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Schedulability

Scheduling Test – Schedulability

I Schedulability
• A system is schedulable if every thread always meets its deadline.

I Schedulability Test
• Given a set of threads and knowledge of their properties, a

schedulability test answers the question Is this system schedulable?.
• Output: Yes or No

I Scheduling analysis
◦ The efforts to determine schedulability, carried out during engineering

of the system.

I Scheduling
◦ Special case: Static scheduling done at engineering time.
◦ Normal case: Dynamic scheduling by run-time system.
◦ Schedulability implies: scheduling (should be) possible.
• Priorities and deadlines are for real-time correctness;

concurrency correctness should not depend on priorities!
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Rate-Monotonic Analysis

Simplifications in scheduling analysis

We start with the following simplifications:

I Periodic threads

I No blocking

I Deadline = period

I Fixed-priority scheduling, e.g. RMS

Legend

I T = period

I C = worst case execution time

I U = C/T = CPU-utilization (in the worst case)

I R = response time

I D = deadline
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Rate-Monotonic Analysis

RMS - Upper Bound Analysis (Liu & Layland)

Generally it is possible to guarantee schedulability if (N=number of
threads):

∑(
Ci

Ti

)
< n

(
2

1
n − 1

)
n U

1 1
2 0.83
3 0.78
... ...
∞ 0.69

HOWEVER: A system might be schedulable even if the CPU utilization is
higher than the above utilization bound. Exact analysis is required in such
cases.
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Rate-Monotonic Analysis

RMS - Exact Analysis (Joseph & Pandya)

I In RMS upper bound analysis we can only tell that all threads will
finish before their respective deadline. How much earlier? Look at the
worst-case response times!

I Study what happens at the critical instant - when all threads are
released simultaneously.

I Theorem: If all threads will meet their first deadline after a critical
instant, they will also meet all subsequent ones since all other
scheduling situations are “easier”.
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Exact Analysis using Scheduling Diagrams

RMS - Exact Analysis - Scheduling Diagram

Consider the example below, all threads are released at t=0:

Critical instant

No scheduling

RMS

A

B

C

t
0 10 20 52

R

R

R
C

A

B

UA = CA
TA

= 10
30 = 0.33

UB = CB
TB

= 10
40 = 0.25

UC = CC
TC

= 12
52 = 0.23

U =
∑

Ui = 0.81 > 0.78

Worst-case response times:
Ra = Ca = 10 Rb = Cb + Ca = 20 Rc = Cc+Ca+Cb+Ca+Cb = 52
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Exact Analysis using Iterative Calculations

RMS - Exact Response-time Analysis

The worst case response time is the shortest time Ri that satisfies the
following equation:

Ri = Ci +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj

hp(i) set of activities with higher priority than i⌈
Ri
Tj

⌉
number of times activity i is preempted by the
higher-priority activity j

de ceil, i.e. rounding upwards, e.g. d1.6e = 2
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Exact Analysis using Iterative Calculations

RMS - Exact Analysis - Iterative Calculation

Calculate response times using iteration (iteration index as superscript):

Rk+1
i = Ci +

∑
j∈hp(i)

⌈
Rk

i

Tj

⌉
Cj

R0
i = 0 used as starting value

Rk
i iteratively calculated until stable
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Exact Analysis using Iterative Calculations

RMS - Exact Analysis - Iterative Calculation Example

Example as before:

Rk+1
i = Ci +

∑
j∈hp(i)

⌈
Rk

i

Tj

⌉
Cj

Thread C T

A 10 30
B 10 40
C 12 52

Iterative calculation for i ∈ A, B, C:

R0
a=0 R0

b=0 R0
c=0

R1
a=10 (*) R1

b=10+0·10=10 R1
c=12+0·10+0·10=12

R2
a=10 (stable) R2

b=10+1·10=20 R2
c=12+1·10+1·10=32

R3
b=10+1·10=20 (stable) R3

c=12+2·10+1·10=42

R4
c=12+2·10+2·10=52

R5
c=12+2·10+2·10=52 (stable)

* no higher priority threads
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Generalized RMS

Generalized Rate Monotonic Analysis

The assumptions made in RMS are rarely the case in practice:

I Periodic threads

I No blocking

I Deadline (D) = Period (T )

I Instantaneous context switch

Therefore, Generalized Rate Monotonic Analysis extends the RMS analysis
(by Sha, Rajkumar & Lehoczky, 1994):

1. Shorter deadlines (D < T )

2. Blocking (on shared resources, bounded by priority inheritance)

3. Non-periodic threads (to avoid overly pessimistic results)

4. Non-instantaneous release jitter / context switches / clock interrupts

Items 1 and 2 you should know and be able to apply/use.
Items 3 and 4 you should know about.

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 11 / 19
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Deadline Monotonic Scheduling

Deadline Monotonic Scheduling - Shorter deadlines

I The situation Deadline = Period (D = T ) is unusual - often D < T
I Seldom occurring events but which must be handled quickly (time

critical)

I Scheduling test
I Answers yes or no to the question Is this system of threads schedulable?
I Method

1. Calculate the worst-case response time, Ri, for each thread, τi
2. The system is schedulable if and only if: Ri <= Di (the deadline) for

each thread τi

I D < T - Deadline Monotonic Scheduling (variant of RMS)
I Assign priority according to D (as opposed to T)
I Calculate maximum response time (R) as before
I Check that R < D
I Scheduling analysis according to Joseph & Pandya still holds
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Analysis considering blocking on shared resources

The effect of blocking

Worst-case response-time in presence of blocking is:

Ri = Ci +Bi +
∑

j∈hp(i)

⌈
Ri

Tj

⌉
Cj

Bi = the blocking factor, i.e. the maximum time thread i can be blocked
by lower-priority threads. The blocking factor is the sum of:

I Normal blocking - The thread is blocked waiting for another thread to
release a resource the thread has tried to lock.

I Push-through blocking - The thread is blocked by a lower priority
thread which inherits a higher priority because it is blocking a
higher-priority thread (only when priority inheritance is used).

I Ceiling blocking - The thread is blocked because the ceilings of other
locked resources is too high. Only with the priority ceiling protocol.
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Analysis considering blocking on shared resources

Blocking - example 1

Can we successfully schedule the following system? The system uses RMS
and basic inheritance protocol.

M1A

B

C

a(); / 0.2

b(); / 0.3

c(); / 0.1

Thread C D T

A 1 2 10
B 2 3 15
C 4 10 20

R0
A=0 R0

B=0 R0
C=0

R1
A=1+max(0.3,0.1)+0=1.3 R1

B=2+0.1+0=2.1 R1
C=4+0+0=4

R2
A=1+max(0.3,0.1)+0=1.3 R2

B=2+0.1+1·1=3.1 R2
C=4+0+(1·1+1·2)=7

R3
B=2+0.1+1·1=3.1 (*) R3

C=4+0+(1·1+1·2)=7
* RB > DB , not ok

Conclusion:

I Thread B does not meet its deadline due to blocking by thread C.
Not a schedulable system!
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Analysis considering blocking on shared resources

Blocking - example 2

Can we remove the blocking problem by splitting the monitor into two?
The system uses RMS and basic inheritance protocol.

M1

A

B

C

a1(); / 0.2
b(); / 0.3

c(); / 0.1
M2a2(); / 0.2

Thread C D T

A 1 2 10
B 2 3 15
C 4 10 20

R0
A=0 R0

B=0 R0
C=0

R1
A=1+(0.3+0.1)+0=1.4 R1

B=2+0.1(∗∗)+0=2.1 R1
C=4+0+0=4

R2
A=1+(0.3+0.1)+0=1.4 R2

B=2+0.1+1·1=3.1 R2
C=4+0+(1·1+1·2)=7

R3
B=2+0.1+1·1=3.1 (*) R3

C=4+0+(1·1+1·2)=7
* RB > DB , not ok

** push-through blocking

Conclusion:

I No, not possible due to push-through blocking!
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Ceiling blocking

The Ceiling Blocking Time

I Avoid multiple blockings for the highest priority thread.

I At the expense of avarage blocking times and runtime overhead.

I Should know properties and principles (details of the protocol is
presently not part of the course).

The following plain-type slides (and page numbers) are from the
Real-Time Systems course (L4 of FRTN01)

http://cs.lth.se/EDA040 F7: Scheduling Analysis 2016-10-11 16 / 19
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The Priority Ceiling Protocol
L. Sha, R. Rajkumar, J. Lehoczky, Priority Inheritance Protocols: An Approach to

Real-Time Synchronization, IEEE Transactions on Computers, Vol. 39, No. 9, 1990

Restrictions on how we can lock (Wait, EnterMonitor) and
unlock (Signal, LeaveMonitor) resources:

• a task must release all resources between invocations

• the computation time that a task i needs while holding
semaphore s is bounded. csi,s = the time length of the
critical section for task i holding semaphore s

• a task may only lock semaphores from a fixed set of
semaphores known a priory. uses(i) = the set of
semaphores that may be used by task i

13



The protocol:

• the ceiling of a semaphore, ceil(s), is the priority of the
highest priority task that uses the semaphore

• notation: pri(i) is the priority of task i

• At run-time:

– if a task i wants to lock a semaphore s, it can only do
so if pri(i) is strictly higher than the ceilings of all
semaphores currently locked by other tasks

– if not, task i will be blocked (task i is said to be blocked
on the semaphore, S∗, with the highest priority ceiling
of all semaphores currently locked by other jobs and
task i is said to be blocked by the task that holds S∗)

– when task i is blocked on S∗, the task currently holding
S∗ inherits the priority of task i

14



Properties:

• deadlock free

• a given task i is delayed at most once by a lower priority
task

• the delay is a function of the time taken to execute the
critical section

15



Deadlock free

Example:

Task name T Priority

A 50 10

B 500 9

Task A Task B

lock(s1) lock(s2)

lock(s2) lock(s1)

... ...

unlock(s1) unlock(s1)

unlock(s2) unlock(s1)

ceil(s1) = 10, ceil(s2) = 10

16



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t0: B starts executing

17



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t1: B attempts to lock s2. It succeeds since no lock is held
by another task.
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t2: A preempts B
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t3: A tries to lock s1. A fails since A’s priority (10) is not
strictly higher than the ceiling of s2 (10) that is held by B

• A is blocked by B

• A is blocked on s2

• The priority of B is raised to 10.
20



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t4: B attempts to lock s1. B succeeds since there are no
locks held by any other tasks.
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t5: B unlocks s1
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t6: B unlocks s2

• The priority of B is lowered to its assigned priority (9)

• A preempts B, attempts to lock s1 and succeeds
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t7: A attempts to lock s2. Succeeds
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t8: A unlocks s2
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

Critical section
guarded by s1

Critical section
guarded by s2

s2 locked

(attemp to lock s1)

blocked by B
blocked on s2

s1 locked s1 unlocked s2 unlocked

s1 locked
s2 locked

s2 unlocked
s1 unlocked

t9

• t9: A unlocks s1

26



Example:

Task name T Priority

A 50 10

B 500 9

C 3000 8

Task A Task B Task C

lock(s1) lock(s2) lock(s3)

.. .. ..

unlock(s1) lock(s3) lock(s2)

.. .. ..

unlock(s3) unlock(s2)

.. ..

unlock(s2) unlock(s3)

ceil(s1) = 10, ceil(s2) = ceil(s3) = 9
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t0: C starts execution and then locks s3
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t1: B preempts C
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t2: B tries to lock s2. B fails (the priority of B is not strictly
higher than the ceiling of s3 that is held by C) and blocks
on s3 (B is blocked by C). C inherits the priority of B.
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t3: A preempts C. Later is tries to lock s1 and succeeds
(the priority of A is higher than the ceiling of s3).

31



t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t4: A completes. C resumes and later tries to lock s2 and
succeeds (it is C itself that holds s3).
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t5: C unlocks s2
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t6: C unlocks s3, and gets back its basic priority. B pre-
empts C, tries to lock s2 and succeeds. Then B locks s3,
unlocks s3 and unlocks s2
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t7: B completes and C is resumed.
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t0 t1 t2 t3 t4 t5 t6 t7 t8

A

B

C

s1 locked s1 unlocked

s3 locked

blocked by C

(attemp to lock s2)

s2 locked
s3 locked

s3 unlockeds2 unlocked

s2 unlockeds3 unlockeds2 locked

Critical section
guarded by s1

Critical section
guarded by s2

Critical section
guarded by s3

• t8: C completes

36



• A is never blocked

• B is blocked by C during the intervals [t2, t3] and [t4, t6].
However, B is blocked for no more than the duration
of one time critical section of the lower priority task C
even though the actual blocking occurs over disjoint time
intervals
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General properties:

• with ordinary priority inheritance, a task i can be blocked
for at most the duration of min(n, m) critical sections,
where n is the number of lower priority tasks that could
block i and m is the number of semaphores that can be
used to block i

• with the priority ceiling inheritance, a task i can be blocked
for at most the duration of one longest critical section

• sometimes priority ceiling introduces unnecessary blocking
but the worst-case blocking delay is much less than for
ordinary priority inheritance
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The Immediate Inheritance Protocol

• when a task obtains a lock the priority of the task is
immediately raised to the ceiling of the lock

• the same worst-case timing behavior as the priority ceiling
protocol (also known as the Priority Ceiling Emulation
Protocol and as the Priority Protect Protocol)

• easy to implement

• on a single-processor system it is not necessary to have
any queues of blocked tasks for the locks (semaphores,
monitors) – tasks waiting to acquire the locks will have
lower priority than the task holding the lock and can,
therefore be queued in ReadyQueue.
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.

Priority Inheritance

Priority inheritance is a common, but not mandatory, feature of
most Java implementations.

The Real-Time Java Specification requires that the priority
inheritance protocol is implemented by default. The priority
ceiling protocol is optional.
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Overview Scheduling analysis without blocking Generalizations and analysis with blocking Priority ceiling Final orientation

Real-system properties and practices

Sporadic (non-periodic) threads

A sporadic thread is triggered at unpredictable points in time.

Pessimistic analysis (our aproach so far)

I Model as a periodic thread with period equal to the minimum time
between triggering events.

I Such a minimum time practically always exists due to physical
limitations in the environment.

I Apply standard schedulability test.

Pessimistic analysis (our aproach so far)

Less pessimistic: Analysis using a sporadic server

I Idea: Reserve a certain percentage of the CPU bandwidth for
handling of sporadic events.

I Construct a periodic thread, the sporadic server, which handles all
sporadic jobs. Let the thread run at most Csporadic time units every
period, Tsporadic.

I Apply standard schedulability test on the sporadic server thread.

I Does not assume a minimum time between two external events.

I Cannot guarantee that deadlines are met for all sporadic events.
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Real-system properties and practices

Including the run-time overhead

Release jitter
I Variations in the time it takes to actually release a thread once an external

event triggering the thread has arrived (Ji).

Context switch
I It takes time to switch to another thread (Csw).

Clock interrupts
I Periodic clock interrupts drives preemption and context switches (Ctick,

Ttick, Cqueue).

ωi = Ci + 2Csw +Bi +
∑

j∈hp(i)

⌈
ωi + Ji + Ttick

Tj

⌉
(Cj + 2Csw)

+
∑

j∈alltasks

⌈
ωi + Ji + Ttick

Tj

⌉
Cqueue +

⌈
ωi

Ttick

⌉
Ctick

Ri = Ji + Ttick + ωi
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Real-system properties and practices

Determining execution times

How do we determine C, B, etc. used in the scheduling analysis?

I Actual measurements
I Run the application many times with many different inputs.
I Measure the execution times, e.g. using a logic analyzer, and

remember the longest.
I Use the longest encountered execution times as C / B.

(Optionally add 10-50%)
I It can never be guaranteed that we have encountered the worst case!
I Modern CPU features complicates matters: Cacheing? Pipelining?

I Formal code analysis
I Analyze the program code statement by statement.

Accumulate worst-case execution times for the statements.
I How do you analyse loops? For-statements, while-statements, etc.
I Pessimistic! Cacheing? Pipelining?
I Automatic tools needed! Few available.

Difficult problem! Still an open and important area for future research!
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