
Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

http://cs.LTH.se/EDA040

Real-Time and Concurrent Programming

Lecture 8 (F8):
Real-time memory management for safe

languages/Java. Examination hints.

Klas Nilsson

2016-10-18

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 1 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

1 Software correctness and safe languages
Java deployment and motivation

2 Notes on embedded software
Modularity outlook

3 Run-time systems
Memory management

4 Hints for the exam
Additional course content from this lecture
Hints for the five hour written exam

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 2 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

Java deployment and motivation

Some Real-Time Java approaches

I The real-time Java specification is overly complex, see spec at
http://www.rtsj.org/specjavadoc/book_index.html

I There are various descriptions of the RTSJ available, such as
the one referred to by this link.

I We contributed to the real-time JVM from Sun/Oracle, as
reported on Using Real-time Java for Industrial Robot Control
and as shown on YouTube, demonstrated in San Francisco.

Next, some development aspects...

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 3 / 14

http://www.rtsj.org/specjavadoc/book_index.html
http://www.developer.com/java/other/article.php/10936_1367671_2/Real-time-Specification-for-Java-RTSJ.htm
http://cs.lth.se/uploads/media/jtres-flexpicker.pdf
http://www.youtube.com/watch?v=xH1yUXd9krU

MULTI-STAGE DEPLOYMENT OF ROBOT

CONTROL SOFTWARE

A Java-based approach by

Sven Gestegård Robertz & Anders Nilsson

& Klas Nilsson & Mathias Haage

Dept. of Computer Science, Lund University, Sweden

{sven|andersn|klas|mathias}@cs.lth.se

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 22

Robotic developments hampered by
too complex/costly software engineering.

1. How can we trust that a
deployed software
component/function doesn’t
harm other (previously
tested) parts of the control
system?

2. How can we stepwise deploy
embedded control software
such that the control and
timing properties are verified
in multiple small stages?

• Use of a safe programming
language such as Java/C#
(with a strictly maintained
sandbox model) for manually
written code.

• Multistage deployment
strategy, ranging from portable
desktop-suitable simulation to
cross compilation into target-
specific hard real-time software
functions.

Except for device drivers and automatically generated code
we take a Java-based approach...... Why and how??......

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 33

Deployment stages

1a)Running both the application

and simulated environment in

a standard JVM (J2SE from

Sun) on a workstation.

1b)Running both the application

and the simulated environment

in a standard JVM on a

workstation, using the free

Java library classpath from

GNU.

2) Natively compile application

using LJRT, run on desktop in

simulated environment.

3) Running natively compiled

LJRT application with POSIX

threads on target system.

4a)Running natively compiled

LJRT application with native

RTOS threads in user space

on target.

4b)Running natively compiled

LJRT application with native

RTOS threads, in kernel

space, on target system.

Primary RTOS: www.xenomai.org

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 44

Robot control depends on real-time software;
use Java for portability and modularity!?

Typically experienced questions:

• Why would you do such a thing?
The most industrially acceptable, freely available and
portable way of imposing the modularity needed for
robot software development: The Java language

• How would you do such a thing?
As in the Lund Java-based Real-Time (LJRT) platform.

Java-based: Full Java language with library subset. Runs

on any J2SE VM but not Java legally. Cross-

compilable to embedded targets by our compiler and
run-time system.

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 55

Problems in software development

• Managing System Complexity
Complex systems, weak structuring mecahnisms
make it worse

• Managing System Development
Late project, late errors makes it worse

What is the role of languages in this ?

– Errors detected eariler, in process, in tools

– Errors avoided

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

Java deployment and motivation

Scalability(safety) → Java/C#

I Composing components and plugins during run-time for real-time:
Safety and Modularity?

I Performance and predictability: Static type checking (whenever
possible).

I Ensuring enabled error handling: Safe language required! (All possible
executions are expressed by the program.)

I Automatic dynamic memory management.

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 4 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

Java deployment and motivation

Unsafe language mechanisms

I Manual memory management (malloc-free/new-delete)

• When to do free? – ”when last pointer removed”!
◦ Too early – dangling pointers
◦ Too late – memory leaks

I Cast as in C

I Pointer arithmetic

I Arrays with no boundchecks – Programmer error leads to chaos

⇒ Problems often show up late, sometimes after long execution times

⇒ Program-wide consistency problem

⇒ How to trust your robot?

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 5 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

Java deployment and motivation

Answers from Safe languages

I Many errors caught by compiler

- Remaining ones by runtime checks
- Costs runtime efficiency

I Automatic memory management

- When last pointer to object removed, object will be removed by
Garbage Collector

- Used to disrupt execution – not anymore

I Programming error leads to error message
I no uncontrolled execution (i.e., no seg.fault, no illegal memory access,

no blue-screen, . . .)
I Uncontrolled execution would indicate an error in the platform – not in

the program

Thus, a better separation between application and platform.

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 6 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

Java deployment and motivation

Java compilation to native binaries via C-code

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 7 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

1 Software correctness and safe languages
Java deployment and motivation

2 Notes on embedded software
Modularity outlook

3 Run-time systems
Memory management

4 Hints for the exam
Additional course content from this lecture
Hints for the five hour written exam

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 8 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

Modularity outlook

Outlook on still valid topics of modularity

For your future profession in engineering,
but not part of this course,

the following 8 slides are provided for orientation
about the lack of modularity of software

compared to other engineering disciplines.

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 9 / 14

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 2020

Technical resources:
embedded systems

Resources in embedded systems

• Timing (CPU, HW,..)

• Memory (#bytes,..)

• Communication

• Device/unit-physical (energy, ..)

• Engineering effort

Bounded and interconnected,
use optimally for best possible
product properties and profit

Cost:

• Production

• Market opportunity

Interface:

• Interoperability

• Openness

• Usability

• Client satisfaction

Adaptation:

• Portability

• Modifiability

• Evolvability

• Expandability

• Flexibility

• Configurability

• Reusability

• Scalability

Performance:

• Performance (Speed)

• Timeliness (Deadlines)

• Determinism

• Security

• Robustness

• Reliability

• Availability

• Safety

Design:

• Feasibility

• Maintainability

• Understandability

• Correctness

• Simplicity

• Integrability

• Testability&Debugging

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 2121

The software crisis in robotics

Embedded information processing:

• Expensive monolitic systems today.

• Scalable software technology needed.

Current and future research:

1. Support for modular development and use of robotic
software components, to enable modular robots that can
assist humans in a flexible manner.

2. Enhanced technologies for implementation
of control systems.

Resources for embedded systems, developments from past to
present (for every improvement new drawbacks have resulted):

”Architecture beats
optimization”

”The mind
exists to control

the body”

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 2222

Embedded information processing:
Going from Analog to Digital (still hardware)

out

Analog HW

in

+

-

+

-

out

Digital HW

in

clock
Sequencing of HW states

+ Direct effect

+ No quantization

+ Truly parallel

– Cost

– Repeatability (drift, etc.)

+ Cost

+ Repeatability

+ Truly parallel

– Quantization

– Latencies

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 2323

Then programmable units (software),
Multitasking RTOS (Real-Time Operating System)

cpu mem
HW

out

Microprocessor SW

in

clock time

cpu
mem

HW

out

Multi-threading

in

clock time sched.

+ Cost reduction

+ Programability

– Modularity (resources)

– Delays

– Timing variations (jitter)

+ Modularity of execution

+ Flexibility

– Predictability

– Resource management

– Modularity

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 2424

Software components using safe language,
first concurrency and then for real-time

cpu memHW

out

Safe concurrent OOP

in

clock time sched. GC

cpu memHW

out

Safe real-time OOP

in

clock time sched. GC+pri.

+ Modular reactivity

+ Safety

– Modularity (IO, memory)

– Timing variations

+ Modular real-time

+ Robustness

+ Portable compilation

– Resource optimization

– Timing variations for IO

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 2525

Control components, scheduled IO,
then feedback scheduling of resources

cpu
mem

HW

out

Control-server IO

in

clock time sched.

cpu
mem

HW

out

Control-components

in

clock
feedback sched.

+ Virtual CPUs

+ Composable IO

– Global memory

– Resource optimization

– Safety

+ Performance tuning

+ Control components

– Global memory

– Resource optimization

– Safety

Robot Control Software @SYROCO-2006

2006-09-07 Multi-Stage Deployment of Robot Control Software 2626

cpu mem

out

Resource-aware SW

in

clock time

Resource manager

Towards the ”principle of superposition”
for embedded software

Ongoing integration and further development:

1) Object-oriented and portable safe real-time SW

2) Control components as composable SW

⇒ Resource-aware components & control systrems!

cpu memHW

out

Safe real-time OOP

in

clock time sched. GC+pri.

cpu
mem

HW

out

Control-components

in

clock
feedback sched.

Resource-aware components

Automatic
Control:

Computer
Science:

@LTH

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

1 Software correctness and safe languages
Java deployment and motivation

2 Notes on embedded software
Modularity outlook

3 Run-time systems
Memory management

4 Hints for the exam
Additional course content from this lecture
Hints for the five hour written exam

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 10 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

Memory management

RTGC

Next slides are shared with the Compiler Construction course EDA180.

(For details concerning a generation-based GC, see the CLR of Microsoft
.NET folllowing this link.)

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 11 / 14

http://cs.lth.se/eda180
http://msdn.microsoft.com/en-us/library/x2tyfybc.aspx
http://msdn.microsoft.com/en-us/library/x2tyfybc.aspx

Garbage Collection
automatic memory management

Roger Henriksson
Dept. of Computer Science,

LTH

3

Presentation Outline
• Background
• Basic algorithms
• Generation-based GC
• C, C++, and conservative GC
• Incremental techniques
• Real-time systems and GC

4

Memory organization
• Program code
• Global data

– Static data
• Stacks

– Activation records
– LIFO - Last In First Out

• Heap
– Random allocation/deallocation

How do we manage the heap efficiently?

5

Manual memory
management

• The application program is responsible
for releasing objects not needed any
longer (explicit calls to "free()").

• Blocks of free memory are linked into a
list called a free list until new memory
is requested (call to ”malloc()”).

free list

6

Dangling pointer

char *a,*b;

a = malloc(10);
b = a;
...
free(a);
...
printf("%s",b);

Common programming
errors

Memory leak

char *a;
int i;

for(i=0;i<10;i++){
 a = malloc(10);
 sprintf(a,"%d",i);
 printf("%s",a);
}
free(a);

7

Who should deallocate?
From the Xlib API:

char *XGetAtomName(display,atom)
 Display display;
 Atom atom;

char *XGetDefault(display,program,option)
 Display display;
 char *program;
 char *option;

Both functions returns a string, but who
should deallocate it? The caller?

8

Who should deallocate?
From the Xlib API:

XSetIconName(display,w,icon_name)
 Display display;
 Window w;
 char *icon_name;

The function takes a string as parameter,
but…

...can we deallocate the string after
calling XSetIconName?

9

Fragmentation
Allocating/deallocating objects of varying size cause

fragmentation. A request for a large block of memory
might not be satisfied because only small blocks exist.

• Manual memory management ð fragmentation
• Garbage collection without compaction ð

fragmentation
• Compaction requires less memory in the worst case.

Example
• Max 100 KB live memory at any time, maximum object

size 256 bytes ð In the worst case 900 KB heap is
required. [Rob71]

10

Automatic memory
management

garbage collection (eng., 'skräpsamling'), i
databehandlingssammanhang, process vid dynamisk
minnesanvändning där tidigare utnyttjade
minnesceller, som ej längre kan nås från det
exekverande programmet, automatiskt identifieras och
anges vara tillgängliga för återanvändning.

Nationalencyklopedin

11

Basic algorithms

• Reference counting
• Traversing algorithms

– Mark-Sweep / Mark-Compact
– Copying algorithms

12

Reference counting
Idea
• Each object contains a counter indicating the number of

pointers referencing the object.
• The object can be deallocated when the counter becomes

zero.

Advantage
• Easy to implement. Usually short pauses.

Disadvantages
• Expensive. The counters of affected objects must be updated

whenever a pointer assignment is performed.
• No compaction ð fragmentation.
• Fails to detect circular structures of garbage objects.

13

Circular structures

counter 1

counter 2

counter 1

counter 1

counter 3 1

14

Traversing algorithms
Idea
• Periodically search (traverse) the entire pointer graph of the

application, marking encountered objects.
• Objects not encountered during the marking phase is dead.
• Recursively traverse the pointer graph starting from a

number of root pointers. A root pointer is a pointer located
outside the garbage collected heap pointing to an object on
the heap. Example: global pointers, pointers located on the
stack or in the registers of the microprocessor.

Requirements
• Runtime type information must be available for all objects:

– How large is the object?
– Where is the pointers within the object located?

15

Traversing a pointer graph

root
pointers

16

Mark-Compact

The compacting LISP 2-algorithm [Knu73]
requires four passes.

Algorithm
• Wait until no free memory remains on the heap.
• Pass 1: Recursively traverse the pointer graph starting

from the root pointers and mark all encounterd
objects (Mark).

• Pass 2: Determine where (address) each marked object
will be located after compaction. Store the new
address within the object.

• Pass 3: Update all pointers to point at the new
addresses.

• Pass 4: Slide (move) objects into their new positions.

17

LISP 2, example
R1 R2

234(32) 1068(48) 5120(16)

1 31

2

R1 R2

234(32) 1068(48) 5120(16)

1 2 3320 80

2

18

LISP 2, example

3

R1 R2

234(32) 1068(48) 5120(16)

1 2 3

4

R1 R2

0(32) 32(48) 80(16)

1 2 3

320 80

19

A copying algorithm
Memory is partitioned into two subheaps used

alternating. When a subheap is full, the live objects are
copied (or evacuated) into the empty subheap.

Algorithm (according to Cheney [Che70])
• Wait until the heap is full.
• Evacuate the objects referenced by the root pointers.
• Search the evacuated objects for pointers. Evacuate the

objects referenced by these pointers if not already
evacuated. Update the pointers to point to the evacuated
version of the object.

A pointer to the evacuated version of the object is stored
in the old version to facilitate updating other pointers
to the object.

20

Copying GC - example
R1 R2

1 2 3

S,B

R1 R2

1 2 3

S B

21

Copying GC, example
R1 R2

1 23

S B

R1 R2

1 23

S B

22

Copying GC, example
R1 R2

123

S B

R1 R2

123

S,B

23

Generation-based GC
• Objects usually die young.
• Objects not affected by ”infant mortality”

usually lives for a long time.
Generation-based GC! [Ung84]
• Partition the heap into several ”generations”

garbage collected separately.
• New objects are allocated in the young

generation.
• Ageing (surviving) objects is promoted into

the next generation (”tenuring”).

24

Generation-based GC

• Efficient! Most pauses short. Most
garbage collection work is performed
in the young generation.

• Complex: Must keep track of inter-
generation pointers.

young gen.

old gen.

tenuring

allocation

25

Conservative GC

• ”Hostile” environment:
no runtime type information available

• Example: C, C++.

How do you identify pointers?

26

Conservative GC

Strategy
• Assume that every word on the heap, stack, and

statically allocated memory is a potential pointer.
• If a bit pattern can be interpreted as a pointer, regard

it as a pointer!

Problems
• Compaction difficult, we dare not alter pointers.
• Data can be misinterpreted as pointers - potential

memory leak.
• Pointers can in some cases avoid detection - potential

dangling pointers.

27

Incremental GC
• Stop-the-world, long pauses (seconds)
• Incremental algorithms

– Splits the GC work into many small
increments (milliseconds).

– Distributes the work over the execution of
the application program (parallel GC).

– Incremental variants av Mark-Sweep,
Mark-Compact and copying algorithms.

– Reference counting incremental by nature.

28

Brook’s algorithm
• Incremental copying algorithm.

• Perform enough GC work in connection with every
allocation to empty fromspace before tospace fills up (or
deadlock).

• Incrementality requires
– Fine-granular interruptibility. Heap consistency.
– Read barrier: pointer access indirect via forwarding pointer
– Write barrier: garantuees that the application does not

change the pointer graph without the GC knowing it.

fromspace tospace

evacuated
objects

allocated
objects

29

Brook’s algorithm
R1 R2

1 23

S B

R1 R2

1 23

S B

Brook’s algorithm

Original algorithm

30

Real-time systems and GC
• Response time requirements

– Soft real-time systems
– Hard real-time systems

• Individual pauses must be short and not
too close together in time.

• Incremental algorithms required.
• Compaction?
• Hard real-time has been considered

incompatible with GC, but…

31

Embedded control systems
• Control systems (JAS, industrial robots)

– Small number of periodic threads with high priority.
Hard real-time requirements.

– Large number of low-priority threads. Soft real-time
requirements.

• Requirements
– Minimal response time for high priority threads.
– Minimal latency for high priority threads (jitter).
– Predictable (and low) worst-case response times.
– Guarantee schedulability for the system.

32

GC in hard real-time
systems

Idea [Hen98]
• Avoid doing GC work when high-priority threads execute.

Perform GC in the pauses. Memory always available.
• Low-priority threads: standard incremental techniques.
• Minimize the cost for pointer operations for the high-

priority threads.
• Interruptible garbage collection, minimum locking.
• Theory for a priori schedulability analysis.

priority

tid

LP/GC

HP

GC

LP/GC

HP

GC

LP/GC

33

Prototype
• VME-based control computer, 25 MHz Motorola 68040.
• Real-time kernel developed at Dept. of Automatic Control.
• Controls an ABB IRB-2000 industrial robot.

• Worst-case costs for high-priority threads
– Pointer assignment: < 10 µs
– Allocation: 32-76 µs (100-1000 bytes)
– Locking: 60 µs

• Comparison to malloc/free:
– malloc: 130-150 µs, free: 106-154 µs (typical)
– malloc: 483 µs - 40 ms !!! (provoced worst-case)

34

Inverted pendulum control

35

Real-Time Java
• RTSJ - Real-Time Specification for Java

– New libraries
– New thread and memory model
– Predictable JVM

• Sun Java Real-Time System 2.0 (Sun JRTS 2.0)
– Released May 2007.
– Real-time GC from Lund University.
– Industrial robot control project Sun/LU.

JavaOne 2007 Demo

36

Java robot control

37

38

Bibliography

Surveys
• Richard Jones, Rafael Lins. "Garbage Collection -

Algorithms for Automatic Dynamic Memory
Management", John Wiley & Sons, 1996.

• Paul R. Wilson. "Uniprocessor Garbage Collection
Techniques", IWMM´92, St. Malo, Frankrike, september
1992.
ftp://ftp.cs.utexas.edu/pub/garbage/gcsurvey.ps

39

Bibliography

References
[Che70] C. J. Cheney. "A Nonrecursive List Compacting Algorithm",

Communications of the ACM, 13(11), november 1970.
[Hen98] R. Henriksson. "Scheduling Garbage Collection in Embedded Systems",

doktorsavhandling, Inst. för datavetenskap, Lunds Tekniska
Högskola, september 1998. http://www.cs.lth.se/~roger/thesis.html.

[Knu73] D. E. Knuth. "The Art of Computer Programming, Vol 1", Addison-
Wesley, 1973.

[Rob71] J. M. Robson. "An Estimate of the Storage Size Necessary for Dynamic
Storage Allocation", Journal of the ACM, 18(3), juli 1971.

[Ung84] D. Ungar. "Generation Scavenging: A Non-disruptive High
Performance storage Reclamation Algorithm", ACM Sigplan Notices,
19(3), maj 1984.

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

1 Software correctness and safe languages
Java deployment and motivation

2 Notes on embedded software
Modularity outlook

3 Run-time systems
Memory management

4 Hints for the exam
Additional course content from this lecture
Hints for the five hour written exam

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 12 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

Additional course content from this lecture

Things you should know

How to know what a program does/means;
Why Java (ur C# without use of unsafe1)?

I Safe languages: The notion of strong type safety for improving
modularity, supported at compile-time and run-time.

I Under controlled deployment of open-source, compilation via C is an
attractive option for portability to systems without an available
RT-JVM.

Memory management and Real-Time Garbage Collection (RTGC)

I Dynamic memory allocation: Manual and Automatic.

I Properties of Automatic memory management; of GC algorithms.

I The fundamental RTGC principle: The Medium priority GC thread
serving the High-priority threads, and the Low-priority threads
performing the GC in their own context

1References to Microsoft .NET, such as C#, is not part of the course.
http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 13 / 14

Software correctness and safe languages Notes on embedded software Run-time systems Hints for the exam

Hints for the five hour written exam

The written examination

Hints:

I Notice the hints (8 items) on the Exam page of this course.

I Study problems and solutions of the December exam 2010

I Study the character of problems in various older exams.

Comments:

I Understanding the problem is part of the problem (in industry too).

I To understand what to solve in detail, and how to use the available
time, is part of the problem (in industry too).

Old exam, orally and on board:

I How to structure concurrent software.

I Form of examination, grades and retakes.

Think threads and good luck!

http://cs.lth.se/EDA040 F8: Memory management and hints for the exam 2016-10-18 14 / 14

http://cs.lth.se/english/course/eda040/exams
http://fileadmin.cs.lth.se/cs/Education/EDA040/common/exam/101218.pdf
http://fileadmin.cs.lth.se/cs/Education/EDA040/common/exam/101218-sol.pdf

	Software correctness and safe languages
	Java deployment and motivation

	Notes on embedded software
	Modularity outlook

	Run-time systems
	Memory management

	Hints for the exam
	Additional course content from this lecture
	Hints for the five hour written exam

