
http://cs.LTH.se/EDA040

Real-Time and Concurrent Programming

Lecture 5 (F5):

Part1: Deadlock Part 2: Messages

Klas Nilsson

2016-09-27

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 1 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Part I

Deadlock

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 2 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Content

1 Introduction and Definitions
Circular wait

2 Examples
Resource allocation graph
Monitor deadlock

3 Conditions and Analysis
Conditions for deadlock
Analysis: Resource allocation graphs

4 Deadlock Avoidance

5 Classic Example
The Dining Philosophers problem

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 3 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Circular wait

Background

Mutual exclusion means that a thread can be delayed

I A thread will not be allowed to enter a critical region (using a shared
resource) as long as it is occupied by another thread.

I For consistency (concurrency correctness), predictability (real-time
correctness), and for efficiency (embedded computing), access of such
a locked resource may not be interrupted or subject to a roll-back.

Hence, we have no preemption on resources (only on time as in preemptive
scheduling; not to be confused).

I If the blocking never ends we have a Deadlock (Swe: Dödläge)

Wikipedia: Deadlock refers to a specific condition when two or more
processes are each waiting for the other to release a resource, or more than
two processes are waiting for resources in a circular chain.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 4 / 37

http://en.wikipedia.org/wiki/Rollback_%28data_management%29
http://en.wikipedia.org/wiki/Deadlock


Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Circular wait

The problem

If waiting can be or is circular:

I When several threads can be waiting for each other we have a
Deadlock risk.

I When several threads are waiting for each other we have a Deadlock.

Thus, circular
wait appears to
be related too
deadlock:

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 5 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Semaphore deadlock

Example: deadlock with semaphores

P1 P2

S1.take ();

S2.take ();

...

S2.give ();

S1.give ();

S2.take ();

S1.take ();

...

S1.give ();

S2.give ();

P1: P2:

S1.take();
S2.take();
S1.take(); blocked

S2.take(); blocked

I Deadlock may occur if: one thread performs a take, followed by a
context switch (swe: tr̊adbyte).

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 6 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Resource allocation graph

Example cont’d: resource allocation graph

P1 P2

S1.take ();

S2.take ();

...

S2.give ();

S1.give ();

S2.take ();

S1.take ();

...

S1.give ();

S2.give ();

S1

S2

P1 P2

Holds resource

Waits for resource

Method: draw resources (boxes) and threads (circles). Draw arrows for
hold (filled) + wait (outlined).

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 7 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Monitor deadlock

Deadlock with monitors

P1 P2

m1.op1 (); m2.op1();

M1

M2

P1 P2

Holds resource

Waits for resource

class M1 {

synchronized void op1() {

m2.op2 ();

}

synchronized void op2() {

wait ();

}

}

class M2 {

synchronized void op1() {

m1.op2 ();

}

synchronized void op2() {

wait ();

}

}

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 8 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Conditions for deadlock

Necessary conditions for deadlock

Necessary conditions for deadlock to occur:

1. Mutual Exclusion - only one thread can access a resource at a time.

2. Hold and Wait - a thread can reserve a resource and wait for another.

3. No resource preemption - a thread can not be forced to release held
resources.

4. Circular Wait - thread-resources dependencies must be circular.

Monitor - satisfied conditions:

1. Monitor - one thread only is allowed to enter at a time.

2. Call of an operation in a monitor from inside a monitor operation in
another monitor.

3. A monitor can only be released if a thread voluntarily waits (wait())
or exits the monitor.

4. But 4? Must prevent circular wait that can result in deadlock.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 9 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Analysis: Resource allocation graphs

Resource allocation graphs

Tool for detecting circular hold-wait situations and to determine under
which conditions deadlock can occur.

1. Draw resources
2. Draw all hold-wait situations (arrows from each held resource to a

thread marker, arrows from thread marker to resource waited for)
3. Circular? Then risk for deadlock. The number of ’hold-wait’ links in

the circular chain shows how many and which threads are required for
deadlock.

A B C D

T1 T1

T2T2

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 10 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Resource allocation graphs - example

Resource allocation graphs - example

Thread 1 Thread 2

A.take ();

B.take ();

C.take ();

C.give ();

B.give ();

A.give ();

D.take ();

C.take ();

B.take ();

B.give ();

C.give ();

D.give ();

A B C D

T1 T1

T2T2

Conclusion: Deadlock possible when T1 is waiting for C and T2 is
simultaneously waiting for B! Circular wait!

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 11 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Histotric reflection/comparison: Concurrent Pascal

Monitors in Concurrent Pascal

Concurrent Pascal (Per-Brinch Hansen 1979) only has monitors and the
rule: no forward references, i.e. the program we looked at earlier is illegal:

class M1 {

synchronized void op1() {

// Illegal since it introduces

// a forward reference

m2.op2 ();

}

synchronized void op2() { ... }

}

class M2 {

synchronized void op1() {

m1.op2 ();

}

synchronized void op2() { ... }

}

I Monitors, Semaphores, etc.
are often referred to as
resources.

I Generally: all resources is
assigned a (partial) order,
only allocate from lower to
higher.

I M2 can call M1 but not the
other way around.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 12 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Concurrent Pascal cont’d

Limitations in the language - a good idea?

I Deadlock impossible in Concurrent Pascal with Monitors as resources.
I Often inefficient and unpractical - might be necessary to prematurely

allocate resources just to satisfy the demands on allocation order.
I Easy to implement ones own resource management using Monitors:

/* monitor */ class R {

boolean occupied;

synchronized void request () {

while (occupied) wait ();

occupied = true;

}

synchronized void release () {

occupied = false;

notify ();

}

}

R1

R2

P2P1

R R1 ,R2;

class P1 extends Thread {

...

R1.request ();

R2.request ();

...

}

class P2 extends Thread {

...

R2.request ();

R1.request ();

...

}
http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 13 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Avoidance conclusion

Avoiding deadlock

I Language and library support not applicable.

I Run-time deadlock detection: Not suitable for real-time or embedded
systems (useful in a generic OS, but here it would be too late).

I Instead, remove the risk for deadlock:

- Create and analyze the resource-allocation graph.
- Arrange the order of allocations, according to a resource ordering,

preferably without extending the locking times.
- If really necessary: add logic that prevents the dead-lock.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 14 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Avoidance conclusion

Notions

I Deadlock (swe: dödläge)
I When several resources attempts to allocate the same resource one

must be able to get it.
I Bad enough if there exists an execution order such that Deadlock

occurs - even if it happens only seldom. The system locks, hangs,
nothing happens. Can apply to subsystems.

I Starvation (swe: svält)
I If a thread attempts to allocate a resource it must be able to get it

eventually.
I We renounce the ’no starvation’ property in favor of priority; less

important activities might suffer from starvation.
I Livelock

I Occurs when several threads attempts to allocate the same resource
but none actually gets it due to the execution pattern.

I Behaves like Deadlock, but if you study the system closely the threads
actually run. They do no meaningful work though.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 15 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

The Dining Philosophers problem

Dining Philosophers problem

I The life of a philosopher
is boring:

class Philosopher

while

think ();

preProto ();

eat();

postProto ();

I Logical spaghetti:
I Two forks are required

to eat

I Solution requirements:
I No deadlock
I No starvation
I Efficient

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 16 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Solution 1

Semaphore solution 1

Semaphore [] fork = new MutexSem [5];

for (int i=0; i<5; i++) fork[i] = new MutexSem ();

class Philosopher extends Thread {

int i;

Philosopher(int i) {this.i=i;}

public void run() {

while (true) {

think ();

fork[i].take ();

fork[(i+1)%5]. take ();

eat ();

fork[i].give ();

fork[(I+1)%5]. give ();

}

}

}

I Eat() acts as a critical region
for a pair of forks, but for
different pairs of forks

I mutual exclusion for both

I Can this solution cause
Deadlock? Two resources is
required for each activity
(hold-wait satisfied) so we
have to make a more detailed
analysis.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 17 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Solution 1 cont’d - deadlock?

Philosophers 1 - deadlock?

I Draw a complete allocation graph, all Hold-Wait dependencies

F1

F2

F0

F3

F4

P0

F1

F2

F0

F3

F4

P0

P1

P2

P3

P4

Hold

Wait

I Circular → unsafe program, Deadlock can occur.
I Step 2: Can we present a scenario where deadlock occurs or prove

that the situation can not occur in practice?
I Scenario: Suppose all 5 philosophers starts simultaneously, takes their

left forks and then (all of them) waits for their right forks.
I This solution can thus cause deadlock.
I Can we solve the problem in a better way?

I avoid circularity or
I make sure that all Hold-Wait can not occur simultaneously?

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 18 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Solution 2 - one left handed philosopher

Philosophers 2 - one left handed philosopher

Semaphore [] fork = new MutexSem [5];

for (int i=0; i<5; i++) fork[i] = new MutexSem ();

class Philosopher

extends Thread {

int i;

Philosopher(int i)

{this.i=i;}

public void run() {

while (true) {

think ();

fork[i].take ();

fork[i+1]. take ();

eat ();

fork[i].give ();

fork[i+1]. give ();

}

}

}

class LeftPhilosopher

extends Thread {

int i;

LeftPhilosopher(int i)

{this.i=i;}

public void run() {

while (true) {

think ();

fork [0]. take ();

fork [4]. take ();

eat ();

fork [4]. give ();

fork [0]. give ();

}

}

}

F1

F2

F0

F3

F4

P0

P1

P2

P3

P4

I No circular
dependency

I No deadlock

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 19 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Solution 3 - one four chairs

Philosophers 3 - only four chairs

Semaphore [] fork = new MutexSem [5];

for (int i=0; i<5; i++) fork[i] = new MutexSem ();

Semaphore room = new CountingSem (4);

class Philosopher extends Thread {

int i;

Philosopher(int i) {this.i=i;}

public void run() {

while (true) {

think ();

room.take ();

fork[i].take ();

fork[(i+1)%5]. take ();

eat ();

fork[i].give ();

fork[(i+1)%5]. give ();

room.give ();

}

}

}

F1

F2

F0

F3

F4

P0

P1

P2

P3

Complete allocation graph
cyclic, ‘unsafe’ as before, but:
At most four Hold-Wait can
be active simultaneously → at
least one philosopher can eat,
no deadlock possible.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 20 / 37



Introduction and Definitions Examples Conditions and Analysis Deadlock Avoidance Classic Example

Solution 4 - polite philosophers and starvation

Philosophers 4 - polite philosophers

A philosopher only picks up the forks and starts to eat if BOTH
forks are free.

I Implemented using a monitor or a MultistepSem.
I Trivially deadlock free since no Hold-Wait situations occur.
I but, starvation possible.

I Suppose two philosophers, e.g. 1 and 3 agrees to eat alternating:
I I.e. philosopher 1 eats until philosopher 3 has begun to eat, and the

other way around
I Now will philosopher 2 never have two forks free at the same time, i.e.

philosopher 2 will starve!!

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 21 / 37



Mailboxes and messages Events and Buffers Examples

Part II

Message-based communication and

synchronization

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 22 / 37



Mailboxes and messages Events and Buffers Examples

6 Mailboxes and messages
Buffering and asynchronous interaction
System aspects

7 Events and Buffers
Messages within a program – Event objects

8 Examples
Dataflows: Producer – Consumer

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 23 / 37



Mailboxes and messages Events and Buffers Examples

Buffering and asynchronous interaction

The buffering monitor as a mailbox for messages

I While monitors in general are for
operations on shared data, a
monitor with operations post
(called by a producer thread) and
fetch (called by consumer thread)
comprises a data flow.

I Data can provide information
and/or synchronization.

I Originally and traditionally data is
then referred to as messages, and
the buffer is a mailbox.

I Between threads (the same
program and memory space) a
message can be an Object ref.

class Buffer { // Providing mailbox

synchronized void post(Object obj) {

while (buff.size()>= maxSize) {

wait ();

}

if (buff.isEmpty ()) notifyAll ();

buff.add(obj);

}

synchronized Object fetch () {

while (buff.isEmpty ()) {

wait ();

}

if (buff.size()>= maxSize) notifyAll ();

return buff.remove ();

}

}

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 24 / 37



Mailboxes and messages Events and Buffers Examples

Buffering and asynchronous interaction

Message sending – Mailboxes

Reasons for message-based interactions between threads:

I Producer-Consumer relations (data flows) between threads are very
common

I Asymmetric synchronization (signaling) ; the producer should be
allowed to continue without having to wait for the consumer.

I Transfer information – data referred to as message content.
I Thus, asynchronous communication (signaling plus data transfer)

that provides Buffering and Thread/Activity interaction.

Additionally, for complex systems today:

- Distribution: Threads are, or need to be prepared for being,
distributed over several computers with network communication.

- Encapsulation: Concurrent and real-time properties of objects
(handling timeout/overrun/exceptions etc.) requires means for
message passing between concurrently running objects/threads.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 25 / 37



Mailboxes and messages Events and Buffers Examples

Buffering and asynchronous interaction

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 26 / 37



Mailboxes and messages Events and Buffers Examples

System aspects

Systems of mailboxes

Communication between threads often forms a network of mailboxes.

I The same principle for (operating system) processes and threads.
I A thread can put a message in several mailboxes.
I A mailbox can, in Java, handle various types of messages - subclassing of message

(RTEvent).
I A thread has in most cases only one mailbox it reads from (otherwise problems - fetching

a messag is a blocking operation).
I Message objects need to be serialized (transformed into a stream of bytes) in order to be

sent to another OS process.
I Within a OS process (between threads), we can send pointers/references or a copy of the

object.
I How does the receiver know that another thread does not modify the contents of a

message???

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 27 / 37



Mailboxes and messages Events and Buffers Examples

System aspects

IPC (Inter-Process Communication)

Local Distributed
’Synchronous’ Object-method call RPC/RMI

Synchronous Monitor-method call Database

Asynchronous Event buffer Stream(pipe/file/socket)

Synchronous handling of Event

I Event model in Java (AWT, Swing Beans) basically NOT concurrent.

I Corresponding EventObject for realtime: RTEvent

I Corresponding synchronous event handling in se.lth.cs.realtime: See
class documentation for RTEventListener, RTEventListenerList and
JThread.

I Single-threaded ’synchronous’ event handling is not a central issue in the
course.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 28 / 37



Mailboxes and messages Events and Buffers Examples

System aspects

Unbounded mailbox with copy-on-send

Advantages

I Flexible code; size of buffer
does not need to be decided.

I Thread safety; sent message
not accessable by sender.

I The same mechanism can be
used for communication
between OS processes running
on the same computer or
different ones (distributed
systems), since shared memory
is not assumed.

Disadvantages

I Higher risk for running out of
memory, detected later. (Memory
is limited, so better set fixed
bounds early.)

I Often unpractical when immediate
response is required (i.e.
synchronous communication).

I Increased memory use, CPU for
copying, and GC work.

I Recycling via message pools
difficult to implement.

We use a ’bounded buffer’ in the form of RTEventBuffer in shared memory.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 29 / 37



Mailboxes and messages Events and Buffers Examples

System aspects

Mailbox == Monitor == Semaphore

I A Mailbox can easily be implemented using a Monitor

I Also a Semaphore is sort of a monitor.
I Suppose we only send empty messages, then a Mailbox is equivalent

to a Semaphore:

• The value of the counter of the Semaphore corresponds to
the number of messages in the mailbox.

• Send message - give()
• Receive message - take()

All three constructions are thus equally powerful,
but practical in different situations.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 30 / 37



Mailboxes and messages Events and Buffers Examples

Messages within a program – Event objects

Events as messages

I java.util.EventObject comprises an event class that is suitable
for messages, providing a transient (will be null outside JVM) source,
referring to the sending object/thread.

I se.lth.cs.realtime.event.RTEvent is a subclass that, as
java.awt.InputEvent, has a timestamp, expressing object age.

→ We use such timestamped events for asynchronous communication
between threads.

Note that graphics such as swing is basically single-threaded!

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 31 / 37



Mailboxes and messages Events and Buffers Examples

Messages within a program – Event objects

The RTEvent class

public abstract

class RTEvent extends EventObject {

protected long timestamp; // Creation time in ms.

protected volatile transient Object owner; // Responsible thread.

public RTEvent (); // Use current Thread & TimeMillis .

public RTEvent(Object source ); // Set source , default timestamp .

public RTEvent(long ts); // Set timestamp , default source

public RTEvent(Object source , long ts); // Override both defaults.

public final Object getOwner ()

public double getSeconds ()

public long getMillis ()

public long getNanos ()

}

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 32 / 37



Mailboxes and messages Events and Buffers Examples

Messages within a program – Event objects

The RTEventBuffer class

I As for RTEvent, part of se.lth.cs.realtime.event

I Constructors:
public RTEventBuffer()

RTEventBuffer(int maxSize)

RTEventBuffer(int maxSize,

Object lock)

I Example with maxSize==12 and
currSize==7, internal attributes:

I Obtain message/event by
RTEvent fetch()

or specific final methods.

I Send message/event by
RTEvent post(RTEvent ev)

or specific final methods.

[0]

[1]

[5]

[11]

[10]

[2][3]

[4]

[9][8]

[7]

[6]

 RTEvent[] buffer
 currSize==7

fetchAt

postAt

growth

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 33 / 37



Mailboxes and messages Events and Buffers Examples

Messages within a program – Event objects

More RTEventBuffer / mailbox

Blocking and non-blocking methods for posting and fetching messages:

doPost(RTEvent e) // Add e to queue, blocks if the queue is full.
tryPost(RTEvent e) // Adds to the queue, without blocking if full.
doFetch() // Fetch from queue, block if empty.
tryFetch() // Fetch without blocking if empty.
awaitEmpty() // Waits for buffer to become empty.
awaitFull() // Waits for buffer to become full.
isEmpty() // Checks if buffer is empty.
isFull() // Checks if buffer is full.

The try-Post/Fetch returns null if the buffer is non-full/empty, and the
supplied/next event otherwise, respectively.

The attributes are declared protected in order to make it possible to create
subclasses with revised functionality.

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 34 / 37



Mailboxes and messages Events and Buffers Examples

Dataflows: Producer – Consumer

A producer

class Producer extends Thread {

Consumer receiver;

MyMessage msg;

public Producer(Consumer theReceiver) {

receiver = theReceiver;

}

public void run() {

while (true) {

char c = getChar ();

msg = new MyMessage(c);

receiver.putEvent(msg);

}

}

}

Note: Buffering is hidden by putEvent as of the receiving thread.

class MyMessage extends RTEvent {

character ch;

public MyMessage(char data) {

super (); // Set time stamp;

ch = data;

}

}

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 35 / 37



Mailboxes and messages Events and Buffers Examples

Dataflows: Producer – Consumer

A consumer

class Consumer extends Thread {

RTEventBuffer mailbox;

public Consumer(int size) {mailbox=new RTEventBuffer(size );}

public void putEvent(RTEvent ev) {

mailbox.post(ev); // In context of Producer

}

public void run() {

RTEvent m;

while (true) {

m = mailbox.fetch (); // In context of Consumer

if (m instanceof MyMessage) {

MyMessage msg = (MyMessage) m;

useChar(msg.ch);

} else { ... // Handle other messages

};

} // ...

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 36 / 37



Mailboxes and messages Events and Buffers Examples

A Thread class suitable for Lab3

The JThread utility class

I Part of the se.lth.cs.realtime package.

I Subclass of java.lang.Thread; thus it is a Java Thead, hence
JThread.

I Encapsulates an RTEventBuffer, exposed via a public putEvent

method.

I Default run method is a cyclic call of perform

I Internally the perform (or run) method refers to the mailbox

attribute like
event = mailbox.doFetch();

I Methods sleepUntil and terminate are also provided (compare
lab1).

http://cs.lth.se/EDA040 F5a: Deadlock F5b: Messages 2016-09-27 37 / 37


	Deadlock
	Introduction and Definitions
	Circular wait

	Examples
	Resource allocation graph
	Monitor deadlock

	Conditions and Analysis
	Conditions for deadlock
	Analysis: Resource allocation graphs

	Deadlock Avoidance
	Classic Example
	The Dining Philosophers problem

	Mailboxes and messages
	Buffering and asynchronous interaction
	System aspects

	Events and Buffers
	Messages within a program – Event objects

	Examples
	Dataflows: Producer – Consumer



