EDAO40 camera project

Mathias Haage, 2016

Background

- Digital video capturing; local
storage or video output

- Networking and computing
embedded in camera,
programmable

- Computer power as old PC

Digital network cameras connected to an operator for
surveillance and supervision

> Compact, vandal- and dust-resistant design
> HDTV 1080p/3 MP

> Wide viewing angle of 134°

> Digital PTZ and multi-view streaming

> Edge storage

AXIS M3006-V Network Camera /

Fixed mini dome with 3-megapixel wide view and HDTV 1080p

Provides streamed JPEG images over ethernet...

8 ned

Adress: argus-N.student.lth.se where N is 1...10 | p
A=

€& - C | [} cslthse/eda040/project/ =

2 Apps & Bookmarks E RSS: Robotics and 5. 0 free-programming-... @ Valkemmen till ditt f... Running a wekb site i... Egencia # TimeEdit Lunds univ...

Activate Editing

Docs

Project
home page

Important
documents

Software
and docs

Groups
Peer-review

News and Schedule

Material and reading

a5

Labs & Exercises

Download
Camera API
Fake camera
Proxy camera
Real camera
Yersioning
Homepage

FAG

=N

Project

Project

Course project: Networked cameras

2 in thi project description \Still refers to old cameras Axis2 11A.

Mew cameras are named Axis M3006%.

Lecture

« Lecture 9: Project introduction (including introductary material on sockets). Some additional material o

More information and download
See the links to the left.

Suggested schedule (per week)

The project description describes the suggested work plan. Below is a short summary of the contents of the document:

1. Introductory meeting. Starting on design. Starting preparing design document.

2. Make, and document, a high level design showing the required threads for the system and how the threads communicate
with each ather. Document which thread is responsible for triggering the various events in the system (send image,
change between movie and idle, etc). Submitting design document.

3. Make sure that vou have gotten some part of the system running using the fakecamera AFIl. No scheduled
course meeting.

4. Runsome parts of the system against the real Axis cameras using the cameraproxy APl Mo scheduled course meeting.

5. Testrunning your systems on the actual cameras using compiled Java via the LJRET compiler. Full system ready.
Submission of web site containing software and documentation two days after course meeting.

G. Prepare presentation and review another groups system until last course meeting. Final meeting.

Examination

The project description describes the requirements and examination procedure. Below is a short summary of the cantents of

Schedule

vi44

MA 31/10

TH1/1

ON 2/11 TO 3/1 FR 4/11

10

11

12

13

14

15

16

8:00
EDA040

10:00

13:00 13:00
EDA040 EDAO040

15:0! 15:00%15:00
EDAO040 EDA040

17:0

15:00

17:00

Groups

e 4-person teams (really important to keep this number)

* 5 teams per session (= one computer room + one supervisor)
 Sign up during this lecture

* Group A = special group!! (C programming)

Examination

* Hand-ins - during week 2 and 6 you are required to handin some material. You will get an
email that you will reply to in order to hand in. The week 2 handin should be a pdf. The
week 6 handin should be a web link pointin%to a homepage for your project (containing
report, presentation, run instruction, runnable code, and source code). A short
description of what material the report and presentation should contain is available in
the project description document.

* Review - after the final handin you will recieve the link to another groups proie.ct
honglepage. You will run their code and perform a code review looking for realtime
problems.

* Final meeting - you will present your project, this will be followed by the reviewing group
asking questions on your implementation. After all presentations are done, all groups will
show their efforts in a demo session. Any remaining realtime problems (as determined
by the teaching assistant) should be fixed and handed in one week later.

* Important handin dates:
* Wednesday the 9/11 at 10.00 — design as specified in project description
* Tuesday 6/12 at 10.00 — code and presentation as specified in project description

Suggested work schedule

Introductory meeting. Starting on design. Starting preparing design document.

Make, and document, a high level design showing the required threads for the system and
how the threads communicate with each other. Document which thread is responsible for
triggering the various events in the system (send image, change between movie and idle,
etc). Submitting design document.

Make sure that you have gotten some part of the system running using the fakecamera API.
No scheduled course meeting. Email your supervisor and/or schedule a meeting if needed.

Run some parts of the system against the real Axis cameras using the cameraproxy API. No
scheduled course meeting. Email your supervisor and/or schedule a meeting if needed.

Test running your systems on the actual cameras using compiled Java via the LJRT compiler.
Full system ready. Submission of web site containing software and documentation.

Prepare presentation and review another groups system until last course meeting. Final
meeting.

Suggested development tactics

* First development against fakecamera API. Is a software simulation of the
camera. Runs everywhere and is great for testing and most development.

* Then test against proxycamera API. A software library that connects to the
“real” cameras so that your software does not need to be cross-compiled
for the cameras. Great for checking your GUI and network logic.

e Last compile for the camera using the realcamera API. Produces an
executable binary that need to uploaded to the camera. WARNING: places
severe constraints on the Java that can be used (no java.util, no generics,
1.4 compliant only, ...)

* A good tactic is to cycle through the above points several times during the
developments, adding some functionality each time. Try NOT to follow the
waterfall development model.

Project

 What should be done?

* Each group will write a viewer and a camera software according to
specification while adhering to proper concurrency practices.

* Proper concurrency:
* No race conditions

No data corruption (a common mistake is to protect references to an array
but not the array itself, i.e. screen flickers...)

No deadlocks
Multi-threaded design according to the course
Thread synchronization according to the course (monitors suggested)

Resources

* Two new resources to be used in the project; GUI and network

* Look at example code on project homepage for how to use each

i) Ny L' S LY L% S e

€& - C | [} cslthse/eda040/project/fag/ iy

2 Apps & Bookmarks E RSS: Robotics and 5. o free-programming-... @ Valkommen till ditt f.. ° Running a web site i... Egencia # TimeEdit Lunds univ...

FACULTY OF ENGINEERING, LTH

About | Education | Research | News | Events | Contact | Imternal Search Ith s SEARCH

EDADAD - Concurrent Programming = Project = FAQ

About this course

News and Schedule F AQ

Material and reading

Swing is not thread-safe

es When programming the user interface itis necessary to know that Swing is not thread-safe. Special care is needed to use
Swing in multi-threaded applications. Below are a few useful links on the topic:

Labs & Exercises » General info

IiIII

« Javamex on invokel ater (look also at invokeAndWait)

Project = Swing timers

o Download

o Camera APl

© Fake camera Page Manager: Mathias Haage | 2015-11-02 Log Cut
o Proxy camera

o Real camera

o Versioning

o Homepage

o FAQ

LJRT

Swing

* Some libraries are not safe to use from multiple threads. Examples are
most gui:s, such as Swing.

* One solution is to have a dedicated thread run all calls on the library. Other
threads must then communicate their needs to this thread. Swing has such
a dedicated thread, called EDT (Event Dispatch Thread). It is started
automatically when Swing is used.

* This can be done using delegation, where Runnable objects are passed
between threads.

* Callbacks are often used to respond to events in Swing, such as button
presses.

* Since the EDT thread is running Swing, the EDT thread will be calling the
callbacks. Any lengthy operations and the GUI will become unresponsive.

Code — SwingUtilities

byte[] jpeg = new byte[AxisM3006V.IMAGE_BUFFER_SIZE];
int len = camera.getJPEG(jpeg, 0);
SwingUtilities.invokeAndWait(new Runnable() {
public void run() {
gui.refreshimage(jpeg);

}
1);

SwingUtilities.invokelLater(new Runnable() {
public void run() {
gui.refreshimage(jpeg);

}
1);

X y - L' S 48 L% e -

€ =>» C | [} cslthse/eda040/project/fake-camera/
2 Apps & Bookmarks E RSS: Robotics and 5. o free-programming-... @ Valkommen till ditt f.. ° Running a web site i... Egencia # TimeEdit Lunds univ...

W

Activate Editing

News and Schedule F ake caimniera

Materialandreading The fake camera package simulates the behavior of a real camera using a pre-recorded movie as image source. Images are
read from a set containing 247 images. Mation detection is triggered in the intervall 86-240. This package should be used
Lect for most development to reduce the need for access to physical camera.

[t should be no prablem using this camera on your home computers.

Labs & Exercises Sample program using the fake camera:

import java.awt.BorderlLayout;
PrﬂﬁE{I import java.awt.Image;

o Download import javax.swing.Imagelcon;
- AP import javax.swing.lFrame;
o . . .
amers. import javax.swing.llabel;

o Fake camera import javax.swing.SwingUtilities;

o Proxy camera

import se.lth.cs.edz@dd.fakecamera. AxisM3A06Y
o Realcamera

o Versioning @suppressWarnings ("serial”)
o Homepage public class SimpleViewer extends IFrame implements Runnable {
Imagelcon icon;

o FAC

boolean firstCall = true;

public static wvold main{5tring[] args) {
SimpleViewsr viewer = new SimpleViewsr();
(new Thread(viewer)).start();

public SimpleViewer() {
super();
getContentPane() .setlavout{new BorderLayout()});
icon = new Imagelcon();
Jlabel 1label = new JLabel(icon);

Y L - e I

X y

L A e A A S

€& - C | [} cslthse/eda040/project/proxy-camera/
2 Apps & Bookmarks E RSS: Robotics and 5. o free-programming-... @ Valkommen till ditt f.. ° Running a web site i... Egencia # TimeEdit Lunds univ...

w| =

About this course

News and Schedule

Material and reading

Labs & Exercises

Project

o Download

o Camera AP

o Fake camera
o Proxy camera
o Realcamera

o Versioning

o Homepage
FAC

o

Activate Editing

Proxy camera

The proxy camera consists of two programs. The proxysenver is a program pre-compiled for the Axis M3006% camera that
acts as a senver for streaming images. The AxisM3008Y Java class in the proxycamera package acts as a client to receive
images from the proxyserver.

Tosetup a proxy camera you need to first upload and start the proxyserver program on one of the Axis M3006Y cameras:

. Download proxyserver
. Copy the program to the camera: scp proxysenver ri@argus-M:-/

1
2

3. Login to the camera: ssh r@argus-M

4. Setexecution rights: chmod u+x proxysener
5

. Start the program (on the camera). fproxysenver X000
where Mis 1.8 and XXX is a port number picked by you.

The example Java program below fries to connectto argus-1 on port 5555, It shows captured images and prints detected
mation and time difference between capture time and current time to the console:

import
import
import

import
import
import
import
import

import

@suppresskarnings("serial™)

java.awt.BorderLayout;
java.awt.Image;
java.lang.reflect.InvocationTargetException:

javax.swing.ImageIcon;
javax.swing.IFrame;
javax.swing.JlLabel;
javax.swing.lPanel;
javax.swing.SwingUtilities;

se.lth.cs.eda@dd. proxycamera. AxXisMIBEEY

b Wl 3 L

L' S LY L% L% i S

€& - C | [} cslthse/eda040/project/real-camera/

2 Apps & Bookmarks E RSS: Robotics and 5. o free-programming-... @ Valkommen till ditt f.. ° Running a web site i... Egencia # TimeEdit Lunds univ...

News and Schedule

Material and reading

Lectur

Labs & Exercises

Project

o Download

o Camera AP

o Fake camera
o Proxy camera
o Real camera
o Versioning

o Homepage

o FACQ

LJRT

iI

Real camera

For cross-compiling your program to the real Axis M3006% camera you need a cross-compiling tool chain. Such a chain has

been prepared on the student computers (it is verified on login.student ith.se). It compiles your Java program to C through a
JavazC translator and then cross-compiles the resulting C code into native code far the camera. This code can then be
uploaded and executed.

Instruction for cross-compiling and running the included example

1.

[T I | B

Download build _axism300&v.zip. The zip contains:

+ build_axism300&6v.sh - build script

« Duild_src - source code folder containing:
« segllthics/edaldlirealcamera folder - an implementation of the camera AFI targeting the embedded camera system
« hitp folder - an example program (JFEGHT TP Senver)
+ Nain java-a main program starting up the hitp server

+ Makefile - a file containing configuration data for the compilation

. Unpack the zip and cross-compile the included example program by running the build script: Jbuild_axism300&v.sh

. When the compilation is finished a new folder has been created (build_bin). The compiled executable is located in the

build_bin/build folder. Itis called Main. If an errar has occurred the errar log is available in build_bin/build and is called
build.err.

. Upload the executable to a camera: scp Main rti@argus-Mi~/
. Login to the camera: ssh n@argus-N

. You may need to set execution permission: chmod u+x Main
. Run the executable: /Main

. Werify that the executable is running by opening a web browser and surfing to hitp . // argus-M:6077 (alternatively run the

JPEGHTTPClient and connectto host argus-M and port §077).

Instruction for configuring the contents of the build_src folder to compile your program

1.

-

Copy your source code to the build_src folder. Make sure to keep the package folder structure.

CHAittlhe A=l aFilas | lemdd=stes e BAAIRD BIARAC artecrte mamae srmiir ct=artiiom claces (e sees coarmt=simimnes e mmeaim et e el

w| =

Activate Editing

L

b LY L% L LY b S

€& - C [J cslth.se/eda040/project/download/

i Apps & Bookmarks ﬁ R55: Robotics and 5. O free-programming-... @ Véalkemmen till ditt f.. ° Running a web site i... Egencia {# TimeEdit Lunds univ...

w| =

o FAQ

LJRT

Activate Editing

JPEG HTTP server and client

This sample code illustrates how a very simple web server can be constructed and how network connections can be set up.

[t is written for use together with the se |th.cs.edal40 fakecamera class to supply the images, but can easily be modified for
se in an Axis camera. Just change the import such that the se Ith.cs.edal40.realcamera is used instead. The program will
listen for connections on port 6077. To test a server running on e.q. login.student.Ith.se, direct your web browser to the
address "http:Mogin.student.Ith.se:8077". You can alternatively use the example image viewer which is also available.

« Simple JPEG HTTE server example using fake camera

This sample code illustrates how the swing graphics library can be used to implement a simple user interface capable of
displaying a JPEG image. It also shows how to set up a netwark connection to a server. The image viewer works together
with the simple web server example above to form the client side of a client'server system displaying images sent over a
netwark using the HTTP protocal. Instructions: o
1. Startthe web server according the instructions for the web server. Itwill listen for connections on port 5077.
2. Start the client with the command: java JFEGHTTPClient =server address= 6077

3. Press the "zet image” button to refresh the image.

+« Simple JEEG HTTFE client viewer example

Network code

This sample code illustrates in mare detail how networking with a simple protocol supporting a header and varying size data
can look like. The code contains three examples (named examplex).

Page Manager: Mathias Haage | 2015-11-02 Log Out

LY L% L' L S

€ - C | [J cslth.se/eda040/project/camera-api/
i Apps & Bookmarks ﬁ R55: Robotics and 5. o free-programming-... @ Véalkemmen till ditt f.. ° Running a web site i... Egencia {# TimeEdit Lunds univ...

w =

News and Schedule

Material and reading

Lectur

Labs & Exercises

Project

o Download

o Camera AP

o Fake camera
o Proxy camera
o Realcamera
o “ersioning

o Homepags

o FAC

LJRT

Exams

Activate Editing

Camera API

The camera AF| consists of three packages

o« 52 lth.cs.edal40 fakecamera

s 5e |th.cs.edal40.proxycamera

+« 5 th.csedal40.realcamera

Each package contain one class, AxisM3008Y, which implements the APl shown below. To switch between the different
implementations, simply change the import statement in your code.

public static final int TIME_ARRAY SIFE = §; L
public static final int IMAGE_BUFFER_SIZE = 128 * 1@24;

public static final int IMAGE_WIDTH = &4@;

public static final int IMAGE_HEIGHT = 48@;

J,l'*i-l

#* Initiglize resources used by the camera.
=

public wodid init(};

_I,n'bil-}

* Set the location of & proxy camera.

* @param host is host of proxy camera (argus-N)
@gparam port is port of proxy camera

®f

public void setProxy(5tring host, int port);

_I,n'**}
* Connect to the camera.
*

API in short — AxisM3006V class

public static final int TIME_ARRAY_SIZE
public static final int IMAGE_BUFFER_SIZE
public static final int IMAGE_WIDTH
public static final int IMAGE_HEIGHT

public void init();

public void setProxy(String host, int port);
public boolean connect();

public int getJPEG(byte[] target, int offset);
public boolean motionDetected();

public void getTime(byte[] target, int offset);
public void close();

public void destroy();

Code —simple viewer

public class SimpleViewer extends JFrame implements Runnable {
Imagelcon icon;
public SimpleViewer() {
super();
getContentPane().setLayout(new BorderLayout());
icon = new Imagelcon();
JLabel l[abel = new JLabel(icon);
add(label, BorderLayout.CENTER);
this.pack();
this.setSize(640, 480);
this.setVisible(true);
}
public void run() {}
public void refreshimage(bytel] jpeg) {}

public void run() {
AxisM3006V cam = new AxisM3006V();
cam.init();
cam.connect();
for (int i=0; i<100; i++) {
byte[] jpeg = new byte[AxisM3006V.IMAGE_BUFFER_SIZE];
cam.getJPEG(jpeg, 0);
SwingUtilities.invokeLater(new Runnable() {
public void run() {
refreshimage(jpeg);

1)
}

cam.close();
cam.destroy();

public void refreshimage(byte[] jpeg) {
Image image = getToolkit().createlmage(jpeg);
getToolkit().preparelmage(image,-1,-1,null);
icon.setlmage(image);
icon.paintlcon(this, this.getGraphics(), 0, 0);

getTime — time definition

byte[] array;

long stime = System.currentTimeMillis();

int index = 0;

array[index++] = (byte) ((stime & 0xffO0000000000000L)>>56);
array[index++] = (byte) ((stime & 0x00ff0O00000000000L)>>48);
array[index++] = (byte) ((stime & 0x0000ff0000000000L)>>40);
array[index++] = (byte) ((stime & 0x000000ffO0000000L)>>32);
array[index++] = (byte) ((stime & 0x00000000ff000000L)>>24);
array[index++] = (byte) ((stime & 0x0000000000ff0O000L)>>16);
array[index++] = (byte) ((stime & 0x000000000000ffO0L)>>8);
array[index++] = (byte) ((stime & 0x00000000000000ffL));

Downloading and starting to program

mathias@ulund HL o I
= SAM x | & Timel x ¥ LU Com x Y [Y] Threz % Y Lu fileac % ¥ LU filead x ¥ LU filead % T LU fileac % ¥ LU filead x ¥ [www x §

€ - C' [} cslthse/eda040/project/download/ w7 =
i*: Apps % Bookmarks E R55: Robotics and 5... 0 free-programming-... @ Valkemmen till ditt f.. ° Running a web site i... Egencia #® TimeEdit Lunds univ...

rate Editing

About | Education | Research | News | Events | Contact | Imternal

EDADR4D - Concurrent Programming = Project = Download

About this course

News and Schedule D Ownlo ad

Material and reading

Eclipse workspace with the camera API jar included

« Zip with Eclipse project for Java 7 (works in Hacke/Panter)

« Zip with Eclipse project for Java 8

1abs & Exercises Installation: create a workspace in Eclipse, choose "file-=import”, pick "generalfexisting projects into warkspace”, select
archive file and browse to your zip, import all projects.

IiIII

Prﬂject Ise this waorkspace as a starting point for your developments. It contains a JPEG HTTF example. It also contains the camera
jar file (with fakecamera, proxycamera, and realcamera packages) of which one is needed to communicate with the
o Download cameras. The startup project uses the fake camera. Try it out. The JPEGHTTFDemo class shows how to start up a system

consisting of two fake cameras and one client.
o Camera AFI

B T j— R —

Working together — GIT in the cloud

& SAM % U & Timel x ¥ LU Com x Y [Y Threz x Y LU fileac % T LU filead X ¥ LU filead % Y LU fileac % ¥ LU filead x ¥ [www. x §

mathias@ulund HL (=] X |

<« C cs.Ith.se/eda040/project/versioning/

i*: Apps % Bookmarks E RS5: Robotics and 5. 0 free-programming-... ¥€) Valkommen till dittf... ' Running a web site i... Egencia #® TimeEdit Lunds univ...

About this course

News and Schedule

Material and reading

Labs & Exercises

Project

Download

Camera AFI

o

o

o Fake camera

o

Proxy camera
o Fealcamera

o Versioning

vl =

Activate Editing

Versioning

Itis typical when developing software in group to use a version management system. We encourage you to use ane in this
project. Below follows some information and links on using git, a commaon open source version management tool. Gitis
installed on all student linux computers in the E-building. You can easily install clients and graphical front-ends on your own
computers, just google (for instance, on windows msysgit or tortoisegit are good).

You probably want a repository shared among the group members. Use forinstance BitBucket.org to create ane. It allows to
create free repositories shared with up to five members. Make sure to create a private repo for the project. Your project start
page contains demanstrations on how to create and use your repository using cammand line git commands. Also, read the

BitBucket 101 for info an how to use the repositary and invite your group members.

The ProGit book by Scott Chacon offers a good infroduction on git usage. Read chapter 1 and 2 to get up to speed with git.
Youtube clip with introduction on git.

For simple development it is best if you agree upan who is warking on which file in the repository. If several people wark on
the same file you will (eventually) need to merge the different file versions together. Git offers functionality to help merging,
but for simple usage itis bestif you try to avoid merging situations.

BitBucket

* You probably want a repository shared among the group members.
Use for instance BitBucket.org to create one. It allows to create free
repositories shared with up to five members. Make sure to create a
private repo for the project.

* GIT commands:
* Create local repository: git clone
* Manage local repository: git status, git add, git commit
* Share local repository: git push
* Download others shared work: git pull

e Rule of thumb: do not edit the same files!

-

Studie- och karrisirvigledning

aaaaaa V- TN S

C [www.student.lth.se/datorsu pport/datormiljoe/personlig-hemsida/

Apps ¥ Bookmarks ﬁ RSS: Robotics and 5... o free-programming-...

Kursanmailan

Datorsupport

¥ Datormiljd
o Windows
= Linux

o Backup och borttappade filer

o

Installerade programvarar
o Persaonlig hemsida
o Regler
» Studentenkat

» Datorsalar och schema

» Konton och ldsenord

» E-post

p Utskrifter, skanning mm

» EQen dator, natverk och
programvaror

p Driftinformation och Forum
o Vanliga fragor / FAQ)

o Andra supportkallor

o Anstilld

p Om Datordriftgruppen DDG

€) Vilkommen till ditt f...

Running a web site i... Egencia {# TimeEdit Lunds univ...

Personlig hemsida

Skapa din hemsida

Alla studenter kan skapa egna hemsidar direkt i sin egen hemkatalog. Det gdr man genom att skapa katalogen imappen)
public_html i sin hemkatalog. | den katalogen skapar man sedan sin hemsida dar startfilen index.html blir tkomligt som:

http:fusers student. lth sefanvindarnamn/
till exempel httpiusers studentith.selay02swT/

Mar du 1&st ovanstaende kan du enkelt komma igang genom att kopiera mappen "public_html" ifran "S:\Support" till din
hemkatalog (H:\). Oppna filen index.htm med tex notepad eller Dreamweaver och jobba darifran.

Observera att alla studenter som fatt Google-apps mailkonto via StiL kan géra egna hemsidor pa sin Google apps-
inloggning. Office 365 har ocksa stéd for att skapa egna hemsidor.

Speciellt for E-huset

Mi som har er hemkatalog pa unixdatorarna i E-huset kan behdva stélla in ritt filskydd s& att webservern kommer 3t er
hemsida. Webservern har ndmligen inga sarskilda rattigheter utan kér som en vanlig anvindare. Normalt ska det bli ratt fran
bdrjan, men har man egna initieringsfiler kan det hdnda att man behdver justera filskyddet. Det som kravs ar att
hemkatalogen och public_html ar exekverbara av alla, samt att alla htmi-filer &r [3sbara av alla. Fdljande kommandon fixar
det:

chmod a+x ~
chmod a+x ~/public_html
chmod -R a+r ~/public_html™*

Det sista kommandot kan behdva upprepas om man lagger till yiterligare filer.

Anvanda hemsidan for att dela ut filer

Man kan anvénda sin personliga hemsida fér att fara dver filer fran sin hemkatalog till sin egen dator hemma eller till vilken
natansluten dator som helst pa jorden.

Network programming — socket

| ServerSocket
PORT
Client .. biockin . Blocking O€rver
connect accept
Read thread Blocking Non-blocking “ Accept / read thread
read write 1L

Blocking

Non-blocking

Socket

Code — create a socket and write (client side)

Socket s = new Socket(" argus-7.student.lth.se", 6667);
s.setTcpNoDelay(true);

InputStream is = s.getlnputStream();

OutputStream os = s.getOutputStream();

byte[] data = new byte[100];

os.write(data, 0, 100);

s.close();

Code — accept a socket and read (server)

ServerSocket ss = new ServerSocket(6667);
Socket s = ss.accept();
s.setTcpNoDelay(true);
InputStream is = s.getlnputStream();
OutputStream os = s.getOutputStream();
byte[] data = new byte[100];
int read = 0;
while (read < 100) {
int n = is.read(data, read, 100-read); // Blocking
if (n ==-1) throw new IOException();
read +=n;
}
os.write(1);
s.close();

Code — header

byte[] buffer; int len;
byte header_hi = (byte)(len / 255);
byte header lo = (byte)(len % 255);
os.write(header_hi);
os.write(header_lo);
os.write(buffer, 0, len);
byte hi = (byte)is.read(); byte lo = (byte)is.read();
int size = (hi & OxFF)*255 + (lo & OxFF);
int read =0;
while (read != size) {
int n = is.read(buffer, read, size-read);
if (n ==-1) throw IOException();
read +=n;

Socket API

Constructors
public Socket(String host, int port)
throws UnknownHostException, IOException;

Get-methods
public InputStream getlnputStream() throws IOException;
public OutputStream getOutputStream() throws IOException;

Settings
public void setTcpNoDelay(boolean on) throws SocketException;

Disconnect
public void close() throws IOException;

ServerSocket AP

Constructors
public ServerSocket(int port) throws IOException;

Wait for connection (blocking)
public Socket accept() throws IOException;

Disconnect server
public void close() throws IOException;

Further

e See network code samples on the project homepage

Specifications, part A: General

 REQ 1 Camera units are referred to as servers since they serve client
applications with video images. After being started, a server should
permit clients to connect and disconnect during operation.

* REQ 2 One camera unit only needs to serve one connected client at a
time.

* REQ 3 The client software should be able to concurrently handle two
camera units. Optionally, more units may be handled but, of course,
with decreased performance.

* REQ 4 The application should be written in 100% pure Java, except for
available hardware interfaces which are accessed via available classes
with methods declared as native.

Specifications, part B: Data content and
transport

 REQ 5 Communication is accomplished via TCP/IP, and optionally UDP/IP
for the images, using sockets in Java.

 REQ 6 Use JPEG for the compressed images sent over the network.
(Supporting classes and guidelines provided via web pages.)

 REQ 7 The default image format of the frame-grabber hardware should be
supported, which means 640 by 480 sized images with 24-bits color depth.
(You only need to support that size also in the client software.)

* REQ 8 To obtain higher frame rate also for the case of a slow or loaded
network, images are to be transferred streamed in JPEG format via sockets
that should remain connected until the operator explicitly disconnects. It
should be possible to reconnect thereafter.

Specifications, part C: Synchronization

 REQ 9 Display delay for each video picture, and if the delay difference between
received images are below a certain value which we denote the synchronization
threshold, say 0.2 s, the images should be shown synchronized. The purpose is
that two cameras that are mounted and displayed side-by-side to visualize a
wider scene, should present a wide and consistent view to the operator, for
instance when a running person passes the two cameras. l.e.:

* Images from the same camera are to be displayed by the client in the same temporal order as
they were captured at the servers.

* Image s’&reams should be displayed with the same relative delay difference as they where
captured.

e Use image time stamp (from capture time), assuming clocks are synchronized. (Optional clock
synch at startup.)

If the difference in image delay between the two cameras is larger than the
synchronization threshold, the system shall enter asynchronous mode and display
the images as soon as they arrive.

Reg 9 — time window + view at fixed later time

DISPLAY

Image with
timestamp

LATER

~0.5s can be adaptive

NOW

Reg 9 — synchronous and asynchronous mode

Synchronous mode Asynchronous mode

View images in time order, View images as quickly as possible,
i.e. show images at fixed time delta after capture disregarding timestamp

Specifications, part D: Motion detection

 REQ 10 Provide two modes of operation: Idle and Movie:
 |dle: Images are transmitted at a low xed constant rate, say one image per 5 seconds.

* Movie: Images should be transmitted at the highest possible rate and with shortest
possible delay, depending on network and display performance.

The hardware supports frame-rates up to the standard (European/PAL) TV frequency of
25 fps (frames per second).

* REQ 11 In case of any motion in the captured images, the server should
inform the client and the system should enter mode Movie, and the user
should be informed clearly about mode and triggering camera.

* REQ 12 Perform motion detection on the server/camera side by using the
available classes (possibly utilizing hardware support or decoding only
some of the pixels in each JPEG square), which work by comparing sums of
pixel color values.

& C' [} cs.lth.se/eda040/project/camera-api/

' Apps ¥ Bookmarks [T] RSS:RoboticsandS... () free-programming-..) Valkommen tili dittf.. ' Running a web site i... Egencia & TimeEdit Lunds univ...

/:l = -~

* Connect to the camera.

Comment

* @return true if connected otherwise false.
&/
public boolean connect();

e Code for motion

* Read @n image from the camera and put it in the array target starting
e . * at index offset. The size of target needs to be at least
detection is already
ava I Ia ble In the * @param target reference to byte array to write image into.

* @param offset offset from the start of the byte array.

camera APl

* @return the length of the image captured, @ if no picture was captured
&/

public int get]PEG(byte[] target, int offset);

JE%
* Return true if motion was detected in the latest image.

\/

public boolean motionDetected();

/:l =
* Copy the capture time of the latest image in the specified target byte array, starting at
* offset. The resolution is milliseconds.

®

* @param target is the byte array to be written into
* @param offset is the array starting position

1 /

public void getTime(byte[] target, int offset);

/%%

* Close the camera connection.

= .‘I

PO T . SRCRSXT]L TR PIRETERS A US

Specifications, part E: Modes and debugging

 REQ 13 By default the system starts up in mode Idle for all cameras. When
Movie is detected for one camera, all other cameras should also enter
mode Movie. This mode remains until the operator decides to enter mode
Idle again.

 REQ 14 In addition to the streamed video, a tiny http server should permit
clients to grab an image using a web browser. There will be an available
implementation of this feature which should be kept for testing purposes.

 REQ 15 It should be possible via the client (either as part of the GUI or as
debug options) to enforce synchronous mode as well as asynchronous
mode. In a similar manner, as when selecting Idle according to item 13, it
should be possible to enforce both Idle and Movie mode. For normal
operation, there should be a choice Auto.

Design

* Analyze the problem including its concurrency and timing properties.
 Where will blocking take place?
* What are the shared resources?
* What data ows can you identify?

* When there are mode changes (e.g., Idle to Movie), where is that best
detected and how is the corresponding state for a pair of cameras
maintained?

e Specify each part in terms of classes, threads, communication, protocols,
etc.

» Should you use a pull protocol (client requests each image) or a push protocol (server
pushes images to the client)?

 How should image synchronization work in presence of possible network delays.

Engineering

 Divide the work into subproblems, one part per person or two parts
for two persons. One way is to split the work in one server and one
client part.

* Pieces of source code could be developed during the design phase,
but before the full implementation work begins, the teacher should
carefully review your design proposal.

* How can your programs be tested locally without networking, but
with threads designed to handle the networking?

* Develop test cases in terms of test stubs and data that support testing
of one part at a time. Experiences from test and integration should be
included in your report.

Common concurrency problems

Protecting byte array in monitor. How NOT to do it
byte[] buffer; boolean hasimage;
public synchronized void put(byte[] image) {
while (haslmage) wait();
buffer = image;
haslmage = true;
notifyAll();
}
public synchronized byte[] get() {
while ('hasimage) wait();
haslmage = false;
notifyAll();
return buffer;

Protecting byte array in monitor. One way of doing it
byte[] buffer; boolean hasimage;
public synchronized void put(byte[] image) {
while (haslmage) wait();
System.arraycopy(image, 0, buffer, 0, image.length);
haslmage = true;
notifyAll();
}
public synchronized void get(byte[] image) {
while ('haslmage) wait();
System.arraycopy(buffer, 0, image, O, image.length);
haslmage = false;
notifyAll();

Common problems

* Opening and closing connection (socket and/or camera) for each captured
|ma§e. Results in slow performance, and probably the native camera
application will crash... Keep connection open.

e Using generics in the server implementation. Will not compile to native
application. Also, using data structures such as linked lists, etc., will be
problematic for the native application. Keep it simple on the server side
and import as little as possible.

* Creating transaction threads in the server to handle each connection. Will
not handle well in the native application...

* Image is flickering when viewed. You are not protecting your byte arrays...

* Camera does not switch immediately from idle to movie mode. Check your
thread periods...

Common problems

e Using multiple sockets for each connection. Logic for tearing down
and setting up the connection will be complicated... Beware!

* De
de
de

ougging multithreaded programs using the default Eclipse
ougger is difficult. A logging class goes a long way towards aiding

pugging of your software. Preferably, the debug output can be

turned off for the release version...

Finally...

Good luck!!]

