
http://cs.LTH.se/EDA040

Real-Time and Concurrent Programming

Lecture 2 (F2):

Threads

Klas Nilsson

2016-08-30

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 1 / 1

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 2 / 1

From Lecture 1: Threads are active entities within a program. Now: How do they run?

Execution states and semaphores

A Thread is concurrently executing within a program, being blocked most of the time

Scheduling states

I Running

I Ready

I Blocked

Required for first lab:

I You have to use Semaphores appropriately in your code
such that is gets concurrently correct!

I Proper blocking (only Ready/Running when needed).

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 3 / 1

Java threads

A Thread

class MyActivity extends Thread {

public MyActivity(Object argument) {

// Init here , done before start.

}

public void run() {

while (true) {

// The work done after start.

}

}

}

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 4 / 1

Java threads

Class Thread

public class Thread implements Runnable {

static int MAX_PRIORITY; // Highest possible priority.

static int MIN_PRIORITY; // Lowest possible priority.

static int NORM_PRIORITY; // Default priority.

Thread (); // Use run in subclass.

Thread(Runnable target); // Use the run of ’target ’.

void start (); // Create thread that calls run.

void run() {}; // Work defined in subclass.

static Thread currentThread (); // Get executing thread.

void setPriority(int pri); // Change the priority to ’pri ’.

int getPriority (); // Return priority of thread.

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 5 / 1

Java threads

Class Thread – cont.

static void sleep(long t); // Suspend for at least ’t’ ms.

static void yield (); // Reschedule to let others run.

void interrupt (); // Set interrupt request flag.

static boolean interrupted (); // Check&clear intr. flag.

boolean isInterrupted (); // Check flag without clearing.

boolean isAlive (); // True if started but not dead.

void join (); // Waits for this thread to die.

I A Thread object represents a concurrent thread of execution, but it is just an
object; if you call run, there is no concurrency; you code run and call start!

I The thread of execution runs the called methods of any object, and in such a
method (e.g., in passive object; not being a thread) the calling thread can be
obtained via call of static method: Thread caller = Thread.currentThread();

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 6 / 1

Java threads

Runnable

public interface Runnable {

public void run ();

}

Usage: Implement Runnable and pass the object (typically this) to the
Thread constructor, and the thread object will use the provided run

method. The class can then inherit from something else than a Thread,
but still become a thread object.

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 7 / 1

Java threads

Semaphore mutex example

import se.lth.cs.realtime.semaphore .*;

class ThreadTest {

public static void

main(String [] args) {

Thread t1,t2;

Semaphore s;

s = new MutexSem ();

t1 = new MyThread("Thread 1",s);

t1.start ();

t2 = new MyThread("Thread 2",s);

t2.start ();

}

}

class MyThread extends Thread {

String theName;

Semaphore theSem;

public MyThread(

String n, Semaphore sem) {

theName = n;

theSem = sem;

}

public void run() {

theSem.take ();

for(int t=1; t <=100; t++) {

System.out.println(

theName + ":" + t);

for(int y=1;y <=1000000;y++) { }

}

theSem.give ();

}

}

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 8 / 1

Java threads

Semaphore signaling example

import se.lth.cs.realtime.semaphore .*;

class ThreadTest {

public static void main(String [] args) {

Thread t1,t2;

CountingSem s1,s2;

s1 = new CountingSem (1);

s2 = new CountingSem (0);

t1 = new MyThread("One",s1 ,s2);

t1.start ();

t2 = new MyThread("Two",s2 ,s1);

t2.start ();

}

}

class MyThread extends Thread {

String theName;

CountingSem mySem ,hisSem;

public MyThread(String n,

CountingSem s1,

CountingSem s2) {

theName = n;

mySem = s1;

hisSem = s2;

}

public void run() {

for(int t=1;t <=100;t++) {

mySem.take ();

System.out.println(

theName + ":" + t);

hisSem.give ();

for(int y=1;y <=1000000;y++) { }

}

}

}

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 9 / 1

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 10 / 1

http://en.wikipedia.org/wiki/Context_switch

Context switch

A context switch takes place when the system changes running
process/thread.
In a typical preemptive kernel, switching from one thread to another may
look like:

A context switch takes place when the system changes running process/thread.

In a typical preemptive kernel, switching from one thread to another may look like:

• Turn off interrupts.

• Push PC, CPU registers (Ax, Dx, SR) on stack.

• Save stack pointer in process record.

• Get new process record and restore stack pointer from it.

• Pop CPU registers (SR, Ax, Dx) from stack, and pop PC.

• Turn on interrupts.

Hence, each thread has its own stack, allocated at thread creation on the heap.

Save

Switch

Restore

Each thread has its own stack, allocated at thread creation on the heap.

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 11 / 1

http://en.wikipedia.org/wiki/Context_switch

http://en.wikipedia.org/wiki/Preemption_(computing)

Preemption alternatives

The preemption strategy determines when acontext switch can occur.

Nonpreemptive scheduling:
The running thread continues until it voluntarily releases the
CPU (hands over to the scheduler);

- explicitly by calling yield() or
- implicitly via (synchronized) operations that may block.

Preemptive scheduling:
The (HW interrupt driven) scheduler can interrupt the
running process at any time.

Preemption points:
A context switch can only occur at certain points (according
to language, compiler and/or run-time system)

For proper timing, our programs assume preemptive scheduling!
Java as such does not prescribe the preemption model.

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 12 / 1

http://en.wikipedia.org/wiki/Preemption_(computing)

http://en.wikipedia.org/wiki/Thread_(computing)

Execution thread vs. Thread object

I An executing thread is a entity in the run-time system, accessed
implicitly via a Thread object.

I The thread object, before start() has been called, is like any other
object (but start is native; not implemented in Java).

I When myThreadObject.start(); is called, the (native) start
method calls some OS (Win32, Linux, OS-X, etc) routine that creates
the thread of execution (represented by the thread object).

I The start method calls run that defines the work to perform. If you
(not the system) call run, the context of the calling thread is used
and there are no concurrency added!

I After returning from run, the execution thread is dead (isAlive
returning false), but the Thread object remains (but cannot be
restarted).

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 13 / 1

http://en.wikipedia.org/wiki/Thread_(computing)

http://en.wikipedia.org/wiki/Real-time_computing

Concurrent real-time computing and correctness

Correctness

The software must

I perform computations logically
correct in each activity, and

I react on input events
concurrently while giving the
correct output for any
permitted execution order,

I respond timely, meeting all
deadlines!

otherwise the systems may fail
(is not correct).

Generic system

Software
application

Computer

Controlled system

Physical dynamics

User

U s e r i n t e r a c t i o n l o o p

F e e d b a c k c o n t r o l l o o p

For real-time correctness, the software (when run on an appropriate platform/OS)
must ensure that the concurrency-correct result/output is produced on time.

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 14 / 1

http://en.wikipedia.org/wiki/Real-time_computing

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 15 / 1

Lab1: How many threads, and why

Requirements on a solution for Lab 1

Consider: IO (and how is the HW accessed), what is triggering (the need
for) execution, what are the activities (threads; active objects) that are
motivated by the asynchronous interaction with the environment, what
shared data is there (to be put in passive objects with mutual exclusion),
data flow, who is calling whom, and where to put the application logic.

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 16 / 1

Lab1: How many threads, and why

Requirements

Specification:

1. Call showTime (with the current clock time as an argument) once a
second, which will update the display unless the (clock or alarm) time
is being edited.

2. Alarm time and clock time should be possible (concurrently correct)
to set, but the actual editing of the displayed time value is done
outside the application program (in device driver or low-level handler).

3. Check and issue alarm, beeping every second for up to 20 seconds or
until any button is pressed.

4. Optional: Implement program termination.

5. Optional: Make ticking available for external calling.

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 17 / 1

Lab1 (and2): To be fulfilled by your code

Coding practices 1(2)

The code is required to follow practices for concurrent programming:

� Threads have their data protected (or private).

� No added public (or package visible) methods in thread classes.

� Constructors construct, passive objects (not calling start)

� Thread objects are started by calling start.

� Thread.run is public but should never be called (except via start/OS).

� Signaling is done via a Semaphore, or specifically a CountingSem.

� Mutual exclusion is done by means of a MutexSem, which should be
protected within the class(es) for shared data.

� A class for shared data should have no static attributes, and all public
methods should have mutex protection. We may refer to those
methods as operations on shared data.

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 18 / 1

Lab1 (and2): To be fulfilled by your code

Coding practices 2(2)

� All operations on shared data should have an application meaning,
and they may not call other such operations on the same object.
That implies that small getters and setters based on attributed only
should not exist (publicly).

� The software should need practically no CPU time, that is, all threads
being blocked almost all the time. Specifically, busy-wait is forbidden.

� Polling is forbidden, so Thread.sleep is only useful for awaiting an
update of time.

� The number of threads should reflect the required concurrency of the
application.

� A minimum of external classes should be used, to promote execution
in small embedded systems. Specifically, Date and Time classes
should not be used.

http://cs.lth.se/EDA040 F2: Threads 2016-08-30 19 / 1

	Threads programming
	Threads execution
	Threads design

