,
should present a wide and consistent view to the operator. Consider the
case when a running person passes the two cameras from left to right.
On the screen, it should then look the same, possibly with both images
delayed but the person should pass through from left to right in the
same way.

10. To support the operator, the system should provide two modes: Idle and
Movie. In mode Idle, images are transmitted at a low fixed constant rate,
say one image per 5 seconds.

In mode Movie, images should be transmitted at the highest possible
rate and with shortest possible delay, which are effected by network
and display performance. The hardware supports frame-rates up to the
standard (European/PAL) TV frequency of 25 fps (frames per second).
Possibly, the hardware (e.g., in case of multiple users or less efficient
implementations) might not provide full frame-rate. Rates around 12
fps are typical.

11. The camera server should detect if there is any motion in the captured
images. If so, the server should inform the client and the system should
enter mode Movie. In the client application, the user should be informed
clearly about which mode is active and what camera server triggered the
latest movie mode.

12. Motions are detected by comparing pixel color values; there is a motion
when the sum of the differences over the pixels between two frames are
above a certain threshold. Software (either in C specially for the hard-
ware at hand, or implemented purely in Java, but in any case callable

160 2012-10-29 10:05



A.3. Equipment and APIs

from your Java software) for detecting motions based on the grabbed im-
ages will be provided, to be called directly within your software. Since
not all pixels are needed in practice, and fully decompressing images on
the server for motion detection would substantially increase the CPU
load on the server. Therefore, the class providing motion detection de-
codes only some of the pixels (in each JPEG square), or special hardware
support is used.

13. By default the system starts up in mode Idle for all cameras. When
Movie is detected for one camera, all other cameras should also enter
mode Movie. This mode remains until the operator decides to enter
mode Idle again.

14. In addition to the streamed video, a tiny http server should permit
clients to grab an image using a web browser. There will be an available
implementation of this feature which should be kept for testing purposes.

15. It should be possible via the client (either as part of the GUI or as debug
options) to enforce synchronous mode as well as asynchronous mode. In
a similar manner, as when selecting Idle according to item 13, it should
be possible to enforce both Idle and Movie mode. For normal operation,
there should be a choice Auto.

A.3 Equipment and APIs

There are 10+ Axis 211A Cameras available on the student network @LTH.
These are named argus-1 to argus-10 and so on. More specific information
such a the placement (subject to change during the course) is given on the
course web page. Thanks to the embedded Linux environment and internal
design of the device, several users can use one camera at the same time, but
that will reduce performance per user so there is currently a limit of five users.

There is also an emulated (or faked) camera available as software, which
is to be used for initial development and testing. For instance, to run the
Java-based software in the camera, we use compiled Java (via C and the
LJRT tools). That provides the efficiency needed, but you cannot (yet) use a
debugger during embedded execution The emulated camera is written in pure
Java and should work on any platform and also together with debugging tools.
The timing properties of the getJPEG call is approximately emulated. When
developing the code you should use the emulation mode as much as possible
and only occasionally test against the real camera.

For networking, the TCP/IP-based communication is more tested than
UDP when using the cross-compilation via C, but in any case try to be mini-
malistic such that the source code gets simple.

161



A. Video Surveillance System

The available classes that forms the API you will use, are provided via the
course web pages. Updates and enhancements may happen during the course,
so stay tuned.

A.4 Work plan
The work is to be carried out in project groups of four persons. To provide
guidance, sessions with four or five project groups comprise one session group.
Initial testing can be carried out using virtual camera objects, i.e., simulated
frame grabbing as mentioned above. The project groups will have to share
physical cameras.

Classes used to access the hardware is provided via the web page of the
course. The camera classes also provide simulated frame grabbing to per-
mit testing on any machine and without using any camera. Generally, the
following plan should be appropriate:

• Analyze the problem including its concurrency and timing properties.
When there are mode changes (e.g., Idle to Movie), where is that best
detected and how is the corresponding state for a pair of cameras main-
tained?

• Divide the work into subproblems, one part per person or two parts for
two persons. One way is to split the work in one server/network and one
client/gui part. Even better but not mandatory: Use XP methodology
and start with development of a minimalistic system.

• Specify each part in terms of classes, threads, communication, protocols,
etc. Should you use a pull protocol (client requests each image) or a push
protocol (server pushes images to the client)? Think about possible
network delays and their implications for image synchronization.

• Pieces of source code could be developed during the design phase, but
before the full implementation work begins, the tutor should carefully
review your design proposal.

• Develop test cases in terms of test stubs and data that support testing
of one part at a time. Experiences from test and integration should be
included in your report.

• When the subsystems work properly, connect them together and debug
the system. Let also other (than the implementers) persons operate the
system, and fix the bugs.

Divided into work weeks, the following suggested schedule is good to follow:

162 2012-10-29 10:05



A.5. Hand-ins

Week 1 Introduction meeting. Meet the group, exchange contact info. Start
creating a design. Download the project Eclipse workspace. Check
out the versioning system (subversion). Study network communica-
tion examples. Create a simple homepage.

Week 2 Create design and hand in (pdf). The design should show threads,
their responsibilities, how they communicate, how various events in
the system are triggered and handled, such as send image, change
between movie and idle, etc. Receive feedback on design and ok for
implementation from supervisor.

Week 3 Have part of the system running using the fake camera API.

Week 4 Run parts of the system against the real Axis cameras using the cam-
era proxy API.

Week 5 Have full implementation of the system ready. Show the implemen-
tation to supervisor. Receive feedback. Prepare documentation of
system.

Week 6 Hand in web link to homepage containing project and documentation
at beginning of week. Receive web link for another group homepage.
Review their work. Present your project at the end of the week.

Week 7 The project experiences are summarized in the lecture.

A.5 Hand-ins

Week 2 - Design
During week 2 you are required to hand-in a design document. The document
should be in pdf format and should contain an explanation of your design
(UML diagrams are welcome).

The document should show, for both server and client:

• Threads and their responsibilities, and passive objects when you use
them

• By what means the threads communicate and what information is ex-
changed between threads

• Text showing how the threads handle various events in the system (send
an image, change between movie and idle, change between synchronous
and asynchronous image viewing).

• Text showing how the synchronous and asynchronous viewing modes are
handled by the threads (only client).

163



A. Video Surveillance System

How to hand-in

The hand-in is done by replying to an email that will be sent to you, with the
pdf as attachment.

Week 6 - Homepage
The final hand-in consists of a link to a web homepage. The page should
provide content as described below:

Contents

• The names of the group members and a summary (typically 10-30 lines)
of your experiences (what were the major difficulties, what should you
make different if you started all over again, etc.)

• Links to two pdf documents:

– A reference manual (typically 6-12 pages) including a users guide
for operating the system and a description of the design of the
system. Do not forget to make good figures. Pieces of source
code can in some cases be the best way to describe a design in the
manual, but pictures that graphically depicts your design (e.g. in
UML) are usually better.

– A sales-oriented presentation (typically five slides) showing the ben-
efits and features, but also currently known limitations, of your
surveillance system. The potential customers are the members of
the other groups, and hence they know about this type of sys-
tem/product so focus on the solutions (and experiences) that are
special for your solution.

• Links to executable code for your client and server, preferably as runnable
jar files but can also be zip archives. The reference manual should con-
tain instructions for how to download and run your system using the
proxy camera API and also possibly (optional) the Java2C-translated
native binary.

• Link to source code for your project. Preferably as zip archives of your
Eclipse workspace(s). The reference manual should refer to this code
when you describe the design of the system. The source should be
possible to build for the proxy camera API. If build instructions are
non-trivial they need to be included in the reference manual.

How to hand-in

The hand-in is done by replying to the email that was sent to you for the week
2 hand-in.

164 2012-10-29 10:05



A.6. Examination

A.6 Examination
During the final meeting you will present your project to the group and de-
fend it. You will also review the project of another group and discuss your
findings with the group. The supervisor might ask you to correct your project
from discovered concurrency problems and require an additional hand-in of
the corrected code. Otherwise, if specifications are fulfilled and the documen-
tation/presentation is acceptable, the project is finished.

Code review
After the submission deadline of the web link in the final hand-in, a link to
another group will be emailed to you. Your task is to examine the code.
During the questions session you will point out the findings from the review.
The defending/presenting group will then have a chance to explain/defend
their choices. To prepare you should:

• Review the code for any concurrency problems and design issues. Com-
ment on both bad and good choices (in your opinion).

• Execute the solution of the other group. Comment on how easy/not
easy it was to get the solution running.

• Read their documentation. Comment on both bad and good reporting
(in your opinion).

Presentation
Typically the project sales presentation is delivered by the group, followed
by questions asked by the reviewing group, followed by general questions.
The whole procedure should last around 10-20 minutes. During the questions
session it is good if the defending group is prepared to show the code that is
being discussed. The presentation and questions session is moderated by the
supervisor. The supervisor also provides a projector for the presentation.

165


