
Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

http://cs.LTH.se/EDA040

Real-Time and Concurrent Programming

Lecture 7 (F7):

Scheduling Analysis

Klas Nilsson

2016-10-11

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 1 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Outline

Content

1 Overview
Schedulability

2 Scheduling analysis without blocking
Rate-Monotonic Analysis
Exact Analysis using Scheduling Diagrams
Exact Analysis using Iterative Calculations

3 Generalizations and analysis with blocking
Generalized RMS
Deadline Monotonic Scheduling
Analysis considering blocking on shared resources

4 Priority ceiling
Ceiling blocking

5 Final orientation
Real-system properties and practices

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 2 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Schedulability

Scheduling Test – Schedulability

I Schedulability
• A system is schedulable if every thread always meets its deadline.

I Schedulability Test
• Given a set of threads and knowledge of their properties, a

schedulability test answers the question Is this system schedulable?.
• Output: Yes or No

I Scheduling analysis
◦ The efforts to determine schedulability, carried out during engineering

of the system.

I Scheduling
◦ Special case: Static scheduling done at engineering time.
◦ Normal case: Dynamic scheduling by run-time system.
◦ Schedulability implies: scheduling (should be) possible.
• Priorities and deadlines are for real-time correctness;

concurrency correctness should not depend on priorities!

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 3 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Schedulability

Scheduling Test – Schedulability

I Schedulability
• A system is schedulable if every thread always meets its deadline.

I Schedulability Test
• Given a set of threads and knowledge of their properties, a

schedulability test answers the question Is this system schedulable?.
• Output: Yes or No

I Scheduling analysis
◦ The efforts to determine schedulability, carried out during engineering

of the system.

I Scheduling
◦ Special case: Static scheduling done at engineering time.
◦ Normal case: Dynamic scheduling by run-time system.
◦ Schedulability implies: scheduling (should be) possible.
• Priorities and deadlines are for real-time correctness;

concurrency correctness should not depend on priorities!

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 3 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Schedulability

Scheduling Test – Schedulability

I Schedulability
• A system is schedulable if every thread always meets its deadline.

I Schedulability Test
• Given a set of threads and knowledge of their properties, a

schedulability test answers the question Is this system schedulable?.
• Output: Yes or No

I Scheduling analysis
◦ The efforts to determine schedulability, carried out during engineering

of the system.

I Scheduling
◦ Special case: Static scheduling done at engineering time.
◦ Normal case: Dynamic scheduling by run-time system.
◦ Schedulability implies: scheduling (should be) possible.
• Priorities and deadlines are for real-time correctness;

concurrency correctness should not depend on priorities!

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 3 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Rate-Monotonic Analysis

Simplifications in scheduling analysis

We start with the following simplifications:

I Periodic threads

I No blocking

I Deadline = period

I Fixed-priority scheduling, e.g. RMS

Legend

I T = period

I C = worst case execution time

I U = C/T = CPU-utilization (in the worst case)

I R = response time

I D = deadline

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 4 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Rate-Monotonic Analysis

RMS - Upper Bound Analysis (Liu & Layland)

Generally it is possible to guarantee schedulability if (N=number of
threads):

∑(
Ci

Ti

)
< n

(
2

1
n − 1

)
n U

1 1
2 0.83
3 0.78
... ...
∞ 0.69

HOWEVER: A system might be schedulable even if the CPU utilization is
higher than the above utilization bound. Exact analysis is required in such
cases.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 5 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Rate-Monotonic Analysis

RMS - Exact Analysis (Joseph & Pandya)

I In RMS upper bound analysis we can only tell that all threads will
finish before their respective deadline. How much earlier? Look at the
worst-case response times!

I Study what happens at the critical instant - when all threads are
released simultaneously.

I Theorem: If all threads will meet their first deadline after a critical
instant, they will also meet all subsequent ones since all other
scheduling situations are “easier”.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 6 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Rate-Monotonic Analysis

RMS - Exact Analysis (Joseph & Pandya)

I In RMS upper bound analysis we can only tell that all threads will
finish before their respective deadline. How much earlier? Look at the
worst-case response times!

I Study what happens at the critical instant - when all threads are
released simultaneously.

I Theorem: If all threads will meet their first deadline after a critical
instant, they will also meet all subsequent ones since all other
scheduling situations are “easier”.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 6 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Rate-Monotonic Analysis

RMS - Exact Analysis (Joseph & Pandya)

I In RMS upper bound analysis we can only tell that all threads will
finish before their respective deadline. How much earlier? Look at the
worst-case response times!

I Study what happens at the critical instant - when all threads are
released simultaneously.

I Theorem: If all threads will meet their first deadline after a critical
instant, they will also meet all subsequent ones since all other
scheduling situations are “easier”.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 6 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Exact Analysis using Scheduling Diagrams

RMS - Exact Analysis - Scheduling Diagram

Consider the example below, all threads are released at t=0:

Critical instant

No scheduling

RMS

A

B

C

t
0 10 20 52

R

R

R
C

A

B

UA = CA
TA

= 10
30 = 0.33

UB = CB
TB

= 10
40 = 0.25

UC = CC
TC

= 12
52 = 0.23

U =
∑

Ui = 0.81 > 0.78

Worst-case response times:
Ra = Ca = 10 Rb = Cb + Ca = 20 Rc = Cc+Ca+Cb+Ca+Cb = 52

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 7 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Exact Analysis using Iterative Calculations

RMS - Exact Response-time Analysis

The worst case response time is the shortest time Ri that satisfies the
following equation:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj

hp(i) set of activities with higher priority than i⌈
Ri
Tj

⌉
number of times activity i is preempted by the
higher-priority activity j

de ceil, i.e. rounding upwards, e.g. d1.6e = 2

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 8 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Exact Analysis using Iterative Calculations

RMS - Exact Analysis - Iterative Calculation

Calculate response times using iteration (iteration index as superscript):

Rk+1
i = Ci +

∑
j∈hp(i)

⌈
Rk

i

Tj

⌉
Cj

R0
i = 0 used as starting value

Rk
i iteratively calculated until stable

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 9 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Exact Analysis using Iterative Calculations

RMS - Exact Analysis - Iterative Calculation Example

Example as before:

Rk+1
i = Ci +

∑
j∈hp(i)

⌈
Rk

i

Tj

⌉
Cj

Thread C T

A 10 30
B 10 40
C 12 52

Iterative calculation for i ∈ A, B, C:

R0
a=0 R0

b=0 R0
c=0

R1
a=10 (*) R1

b=10+0·10=10 R1
c=12+0·10+0·10=12

R2
a=10 (stable) R2

b=10+1·10=20 R2
c=12+1·10+1·10=32

R3
b=10+1·10=20 (stable) R3

c=12+2·10+1·10=42

R4
c=12+2·10+2·10=52

R5
c=12+2·10+2·10=52 (stable)

* no higher priority threads

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 10 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Generalized RMS

Generalized Rate Monotonic Analysis

The assumptions made in RMS are rarely the case in practice:

I Periodic threads

I No blocking

I Deadline (D) = Period (T)

I Instantaneous context switch

Therefore, Generalized Rate Monotonic Analysis extends the RMS analysis
(by Sha, Rajkumar & Lehoczky, 1994):

1. Shorter deadlines (D < T)

2. Blocking (on shared resources, bounded by priority inheritance)

3. Non-periodic threads (to avoid overly pessimistic results)

4. Non-instantaneous release jitter / context switches / clock interrupts

Items 1 and 2 you should know and be able to apply/use.
Items 3 and 4 you should know about.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 11 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Generalized RMS

Generalized Rate Monotonic Analysis

The assumptions made in RMS are rarely the case in practice:

I Periodic threads

I No blocking

I Deadline (D) = Period (T)

I Instantaneous context switch

Therefore, Generalized Rate Monotonic Analysis extends the RMS analysis
(by Sha, Rajkumar & Lehoczky, 1994):

1. Shorter deadlines (D < T)

2. Blocking (on shared resources, bounded by priority inheritance)

3. Non-periodic threads (to avoid overly pessimistic results)

4. Non-instantaneous release jitter / context switches / clock interrupts

Items 1 and 2 you should know and be able to apply/use.
Items 3 and 4 you should know about.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 11 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Generalized RMS

Generalized Rate Monotonic Analysis

The assumptions made in RMS are rarely the case in practice:

I Periodic threads

I No blocking

I Deadline (D) = Period (T)

I Instantaneous context switch

Therefore, Generalized Rate Monotonic Analysis extends the RMS analysis
(by Sha, Rajkumar & Lehoczky, 1994):

1. Shorter deadlines (D < T)

2. Blocking (on shared resources, bounded by priority inheritance)

3. Non-periodic threads (to avoid overly pessimistic results)

4. Non-instantaneous release jitter / context switches / clock interrupts

Items 1 and 2 you should know and be able to apply/use.
Items 3 and 4 you should know about.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 11 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Deadline Monotonic Scheduling

Deadline Monotonic Scheduling - Shorter deadlines

I The situation Deadline = Period (D = T) is unusual - often D < T
I Seldom occurring events but which must be handled quickly (time

critical)

I Scheduling test
I Answers yes or no to the question Is this system of threads schedulable?
I Method

1. Calculate the worst-case response time, Ri, for each thread, τi
2. The system is schedulable if and only if: Ri <= Di (the deadline) for

each thread τi

I D < T - Deadline Monotonic Scheduling (variant of RMS)
I Assign priority according to D (as opposed to T)
I Calculate maximum response time (R) as before
I Check that R < D
I Scheduling analysis according to Joseph & Pandya still holds

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 12 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Analysis considering blocking on shared resources

The effect of blocking

Worst-case response-time in presence of blocking is:

Ri = Ci +Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj

Bi = the blocking factor, i.e. the maximum time thread i can be blocked
by lower-priority threads. The blocking factor is the sum of:

I Normal blocking - The thread is blocked waiting for another thread to
release a resource the thread has tried to lock.

I Push-through blocking - The thread is blocked by a lower priority
thread which inherits a higher priority because it is blocking a
higher-priority thread (only when priority inheritance is used).

I Ceiling blocking - The thread is blocked because the ceilings of other
locked resources is too high. Only with the priority ceiling protocol.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 13 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Analysis considering blocking on shared resources

Blocking - example 1

Can we successfully schedule the following system? The system uses RMS
and basic inheritance protocol.

M1A

B

C

a(); / 0.2

b(); / 0.3

c(); / 0.1

Thread C D T

A 1 2 10
B 2 3 15
C 4 10 20

R0
A=0 R0

B=0 R0
C=0

R1
A=1+max(0.3,0.1)+0=1.3 R1

B=2+0.1+0=2.1 R1
C=4+0+0=4

R2
A=1+max(0.3,0.1)+0=1.3 R2

B=2+0.1+1·1=3.1 R2
C=4+0+(1·1+1·2)=7

R3
B=2+0.1+1·1=3.1 (*) R3

C=4+0+(1·1+1·2)=7
* RB > DB , not ok

Conclusion:

I Thread B does not meet its deadline due to blocking by thread C.
Not a schedulable system!

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 14 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Analysis considering blocking on shared resources

Blocking - example 2

Can we remove the blocking problem by splitting the monitor into two?
The system uses RMS and basic inheritance protocol.

M1

A

B

C

a1(); / 0.2
b(); / 0.3

c(); / 0.1
M2a2(); / 0.2

Thread C D T

A 1 2 10
B 2 3 15
C 4 10 20

R0
A=0 R0

B=0 R0
C=0

R1
A=1+(0.3+0.1)+0=1.4 R1

B=2+0.1(∗∗)+0=2.1 R1
C=4+0+0=4

R2
A=1+(0.3+0.1)+0=1.4 R2

B=2+0.1+1·1=3.1 R2
C=4+0+(1·1+1·2)=7

R3
B=2+0.1+1·1=3.1 (*) R3

C=4+0+(1·1+1·2)=7
* RB > DB , not ok

** push-through blocking

Conclusion:

I No, not possible due to push-through blocking!

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 15 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Ceiling blocking

The Ceiling Blocking Time

I Avoid multiple blockings for the highest priority thread.

I At the expense of avarage blocking times and runtime overhead.

I Should know properties and principles (details of the protocol is
presently not part of the course).

The following plain-type slides (and page numbers) are from the
Real-Time Systems course (L4 of FRTN01)

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 16 / 19

http://control.lth.se/Education/EngineeringProgram/FRTN01.html

The Priority Ceiling Protocol
L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance Protocols: An Approach to

Real-Time Synchronization, IEEE Transactions on Computers, Vol. 39, No. 9, 1990

Restrictions on how we can lock (Wait, EnterMonitor) and
unlock (Signal, LeaveMonitor) resources:

• a task must release all resources between invocations

• the computation time that a task i needs while holding
semaphore s is bounded. csi,s = the time length of the
critical section for task i holding semaphore s

• a task may only lock semaphores from a fixed set of
semaphores known a priory. uses(i) = the set of
semaphores that may be used by task i

13

The protocol:

• the ceiling of a semaphore, ceil(s), is the priority of the
highest priority task that uses the semaphore

• notation: pri(i) is the priority of task i

• At run-time:

– if a task i wants to lock a semaphore s, it can only do
so if pri(i) is strictly higher than the ceilings of all
semaphores currently locked by other tasks

– if not, task i will be blocked (task i is said to be blocked
on the semaphore, S∗, with the highest priority ceiling
of all semaphores currently locked by other jobs and
task i is said to be blocked by the task that holds S∗)

– when task i is blocked on S∗, the task currently holding
S∗ inherits the priority of task i

14

Properties:

• deadlock free

• a given task i is delayed at most once by a lower priority
task

• the delay is a function of the time taken to execute the
critical section

15

Deadlock free

Example:

Task name T Priority

A 50 10

B 500 9

Task A Task B

lock(s1) lock(s2)

lock(s2) lock(s1)

... ...

unlock(s1) unlock(s1)

unlock(s2) unlock(s1)

ceil(s1) = 10, ceil(s2) = 10

16

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t0: B starts executing

17

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t1: B attempts to lock s2. It succeeds since no lock is held
by another task.

18

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t2: A preempts B

19

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t3: A tries to lock s1. A fails since A’s priority (10) is not
strictly higher than the ceiling of s2 (10) that is held by B

• A is blocked by B

• A is blocked on s2

• The priority of B is raised to 10.
20

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t4: B attempts to lock s1. B succeeds since there are no
locks held by any other tasks.

21

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t5: B unlocks s1

22

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t6: B unlocks s2

• The priority of B is lowered to its assigned priority (9)

• A preempts B, attempts to lock s1 and succeeds

23

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t7: A attempts to lock s2. Succeeds

24

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t8: A unlocks s2

25

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t9: A unlocks s1

26

Example:

Task name T Priority

A 50 10

B 500 9

C 3000 8

Task A Task B Task C

lock(s1) lock(s2) lock(s3)

..

unlock(s1) lock(s3) lock(s2)

..

unlock(s3) unlock(s2)

.. ..

unlock(s2) unlock(s3)

ceil(s1) = 10, ceil(s2) = ceil(s3) = 9

27

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t0: C starts execution and then locks s3

28

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t1: B preempts C

29

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t2: B tries to lock s2. B fails (the priority of B is not strictly
higher than the ceiling of s3 that is held by C) and blocks
on s3 (B is blocked by C). C inherits the priority of B.

30

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t3: A preempts C. Later is tries to lock s1 and succeeds
(the priority of A is higher than the ceiling of s3).

31

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t4: A completes. C resumes and later tries to lock s2 and
succeeds (it is C itself that holds s3).

32

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t5: C unlocks s2

33

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t6: C unlocks s3, and gets back its basic priority. B pre-
empts C, tries to lock s2 and succeeds. Then B locks s3,
unlocks s3 and unlocks s2

34

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t7: B completes and C is resumed.

35

t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t8: C completes

36

• A is never blocked

• B is blocked by C during the intervals [t2, t3] and [t4, t6].
However, B is blocked for no more than the duration
of one time critical section of the lower priority task C
even though the actual blocking occurs over disjoint time
intervals

37

General properties:

• with ordinary priority inheritance, a task i can be blocked
for at most the duration of min(n, m) critical sections,
where n is the number of lower priority tasks that could
block i and m is the number of semaphores that can be
used to block i

• with the priority ceiling inheritance, a task i can be blocked
for at most the duration of one longest critical section

• sometimes priority ceiling introduces unnecessary blocking
but the worst-case blocking delay is much less than for
ordinary priority inheritance

38

The Immediate Inheritance Protocol

• when a task obtains a lock the priority of the task is
immediately raised to the ceiling of the lock

• the same worst-case timing behavior as the priority ceiling
protocol (also known as the Priority Ceiling Emulation
Protocol and as the Priority Protect Protocol)

• easy to implement

• on a single-processor system it is not necessary to have
any queues of blocked tasks for the locks (semaphores,
monitors) – tasks waiting to acquire the locks will have
lower priority than the task holding the lock and can,
therefore be queued in ReadyQueue.

39

.

Priority Inheritance

Priority inheritance is a common, but not mandatory, feature of
most Java implementations.

The Real-Time Java Specification requires that the priority
inheritance protocol is implemented by default. The priority
ceiling protocol is optional.

40

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Real-system properties and practices

Sporadic (non-periodic) threads

A sporadic thread is triggered at unpredictable points in time.

Pessimistic analysis (our aproach so far)

I Model as a periodic thread with period equal to the minimum time
between triggering events.

I Such a minimum time practically always exists due to physical
limitations in the environment.

I Apply standard schedulability test.

Pessimistic analysis (our aproach so far)

Less pessimistic: Analysis using a sporadic server

I Idea: Reserve a certain percentage of the CPU bandwidth for
handling of sporadic events.

I Construct a periodic thread, the sporadic server, which handles all
sporadic jobs. Let the thread run at most Csporadic time units every
period, Tsporadic.

I Apply standard schedulability test on the sporadic server thread.

I Does not assume a minimum time between two external events.

I Cannot guarantee that deadlines are met for all sporadic events.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 17 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Real-system properties and practices

Sporadic (non-periodic) threads

A sporadic thread is triggered at unpredictable points in time.

Pessimistic analysis (our aproach so far)

Less pessimistic: Analysis using a sporadic server

I Idea: Reserve a certain percentage of the CPU bandwidth for
handling of sporadic events.

I Construct a periodic thread, the sporadic server, which handles all
sporadic jobs. Let the thread run at most Csporadic time units every
period, Tsporadic.

I Apply standard schedulability test on the sporadic server thread.

I Does not assume a minimum time between two external events.

I Cannot guarantee that deadlines are met for all sporadic events.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 17 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Real-system properties and practices

Including the run-time overhead

Release jitter
I Variations in the time it takes to actually release a thread once an external

event triggering the thread has arrived (Ji).

Context switch
I It takes time to switch to another thread (Csw).

Clock interrupts
I Periodic clock interrupts drives preemption and context switches (Ctick,

Ttick, Cqueue).

ωi = Ci + 2Csw +Bi +
∑

j∈hp(i)

⌈
ωi + Ji + Ttick

Tj

⌉
(Cj + 2Csw)

+
∑

j∈alltasks

⌈
ωi + Ji + Ttick

Tj

⌉
Cqueue +

⌈
ωi

Ttick

⌉
Ctick

Ri = Ji + Ttick + ωi

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 18 / 19

Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Real-system properties and practices

Determining execution times

How do we determine C, B, etc. used in the scheduling analysis?

I Actual measurements
I Run the application many times with many different inputs.
I Measure the execution times, e.g. using a logic analyzer, and

remember the longest.
I Use the longest encountered execution times as C / B.

(Optionally add 10-50%)
I It can never be guaranteed that we have encountered the worst case!
I Modern CPU features complicates matters: Cacheing? Pipelining?

I Formal code analysis
I Analyze the program code statement by statement.

Accumulate worst-case execution times for the statements.
I How do you analyse loops? For-statements, while-statements, etc.
I Pessimistic! Cacheing? Pipelining?
I Automatic tools needed! Few available.

Difficult problem! Still an open and important area for future research!
http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 19 / 19

	Scheduling Analysis
	Overview
	Schedulability

	Scheduling analysis without blocking
	Rate-Monotonic Analysis
	Exact Analysis using Scheduling Diagrams
	Exact Analysis using Iterative Calculations

	Generalizations and analysis with blocking
	Generalized RMS
	Deadline Monotonic Scheduling
	Analysis considering blocking on shared resources

	Priority ceiling
	Ceiling blocking

	Final orientation
	Real-system properties and practices

