
http://cs.LTH.se/EDA040

Real-Time and Concurrent Programming

Lecture 6 (F6):

Scheduling and bounded response times

Klas Nilsson

2015-10-06

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 1 / 31



Software and timing Scheduling principles Bounded blocking time

1 Software and timing
Periodic activities
The importance of proper timing.
Worst-case execution time (WCET)
Worst-case blocking time

2 Scheduling principles
Static scheduling
Dynamic scheduling – priority-based
Dynamic scheduling

3 Bounded blocking time
Priority inversion and avoidance
Limiting max blocking despite multiple resources.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 2 / 31



Software and timing Scheduling principles Bounded blocking time

1 Software and timing
Periodic activities
The importance of proper timing.
Worst-case execution time (WCET)
Worst-case blocking time

2 Scheduling principles
Static scheduling
Dynamic scheduling – priority-based
Dynamic scheduling

3 Bounded blocking time
Priority inversion and avoidance
Limiting max blocking despite multiple resources.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 3 / 31



Software and timing Scheduling principles Bounded blocking time

Periodic activities

Periodic processes/events

We often want to perform something cyclically/periodically

class Control extends PeriodicThread {

Control() {super(20);} // Sampling period 20ms

public void perform() {

// Perform ONE sample (i.e., no loop here!).

double yr = getSetPoint();

double y = sample();

double u = controlPID(yr,y);

setControlOutput(u);

}

}

The cyclic execution (while (!isInterrupted()) {...}), keeping the
period (20ms in this example) without drift (sleepUntil like for the
ticking in lab 1), and catching InterruptedException around the

sleeping/blocking, is all provided by the base class.
http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 4 / 31



Software and timing Scheduling principles Bounded blocking time

Periodic activities

Supporting Java classes

The provided base classes (for you to subclass) are:

CyclicThread: Cyclically recurrent task without a specific period.
PeriodicThread: Cyclically recurrent task with a specific period.
SporadicThread: Cyclically recurrent task with a minimum period.
RTThread: Base class for the above classes. Not a subclass

of java.lang.Thread
JThread: Subclass of java.lang.Thread providing the

perform method (as well as the sleepUntil as
of lab 1 and the mailbox for lab 3).

Since lab 3 is about message-based concurrency (not real time)
you better use JThread.

The remaining slides cover theory; as of the theory part of the exam.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 5 / 31



Software and timing Scheduling principles Bounded blocking time

Periodic activities

Supporting Java classes

The provided base classes (for you to subclass) are:

CyclicThread: Cyclically recurrent task without a specific period.
PeriodicThread: Cyclically recurrent task with a specific period.
SporadicThread: Cyclically recurrent task with a minimum period.
RTThread: Base class for the above classes. Not a subclass

of java.lang.Thread
JThread: Subclass of java.lang.Thread providing the

perform method (as well as the sleepUntil as
of lab 1 and the mailbox for lab 3).

Since lab 3 is about message-based concurrency (not real time)
you better use JThread.

The remaining slides cover theory; as of the theory part of the exam.
http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 5 / 31



Software and timing Scheduling principles Bounded blocking time

The importance of proper timing.

Computer Controlled Systems

As control actions (also referred to as control signals) are typically
computed by embedded software, timing requirements make it real-time
software. Small delays in sampling time can yield large control errors, for
instance via prediction errors. Two examples:

I PID control (linear extrapolation as prediction of future)

I Model-based control (predicting based on dynamic process model)

Refer to (click on:) the online version of “Feedback Systems – An
Introduction for Scientists and Engineers”, by Åström and Murray for an
introduction to control (and the next figure).

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 6 / 31

http://www.cds.caltech.edu/~murray/books/AM08/pdf/am08-complete_30Aug11.pdf
http://www.cds.caltech.edu/~murray/books/AM08/pdf/am08-complete_30Aug11.pdf


Software and timing Scheduling principles Bounded blocking time

The importance of proper timing.

Computer Controlled Systems

As control actions (also referred to as control signals) are typically
computed by embedded software, timing requirements make it real-time
software. Small delays in sampling time can yield large control errors, for
instance via prediction errors. Two examples:

I PID control (linear extrapolation as prediction of future)

I Model-based control (predicting based on dynamic process model)

Refer to (click on:) the online version of “Feedback Systems – An
Introduction for Scientists and Engineers”, by Åström and Murray for an
introduction to control (and the next figure).

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 6 / 31

http://www.cds.caltech.edu/~murray/books/AM08/pdf/am08-complete_30Aug11.pdf
http://www.cds.caltech.edu/~murray/books/AM08/pdf/am08-complete_30Aug11.pdf


Software and timing Scheduling principles Bounded blocking time

The importance of proper timing.

Computer Controlled Systems

As control actions (also referred to as control signals) are typically
computed by embedded software, timing requirements make it real-time
software. Small delays in sampling time can yield large control errors, for
instance via prediction errors. Two examples:

I PID control (linear extrapolation as prediction of future)

I Model-based control (predicting based on dynamic process model)

Refer to (click on:) the online version of “Feedback Systems – An
Introduction for Scientists and Engineers”, by Åström and Murray for an
introduction to control (and the next figure).

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 6 / 31

http://www.cds.caltech.edu/~murray/books/AM08/pdf/am08-complete_30Aug11.pdf
http://www.cds.caltech.edu/~murray/books/AM08/pdf/am08-complete_30Aug11.pdf


Software and timing Scheduling principles Bounded blocking time

The importance of proper timing.

Extract from “Feedback Systems – ...”

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 7 / 31



Software and timing Scheduling principles Bounded blocking time

The importance of proper timing.

Timing errors can result in deficient or unstable control

1 2 3 4

1

2

3

0

Td = 2

t1 = 1
t2 = 2

t2 + Td = 4

D = 1.6

∆1 = 0.4
D∆ = 1

Here, as an example, with sampling
period 1 [time unit], the sample at
time t = t1 = 1 was delayed by
∆ = 0.4 time units (40% of a
period), and the predictive D-part
at t = t2 = 2 changes accordingly.

Predicting the output a
time Td into the future.

The predictive D-part normally
improves damping, but with
timing errors the system can
even become unstable!!

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 8 / 31



Software and timing Scheduling principles Bounded blocking time

The importance of proper timing.

Timing errors can result in deficient or unstable control

1 2 3 4

1

2

3

0

Td = 2

t1 = 1
t2 = 2

t2 + Td = 4

D = 1.6

∆1 = 0.4

D∆ = 1

Here, as an example, with sampling
period 1 [time unit], the sample at
time t = t1 = 1 was delayed by
∆ = 0.4 time units (40% of a
period), and the predictive D-part
at t = t2 = 2 changes accordingly.

Predicting the output a
time Td into the future.

The predictive D-part normally
improves damping, but with
timing errors the system can
even become unstable!!

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 8 / 31



Software and timing Scheduling principles Bounded blocking time

The importance of proper timing.

Timing errors can result in deficient or unstable control

1 2 3 4

1

2

3

0

Td = 2

t1 = 1
t2 = 2

t2 + Td = 4

D = 1.6

∆1 = 0.4
D∆ = 1

Here, as an example, with sampling
period 1 [time unit], the sample at
time t = t1 = 1 was delayed by
∆ = 0.4 time units (40% of a
period), and the predictive D-part
at t = t2 = 2 changes accordingly.

Predicting the output a
time Td into the future.

The predictive D-part normally
improves damping, but with
timing errors the system can
even become unstable!!

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 8 / 31



Software and timing Scheduling principles Bounded blocking time

The importance of proper timing.

Timing errors can result in deficient or unstable control

1 2 3 4

1

2

3

0

Td = 2

t1 = 1
t2 = 2

t2 + Td = 4

D = 1.6

∆1 = 0.4
D∆ = 1

Here, as an example, with sampling
period 1 [time unit], the sample at
time t = t1 = 1 was delayed by
∆ = 0.4 time units (40% of a
period), and the predictive D-part
at t = t2 = 2 changes accordingly.

Predicting the output a
time Td into the future.

The predictive D-part normally
improves damping, but with
timing errors the system can
even become unstable!!

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 8 / 31



Software and timing Scheduling principles Bounded blocking time

Worst-case execution time (WCET)

Latencies and delays in feedback control
C

on
tr

ol
sy

st
em

|
S

of
tw

ar
e

ti
m

in
g

sample delay
control delay

latency

response time

job execution

time

control response time
execution time

control signal

sensor data

sample

(1) (2) (3) (4) (5)

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 9 / 31



Software and timing Scheduling principles Bounded blocking time

Worst-case execution time (WCET)

Points in time in previous figure

The time-axis markers (1)-(5) in previous slide denote the following
events:

1. Release time for control job; desired start of period/job.

2. Start time after context switch; invocation of control computation.

3. The sensed output of the controlled process is sampled.

4. The computed control action is output physically.

5. Response time; control and execution is completed, including update
of control states and any preparation for next sample/job.

The control delay and the control response time are to be considered in
control engineering, whereas (we in this course care about) the execution
time and the response time are considered from a software point of view.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 10 / 31



Software and timing Scheduling principles Bounded blocking time

Worst-case execution time (WCET)

WCET

How can we guarantee a maximum response time?

I Worst-case execution time (WCET)

I Worst-case response time (R)

Since we are to give guarantees we are from now on talking about the
worst possible case.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 11 / 31



Software and timing Scheduling principles Bounded blocking time

Worst-case execution time (WCET)

Highest priority thread

Maximum start time; max latency

Time for context switch

Maximum response time

Maximum latency (according to the previous item)
+
Worst-case time to execute the code in the thread
+ For each used resource: maximum blocking time.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 12 / 31



Software and timing Scheduling principles Bounded blocking time

Worst-case execution time (WCET)

Lower priority threads

Maximum start time

Time for context switch
+ Sum WCET for all higher priority threads
+ Sum WCET for other threads with equal priority

Maximum response time

Maximum start time (according to items above)
+
Worst-case time to execute the code in the thread 1

+ Sum WCET for all higher/equal priority threads (due to preemption)
+ For each used resource: maximum blocking time.

1Including time for context switches.
http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 13 / 31



Software and timing Scheduling principles Bounded blocking time

1 Software and timing
Periodic activities
The importance of proper timing.
Worst-case execution time (WCET)
Worst-case blocking time

2 Scheduling principles
Static scheduling
Dynamic scheduling – priority-based
Dynamic scheduling

3 Bounded blocking time
Priority inversion and avoidance
Limiting max blocking despite multiple resources.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 14 / 31



Software and timing Scheduling principles Bounded blocking time

Static scheduling

Static scheduling

Used for extremely time-critical
threads and in simple control
systems.

I Time is divided into short
slots.

I All activities must be made
small enough to fit in one
slot.

I All activities are scheduled
into time slots in advance.

I Cyclic execution schedule.

Advantages

+ Guaranteed scheduling – on time!

+ An activity can always finish – no
critical regions

+ Easy to calculate worst-case
response times

Disadvantages

– Fragmentation, lost CPU time.

– An activity must never use more
than one slot. Activities might have
to be artificially partitioned.

– Complex schedule which must be
redone when program changes.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 15 / 31



Software and timing Scheduling principles Bounded blocking time

Static scheduling

Static scheduling – examples

Fictive illustrative example

Two threads; T1: 50 times/second T2: 25 times/second
Divide time into 10 ms slots (e.g., interrupt triggered).
Schedule accomplished by arranging the source code:

T1

T2

Industrial examples

The following were presented at lecture by classic overheads:

I ABB Robotics: DSP-based motor-control implementation

I Saab Aircraft: System computer in fighter jet.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 16 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

Scheduling analysis

Will all high-priority threads always meet their deadlines?

Strict priority order – the thread with the highest priority within the
runnable threads are assigned to the CPU.

Round robin - threads are assigned to the CPU in turn (FIFO).

We must assume strict priorities (and hence, desktop computers are not
real-time computers since they use round-robin for application fairness),
otherwise we would need to know all threads in the entire system.

Are there any rules to how select the priority?

I The priority is determines how the threads will be scheduled.

I For guaranteed max response time, the worst case must be analyzed;
→ scheduling analysis using WCET.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 17 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

Scheduling analysis

Will all high-priority threads always meet their deadlines?

Strict priority order – the thread with the highest priority within the
runnable threads are assigned to the CPU.

Round robin - threads are assigned to the CPU in turn (FIFO).

We must assume strict priorities (and hence, desktop computers are not
real-time computers since they use round-robin for application fairness),
otherwise we would need to know all threads in the entire system.

Are there any rules to how select the priority?

I The priority is determines how the threads will be scheduled.

I For guaranteed max response time, the worst case must be analyzed;
→ scheduling analysis using WCET.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 17 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

Fixed-priority scheduling

I With dynamic scheduling, which is our default, the run-time system
(OS, JVM, ..) determines online what thread (out of the ready ones)
that will run.

I Most system schedulers are based on priorities, as reflected in the
Java classes.

I We also assume an interrupt driven scheduler, and hence preemption,
but otherwise the java.lang.Thread.yield method is available for
making a re-schedule from the application level.

I If those priorities are fixed, after being assigned at the creation of the
thread, we have fixed-priority scheduling.

I The remaining question then is: How to determine the priority?

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 18 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

How do we assign priorities?

Example: T1 executes 1ms every 2ms, and T2 executes 2ms every 5ms.
Threads should execute once each period (finish before next release).

Give T2 higher priority than T1

T2

T1

Failure: T1 is not allowed to execute first period.

Give T1 higher priority than T2

T1

T2

1 2 3

T2 is preempted by T1 at time 2 and 6.

Scheduling possible
using these priorities:
Highest frequency

l
Highest priority

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 19 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

How do we assign priorities?

Example: T1 executes 1ms every 2ms, and T2 executes 2ms every 5ms.
Threads should execute once each period (finish before next release).

Give T2 higher priority than T1

T2

T1

Failure: T1 is not allowed to execute first period.

Give T1 higher priority than T2

T1

T2

1 2 3

T2 is preempted by T1 at time 2 and 6.

Scheduling possible
using these priorities:
Highest frequency

l
Highest priority

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 19 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

RMS – Rate Monotonic Scheduling

RMS Rule:
Priority according to period;
Short period ↔ high priority

I How good is it? Can we say
something about when it
works?

I How much of the CPU time
can we use? 100%?

Scheduling analysis: How high
CPU utilization can we have and
still guarantee schedulability?

Simplifications:

Initially, we assume:

I Periodic threads

I No blocking

I Deadline = period

Notation

For each thread we know:

T = Period
C = Execution time (WCET)
U = C/T = CPU utilization

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 20 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

RMS – Rate Monotonic Scheduling

RMS Rule:
Priority according to period;
Short period ↔ high priority

I How good is it? Can we say
something about when it
works?

I How much of the CPU time
can we use? 100%?

Scheduling analysis: How high
CPU utilization can we have and
still guarantee schedulability?

Simplifications:

Initially, we assume:

I Periodic threads

I No blocking

I Deadline = period

Notation

For each thread we know:

T = Period
C = Execution time (WCET)
U = C/T = CPU utilization

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 20 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

RMS – Rate Monotonic Scheduling

RMS Rule:
Priority according to period;
Short period ↔ high priority

I How good is it? Can we say
something about when it
works?

I How much of the CPU time
can we use? 100%?

Scheduling analysis: How high
CPU utilization can we have and
still guarantee schedulability?

Simplifications:

Initially, we assume:

I Periodic threads

I No blocking

I Deadline = period

Notation

For each thread we know:

T = Period
C = Execution time (WCET)
U = C/T = CPU utilization

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 20 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

RMS examples

Aiming at 100% CPU load

T1: C=2ms T=4ms C/T=0.5 T2: C=5ms T=10ms C/T=0.5
Scheduling

diagram:
T1

T2
10

FAILS!

But T2: C=2ms T=4ms C/T=0.5 works!
Thus, depends on relationship between the periods.

Searching the worst scheduling situation that still works (two threads)

With T1: C=1ms, T=2ms (C/T=0.5).
Then T2: C=1ms, T=3ms yields the

lowest C/T while still schedulable.
Total C/T = 1/2+1/3≈ 0.83.

Scheduling diagram:

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 21 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

RMS examples

Aiming at 100% CPU load

T1: C=2ms T=4ms C/T=0.5 T2: C=5ms T=10ms C/T=0.5
Scheduling

diagram:
T1

T2
10

FAILS!

But T2: C=2ms T=4ms C/T=0.5 works!
Thus, depends on relationship between the periods.

Searching the worst scheduling situation that still works (two threads)

With T1: C=1ms, T=2ms (C/T=0.5).
Then T2: C=1ms, T=3ms yields the

lowest C/T while still schedulable.
Total C/T = 1/2+1/3≈ 0.83.

Scheduling diagram:

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 21 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling – priority-based

RMS – Analysis (Liu & Layland, 1973)

Generally possible to guarantee schedulability if (n = number of threads)∑ Ci

Ti
< n(21/n − 1)

n=1 U=1
n=2 U ≈ 0.83
n=3 U ≈ 0.78
n=∞ U ≈ 0.69

Note: A system might be schedulable even if the CPU utilization is higher
than the bound above. Exact analysis is then required!

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 22 / 31



Software and timing Scheduling principles Bounded blocking time

Dynamic scheduling

EDF - Earliest Deadline First

Always assign the CPU to the thread which is closest to its deadline.

T1: C=2ms T=4ms

T2: C=5ms T=10ms

Scheduling diagram:

100% CPU usage possible,
but expensive to implement (on top of priority-based schedulers),
and bad behavior at overload (all deadlines missed).

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 23 / 31



Software and timing Scheduling principles Bounded blocking time

1 Software and timing
Periodic activities
The importance of proper timing.
Worst-case execution time (WCET)
Worst-case blocking time

2 Scheduling principles
Static scheduling
Dynamic scheduling – priority-based
Dynamic scheduling

3 Bounded blocking time
Priority inversion and avoidance
Limiting max blocking despite multiple resources.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 24 / 31



Software and timing Scheduling principles Bounded blocking time

Priority inversion and avoidance

Response times in case of temporary blocking

Real-time threads should run according to absolute priority order. A
high-priority thread should not wait for lower priority threads an arbitrary
long time.

Therefore:

I The CPU is always allocated to the highest priority thread.

I Semaphores/monitors with priority queues.

I Shared monitor “enter” queue for new and previously blocked threads.

Can we ensure timing for high-priority threads without knowing all low or
medium priority threads? What about blocking on shared resources?

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 25 / 31



Software and timing Scheduling principles Bounded blocking time

Priority inversion and avoidance

Priority Inversion

A problematic scenario

Three threads with H(igh), M(edium), and L(ow) priority:

1. L executes and enters a critical region.

2. M preempts and starts executing.

3. H preempts and tries to allocate the shared resource. H is blocked.

4. M continues executing for an arbitrary long period of time, blocking
both L and H!

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 26 / 31



Software and timing Scheduling principles Bounded blocking time

Priority inversion and avoidance

How do we avoid priority inversion?

The cure against priority inversion: Priority inheritance protocols

General idea

Temporarily (by the run-time system during blocking) raise the priority of
threads holding resources needed by higher-priority threads.

Protocols:

I Basic priority inheritance (swe: dynamiskt prioritetsarv)

I Priority-ceiling protocol

I Immediate inheritance protocol

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 27 / 31



Software and timing Scheduling principles Bounded blocking time

Priority inversion and avoidance

Basic Priority Inheritance Protocol

I When a thread is blocked, the priority of the thread holding the
requested resource is (temporarily) raised to the priority of the
blocked thread.

I Consider the three threads, having Low, Medium, and High priority.

I Thread L and H share a resource/monitor.

I Recall that thread M is for something else, not using the monitor, and
perhaps its existence in unknown.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 28 / 31



Software and timing Scheduling principles Bounded blocking time

Priority inversion and avoidance

Basic Priority Inheritance Protocol – caption

The scenario cured by priority inheritance

1. L executes and enters a critical region.

2. M preempts and starts executing.

3. H preempts and starts executing.

4. H tries to allocate the resource held by L, H is blocked. L inherits the
priority of H and completes the critical region.

5. Leaves the critical region and its priority is lowered. H is given access
to the critical region.

6. H finish and M continues executing.

7. Neither M or H is ready to execute. L continues.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 29 / 31



Software and timing Scheduling principles Bounded blocking time

Limiting max blocking despite multiple resources.

Problem: Multiple blocking

WCET for the highest priority thread

Worst-case time to execute the code in the thread
+ For each used resource: maximum blocking time

Basic Inheritance Protocol:

Can block once for each used resource.

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 30 / 31



Software and timing Scheduling principles Bounded blocking time

Limiting max blocking despite multiple resources.

Enhanced priority inheritance to avoid multiple blocking

Default: Basic Inheritance Protocol – raise prio for LP temporarily,
dynamically when HP blocked, locally for each resource.

Two enhancements:

Priority Ceiling

Allow only one LP to access
the resources required by HP
at any time.

Immediate Inheritance

The prio of the LP is always
raised to the ceiling prio in
critical region.

Properties

The effect is, to the cost of managing
(and registering them in the source
code) multiple resources together, a
fence around that set of resources.

Extra benefit: Deadlock free!

http://cs.lth.se/EDA040 F6: Scheduling and bounded response times 2015-10-06 31 / 31


	Scheduling and bounded response times
	Software and timing
	Periodic activities
	The importance of proper timing.
	Worst-case execution time (WCET)
	Worst-case blocking time

	Scheduling principles
	Static scheduling
	Dynamic scheduling – priority-based
	Dynamic scheduling

	Bounded blocking time
	Priority inversion and avoidance
	Limiting max blocking despite multiple resources.



