
More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

http://cs.LTH.se/EDA040

Real-Time and Concurrent Programming

Lecture 3 (F3):

More on concurrency and semaphores.

Klas Nilsson

2016-09-13

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 1 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

1 More about mutual exclusion

2 More about semaphores

3 More about Lab1

4 The Monitor concept

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 2 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Can we implement mutual exclusion in plain code?

Mutual exclusion - without system calls?

class T extends Thread {
 public void run() {
 while (true) {
 nonCriticalSection();
 preProtocol();
 criticalSection();
 postProtocol();
 }
 }
}

class T extends Thread {
 public void run() {
 while (true) {
 nonCriticalSection();
 preProtocol();
 criticalSection();
 postProtocol();
 }
 }
}

class T extends Thread {
 public void run() {
 while (true) {
 nonCriticalSection();
 preProtocol();
 criticalSection();
 postProtocol();
 }
 }
}

Critical Section (CS)

I Like the three lines of code from the bank account example.

I We will concentrate on the construction of pre/postProtocol.

I Assumption: A thread will not block inside its critical region.

I Requirements:
Mutual exclusion, No deadlock, No starvation, and Efficiency.

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 3 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Can we implement mutual exclusion in plain code?

Required Mutex Properties

R1. Mutual exclusion: Execution of code in critical sections must not be
interleaved.

R2. No deadlock: If one or more threads tries to enter a CS, one must do
so eventually.

R3. No starvation: A thread must be allowed to enter its CS eventually.

R4. Efficiency: Small overhead when only one active thread.

Can that be accomplished by ordinary (Java) code?

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 4 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Can we implement mutual exclusion in plain code?

Mutual exclusion – version 1

class V1 extends Thread {
 public void run() {
 while (true) {
 nonCS1();
 while (turn!=1);
 CS1();
 turn = 2;
 }
 }
}

class V1 extends Thread {
 public void run() {
 while (true) {
 nonCS2();
 while (turn!=2);
 CS2();
 turn = 1;
 }
 }
}

int turn=1;

R1. Mutual exclusion: OK

R2. No deadlock: OK since one of the threads can always proceed.

R3. No starvation: Alternating protocol; OK.

R4. Efficiency: Does not work for one thread only. Busy-wait; inefficient!
No good for many threads.

#: Not acceptable!
http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 5 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Can we implement mutual exclusion in plain code?

Mutual exclusion - version 2

class V2 extends Thread {
 public void run() {
 while (true) {
 nonCS1();
 while (c2!=1);
 c1 = 0;
 CS1();
 c1 = 1;
 }
 }
}

class V2 extends Thread {
 public void run() {
 while (true) {
 nonCS2();
 while (c1!=1);
 c2 = 0;
 CS2();
 c2 = 1;
 }
 }
}

int c1,c2; c1=c2=1;

R1. Mutual exclusion: NO!
Fails e.g. with that interleaving →

#: Not a solution, but could work for a
long time (until interrupt in pre1 or pre2)!

c1 = 1;

c2 = 1;

while (c2!=1);

while (c1!=1);

c1 = 0;

c2= 0;

CS1 ();

CS2 ();

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 6 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Can we implement mutual exclusion in plain code?

Mutual exclusion - version 3

class V3 extends Thread {
 public void run() {
 while (true) {
 nonCS1();
 c1 = 0;
 while (c2!=1);
 CS1();
 c1 = 1;
 }
 }
}

class V3 extends Thread {
 public void run() {
 while (true) {
 nonCS2();
 c2 = 0;
 while (c1!=1);
 CS2();
 c2 = 1;
 }
 }
}

int c1,c2; c1=c2=1;

R1. Mutual exclusion: OK

R2. No deadlock: Fails while also
using the CPU! E.g.:

#: Not a solution, but could work
for a long time!

c1 = 0;

c2 = 0;

while (c2!=1); // Forever ..

while (c1!=1); // .. and ever.

....

....

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 7 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Can we implement mutual exclusion in plain code?

Mutual exclusion - version 4

class V4 extends Thread {
 //..
 nonCS1();
 c1 = 0;
 while (c2!=1){
 c1 = 1; //**
 c1 = 0;
 }
 CS1();
 c1 = 1; //..
}

class V4 extends Thread {
 //..
 nonCS2();
 c2 = 0;
 while (c1!=1){
 c2 = 1; //**
 c2 = 0;
 }
 CS2();
 c2 = 1; //..
}

int c1,c2; c1=c2=1;

R1. Mutual exclusion: OK (as for V3).

R2. No deadlock: OK (yield at //**).

R3. No starvation: Failure, a thread may
execute but never get the resource (called
Livelock; threads neither block progress).

#: Not acceptable!

c1 = 0;

c2 = 0;

while (c1!=1);

c2 = 1;

while (c2!=1);

CS1 ();

c1 = 1;

nonCS1 ();

c1 = 0;

c2 = 0;

while ..

c2 = 1;

while (c2!=1);

CS1 ();

c1 = 1;

nonCS1 ();

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 8 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

http://en.wikipedia.org/wiki/Dekker’s_algorithm

Dekkers Algorithm

class DA1 extends Thread {
 //..
 nonCS1();
 c1 = 0;
 while (c2!=1){
 if (turn==2){
 c1 = 1;
 while (turn==2);
 c1 = 0;
 }
 }
 CS1();
 c1 = 1;
 turn = 2;
 //..

int c1,c2,turn; c1=c2=turn=1;

class DA2 extends Thread {
 //..
 nonCS2();
 c2 = 0;
 while (c1!=1){
 if (turn==1){
 c2 = 1;
 while (turn==1);
 c2 = 0;
 }
 }
 CS2();
 c2 = 1;
 turn = 1;
 //..

R1. Mutual exclusion: OK

R2. No deadlock: OK.

R3. No starvation: OK.

R4. Efficiency: Not good!

#: Dekkers Algorithm (can be extended to
many threads, but gets very complex) solves
the mutex problem, but with busy-wait
(CPU used also when nothing to do). Useful
in some multi-processor systems.

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 9 / 22

http://en.wikipedia.org/wiki/Dekker's_algorithm

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

http://en.wikipedia.org/wiki/Semaphore_(programming)

Mutual exclusion – semaphore

class M1 extends Thread {
 public void run() {
 while (true) {
 nonCS1();
 mutex.take();
 CS1();
 mutex.give();
 }
 }
}

class M2 extends Thread {
 public void run() {
 while (true) {
 nonCS2();
 mutex.take();
 CS2();
 mutex.give();
 }
 }
}

MutexSem mutex = new MutexSem();

R1. Mutual exclusion: OK

R2. No deadlock: OK.

R3. No starvation: OK (give starts blocked thread directly).

R4. Efficiency: Works well also for a single thread, waiting threads are put to
sleep (not using any CPU time).

#: Acceptable!
http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 10 / 22

http://en.wikipedia.org/wiki/Semaphore_(programming)

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Other means for mutual exclusion

Test-and-Set

The problem in version 2 arose since the following is not atomic:

while (c2!=1) // Load

c1 = 0; // Store

All computers have an instruction that corresponds to TestAndSet which
performs both these instruction atomically. It stores a new value and
returns the old value:

while (TestAndSet(c ,0)==0) ;

CS();

c = 1;

I A simple solution is thus possible assuming hardware support.
I Still Busy-wait – inefficient, the waiting thread should be blocked.
I Useful for machines with several CPUs and shared memory.
I In recent JDKs there are compareAndSet-methods that implement

Test-and-Set for built-in datatypes, as part of the package
java.util.concurrent.atomic

I Since we focus on single (embedded) CPUs, you should know about
Test-and-Set but it should not be used in your programs within this
course!

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 11 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

1 More about mutual exclusion

2 More about semaphores

3 More about Lab1

4 The Monitor concept

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 12 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Semaphores with different properties

Variants of Semaphores

Blocked-Set Semaphore
Give - wakes arbitrary waiting thread.
• Starvation when N≥3 if two threads happen to alternate.

Blocked-Queue Semaphore
Give wakes threads in FIFO order (the longest waiting thread first)
• Starvation impossible

Blocked-Priority Semaphore
Give wakes the thread that has the highest priority (FIFO order
when equal)
• Starvation possible if N≥3 and two high priority threads, but
that is desirable!

Binary Semaphore
• Uses a boolean instead of a counter internally. E.g., for
asymmetric signaling (for quicker catch-up).

Multistep Semaphore
• To reserve several resources at once/atomically, i.e., getting all
of nothing in one operation.

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 13 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Semaphores with different properties

Semaphore classes in LJRT

The Semaphore interface is implemented by the following classes:

Counting Semaphore
Classical counting semaphore, for signaling,
see the CountingSem class.

Binary Semaphore
Efficient mutex-implementation in some RTOS, see the
BinarySem class.

Mutex (Semaphore)
Efficient mutex-implementation in some RTOS, see the
BinarySem class.

Multistep Semaphore
To reserve several resources at once/atomically see the
MultistepSem class.

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 14 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

1 More about mutual exclusion

2 More about semaphores

3 More about Lab1

4 The Monitor concept

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 15 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Lab1 system and considerations

Hardware and emulation of it

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 16 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Lab1 system and considerations

Design considerations

I What threads, how many, blocking on what? Reflect concurrency
(requirements) of the environment: One thread per independent
sequence of input events.

I Any outputs that are asynchronous with all other threads, such that
additional threads are needed?

I Data hidden locally in objects, but what about shared data?

I Operations on shared data, from an application point of view?

I Logic and operations that are not shared; where to place? Inside
threads och as separate classes?

I Finite State machines (FSM): Defines behavior of the object or
system. E.g. UML stateChart for FSM within (active or passive)
object, while activity diagrams defines the interplay.

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 17 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Lab1 system and considerations

Your application program (threads)

I What sequences of input data/events are present? The occurring
order is unknown but it is known that appearance is sequential.
Example: The clock buttons, will appear as some sequence of input
events.

I For each such sequence, are input events occurring sparadically or
periodically. How to block a receiving thread until data is available
(to maintain a reactive system)?

I For the output (display and beep), is desired change synchronous with
any of the input sequences?

I If so, for some part of the output, should output be synchronous with
input handling such that is can performed by the same thread of
execution, or are there reasons for having separate output thread(s)?

I If not, what threads are needed for handling the output, and what are
they blocking on?

I Any other asynchronous activities needed?
I What threads are motivated by the above investigation?

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 18 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Lab1 system and considerations

Your application program (shared data)

I What data needs to be shared between the asynronous activities (the
threads according to previous page), i.e., at some point acessed by
more than one thread?

I Shared data to be placed in a class with mutex protection;
public methods the only proper way to manipulate data, and the
content of all those methods should form critical sections using one
and the same internally declared MutexSem

I To limit the number of execution combinations (avoiding concurrency
faults), methods should have application meaning, and be as large
and few as possible without adding complexity.

I Only one mutex per shared-data object!

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 19 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

1 More about mutual exclusion

2 More about semaphores

3 More about Lab1

4 The Monitor concept

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 20 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Objects with mutual exclusion

Mutual exclusion as part of interface

In-line use of semaphores for mutual exclusion

Disadvantage: take/give tends to get spread out through the entire
program (learned from exercise 1).

Abstract data-types for mutual exclusion

Principle: take/give part of (mutually exclusive) methods that are
kept together with the hidden data.

Monitor: Such a data-type with mutually exclusive access-functions is
called a Monitor.

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 21 / 22

More about mutual exclusion More about semaphores More about Lab1 The Monitor concept

Objects with mutual exclusion

Monitors (objects & concept)

I In OOP we use classes as a
(more powerful) mean to
accomplish abstract data-types.

I Objects with such mutually
exclusive methods are then
monitor objects.

For a class like Account:

class Account {

// ...

void deposit(int a){

mutex.take ();

balance += a;

mutex.give ();

}

}

the monitor concept is implemented by
using semaphores.

http://cs.lth.se/EDA040 F3: More on concurrency and semaphores. 2016-09-13 22 / 22

	More about mutual exclusion
	More about semaphores
	More about Lab1
	The Monitor concept

