
http://cs.LTH.se/EDA040

Real-Time and Concurrent Programming

Lecture 4 (F4):

Monitors: synchronized, wait and notify

Klas Nilsson

2016-09-20

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 1 / 1

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 2 / 1

Objects with mutual exclusion

Monitors and synchronized objects

Upcoming Monitor content

I Language construct for synchronization of threads

I More practical than semaphores

I Fits in well with object orientation

I Supported by synchronized in Java

I Signaling supported inside locked objects

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 3 / 1

Objects with mutual exclusion

Mutual exclusion as part of interface

In-line use of semaphores for mutual exclusion

Disadvantage: take/give tends to get spread out through the entire
program (learned from exercise 1).

Abstract data-types for mutual exclusion

Principle: take/give part of (mutually exclusive) methods that are
kept together with the hidden data.

Monitor: Such a data-type with mutually exclusive access-functions is
called a Monitor.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 4 / 1

Objects with mutual exclusion

Monitors (objects & concept)

I In OOP we use classes as a
(more powerful) mean to
accomplish abstract data-types.

I Objects with such mutually
exclusive methods are then
monitor objects.

For a class like Account:

class Account {

// ...

void deposit(int a){

mutex.take ();

balance += a;

mutex.give ();

}

}

the monitor concept is implemented by
using semaphores.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 5 / 1

Objects with mutual exclusion

Monitor == Semaphore

Semaphores and Monitors are equivalent since:

I Semaphores (for threads but not for interrupt routines) can be (and
are in standard Java) implemented by a monitor (with methods take

and give).

I Monitors can be implemented by semaphores, for a given set of
threads (using one MutexSem per monitor, and one CountingSem for
each thread per monitor).

Thus, a specific implementation using one mechanism can (even if hard)
always be reimplemented using the other.

Use the right technique depending on the problem to solve!

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 6 / 1

Abstractions related to concurrency

Language support for Monitors

Problem: Using semaphores requires (too much) discipline.

Idea: Provide support via language constructs.

Degree of language support:

I None [C/C++]: Manual calls (as with mutex; take/give) using library
functions. Object-orientation may simplify usage.

I Explicit per method[Java]: Declared property of methods (language and
run-time support).

I Implicit per task [Ada]: Declared property of class (implicitly applies to all
methods and data).

“None”, i.e. no support, results in more complicated programming.
“Implicit” language support safest and simplest but can limit applicability.
“Explicit” with mutually exclusive methods is the pragmatic Java approach.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 7 / 1

Abstractions related to concurrency

Abstractions

Thread:
Performs execution using a processor.

Execution state:
Thread status stored in context.

Mutual exclusion:
Restriction on context switching

In Java we have

I threads represented by objects of type Thread,

I state of execution as in sequential programming,

I synchronized methods for mutual exclusion.

The purpose of abstractions is to cope with complexity...

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 8 / 1

Abstractions related to concurrency

Objects and concurrency

Object properties Implicit mutual exclusion of methods
Thread Exec. state No Yes

Comment

No No Object Monitor Passive objects
No Yes Coroutine ’Co-monitor’ Not in Java

Yes No Not useful
Yes Yes Thread-object Task Active objects

— —

4

2

5 6

7 8

3

1

1 The objects as in object oriented programming.
2 The monitors we accomplish by using synchronized.
3 Named Fibers (by Microsoft) when managed by OS.
7 Our active objects, not being monitors too!
8 Avoid; less practical and not supported in Java.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 9 / 1

http://en.wikipedia.org/wiki/Fiber_(computer_science)

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 10 / 1

Mutual-exclusion support in Java

Object categories

I Thread object:

- Active object (if started but not terminated); drives execution.
- Don’t call me, I’ll call you!

I Monitor object:

- Mutually exclusive methods, e.g., by using synchronized.
- Should be passive; do not mix monitors and threads!

I Plain passive object:

- Thread safe by reentrant methods (java.lang.Math)
- Explicitly thread unsafe; to be used by a single thread

(java.util.HashSet)
- Implicitly thread unsafe; has to be assumed if not documented.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 11 / 1

Mutual-exclusion support in Java

Java-supported monitors

I In Java: Critical region/block/method is declared using the keyword
synchronized for methods1 or objects2.

I Unfortunately, neither classes nor attributes can be declared
synchronized; discipline required.

The monitor concept by use of Java

class Account {

// ...

synchronized void deposit(int a){

balance += a;

}

}

1Meaning method(arg){synchronized(this){...}}
2synchronized(obj){...} locks obj for running the ... code, but do not use.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 12 / 1

Waiting and Signaling in monitors

synchronized - wait - notify

Condition queue

In addition to
locking the
object for
exclusive access
(mutex):
Temporarily
unlock until
someone signals
that the state
has changed:

synchronized(.){

}

wait
notify

Exclusive area

Monitor queue

Condition queue

Thread about
 to enter

waiting for exclusive access

Thread just left monitor

awaiting fulfilled condition

Thread with exclusive
access to monitor data

Scheduling

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 13 / 1

Waiting and Signaling in monitors

Notification is stateless; put any needed state in monitor

A CountingSem has state

Thread1 Thread2

| |

s.take (); |

| s.give ();

| |

to be compared with

Thread1 Thread2

| |

| s.give ();

s.take (); |

| |

Thread1 continues in both cases since the
internal state (counter) reflects the give.

A notify is stateless

Thread1 Thread2

| |

wait (); |

| notify ();

| |

to be compared with

Thread1 Thread2

| |

| notify ();

wait (); |

| |

Thread1 waits until next notification;
The notify is forgotten, unless appropriate
state variables exist in the monitor.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 14 / 1

Waiting and Signaling in monitors

Execution states, revisited

Running Ready

 Blocked
Due to application

 Due to scheduler / kernel / OS

Priority, time-
sharing

By this: wait,
synchronized call

 By other: notify,
synchronized return

Object methods

I wait

I notify

I notifyAll

Keywords vs. methods

I The keyword synchronized is in language and in JVM

I The Object methods are in class Object and in JVM

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 15 / 1

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 16 / 1

An analogy for better understanding monitors

Monitor conditions - analogy

I Assume shared resource providing three operations: opA, opB, and
addPaper.

I Only one can enter at a time, entrance means exclusive access.
I The opB requires that paper is available, discovered after entrance.
I Two queues, one for entrance (left) and one for conditions (right).

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 17 / 1

An analogy for better understanding monitors

Monitor conditions - analogy/scenario

It is the responsibility of
the one performing
addPaper to inform the
waiting persons that the
state of the object has
changed.

Scenario

I The persons (threads) entering the monitor to do opB, but discovers that there is
no paper aborts the operation, exits, and waits in a special queue until the
condition ’paper is available’ will be true.

I Even though there is no paper, other persons are let in to perform opA. Eventually
someone arrives who changes the roll of paper after which the waiting persons can
be let in again.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 18 / 1

Monitor variants

Original Hoare Monitor (1974)

Originally defined monitor properties:

I Immediate Resumption; the awakened thread takes control
immediately

I The notify must be performed last, one thread only is awakened.

I The condition for waiting could be coded:
if (!ok) wait();

I The notifying thread guarantees that the condition being waited for is
true.

I Easier to prove that starvation can not occur.

I Does not handle priority for blocked threads.

I The enter queue can be FIFO or (preferably) a priority queue.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 19 / 1

Monitor variants

Real-time Monitor

We assume these monitor properties:

I High priority threads should be given precedence, even to threads
which have been waiting longer (desired starvation risk).

I Immediate resumption not guaranteed (depends on OS/scheduler)

I The condition being waited for might not be true anymore when a
blocked thread resumes execution.

I Waiting for a condition must be coded:
while (!ok) wait();

I Use ’notifyAll’ to avoid problems (practical - wakes all).

I The notify not necessarily called last in the method.

When previously blocked threads precedes those with same priority +
notify last + one level of priority: equivalent with Hoare Monitor.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 20 / 1

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 21 / 1

HOWTO

Basic rules

Coding for concurrency correct programs

I Do not mix a thread and a monitor in the same object/class
[so you can get assistance from the compiler concerning proper
access, which should go over visible methods].

I All public methods should be synchronized
[and that is not inherited so redo in subclass].

I Wrap thread-unsafe classes by monitor
[if possibly used by multiple threads].

I Do not use (spread-out) synchronized blocks
[which are more for limited GUI concurrency].

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 22 / 1

HOWTO

Details (on board and in book)

I Atomic access of long and double.

I Keyword volatile.

I Attribute for locking: private and final.

I The monitor property (synchronized) is not inherited.

I Subclass blocking.

I The internal lock can be exposed for external synchronization.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 23 / 1

Buffer example

Badly implemented buffer

class Producer extends Thread
{
 public void run()
 {
 prod = source.get();
 buffer.post(prod);
 }
}
class Consumer extends Thread
{
 public void run()
 {
 cons = buffer.fetch();
 sink.put(cons);
 }
}

class Buffer
{
 synchronized void post(Object obj)
 {
 if (buff.size()==maxSize) wait();
 if (buff.isEmpty()) notify();
 buff.add(obj);
 }

 synchronized Object fetch()
 {
 if (buff.isEmpty()) wait();
 if (buff.size()==maxSize) notify();
 buff.remove(buff.size());
 }
}

The if (...) wait(); makes the buffer fragile: additional calls of notify
or additional interacting threads could course the buffering to fail.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 24 / 1

Buffer example

Better buffer

class Buffer // Well done.
{
 synchronized void post(Object obj)
 {
 while (buff.size()>=maxSize) {
 wait();
 }
 if (buff.isEmpty()) notifyAll();
 buff.add(obj);
 }

 synchronized Object fetch()
 {
 while (buff.isEmpty()) {
 wait();
 }
 if (buff.size()>=maxSize) notifyAll();
 buff.remove(buff.size());
 }
}

class Buffer // Inefficient!!
{
 synchronized void post(Object obj)
 {
 while (buff.size()>=maxSize) {
 wait();
 }
 buff.add(obj);
 notifyAll();
 }

 synchronized Object fetch()
 {
 while (buff.isEmpty()) {
 wait();
 }
 buff.remove(buff.size());
 notifyAll();
 }
}

The while (...) wait(); makes the buffer robust with respect to other
threads that can access the buffer and change the conditions.

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 25 / 1

Take-home message:

synchronized - wait - notify

For Lab2 & exam

Make sure you
understand how
threads are
interacting via
monitors in
Java; do
understand this
figure:

synchronized(.){

}

wait
notify

Exclusive area

Monitor queue

Condition queue

Thread about
 to enter

waiting for exclusive access

Thread just left monitor

awaiting fulfilled condition

Thread with exclusive
access to monitor data

Scheduling

http://cs.lth.se/EDA040 F4: Monitors: synchronized, wait and notify 2016-09-20 26 / 1

	Monitors
	Synchronized objects
	Monitor perspectives
	Monitor programming

