
EDA040 camera project
Mathias Haage, 2016



Background

Digital network cameras connected to an operator for 
surveillance and supervision

- Digital video capturing; local
storage or video output

- Networking and computing
embedded in camera, 
programmable

- Computer power as old PC



Provides streamed JPEG images over ethernet…

Adress: argus-N.student.lth.se where N is 1…10



Docs

• Project 
home page

• Important
documents

• Software 
and docs

• Groups

• Peer-review



Schedule



Groups

• 4-person teams (really important to keep this number)

• 5 teams per session (= one computer room + one supervisor)

• Sign up during this lecture

• Group A = special group!! (C programming)



Examination

• Hand-ins - during week 2 and 6 you are required to handin some material. You will get an 
email that you will reply to in order to hand in. The week 2 handin should be a pdf. The 
week 6 handin should be a web link pointing to a homepage for your project (containing 
report, presentation, run instruction, runnable code, and source code). A short 
description of what material the report and presentation should contain is available in 
the project description document.

• Review - after the final handin you will recieve the link to another groups project 
homepage. You will run their code and perform a code review looking for realtime
problems.

• Final meeting - you will present your project, this will be followed by the reviewing group 
asking questions on your implementation. After all presentations are done, all groups will 
show their efforts in a demo session. Any remaining realtime problems (as determined 
by the teaching assistant) should be fixed and handed in one week later.

• Important handin dates:
• Wednesday the 9/11 at 10.00 – design as specified in project description
• Tuesday 6/12 at 10.00 – code and presentation as specified in project description



Suggested work schedule

• Introductory meeting. Starting on design. Starting preparing design document.

• Make, and document, a high level design showing the required threads for the system and 
how the threads communicate with each other. Document which thread is responsible for 
triggering the various events in the system (send image, change between movie and idle, 
etc). Submitting design document.

• Make sure that you have gotten some part of the system running using the fakecamera API. 
No scheduled course meeting. Email your supervisor and/or schedule a meeting if needed.

• Run some parts of the system against the real Axis cameras using the cameraproxy API. No 
scheduled course meeting. Email your supervisor and/or schedule a meeting if needed.

• Test running your systems on the actual cameras using compiled Java via the LJRT compiler. 
Full system ready. Submission of web site containing software and documentation.

• Prepare presentation and review another groups system until last course meeting. Final 
meeting.



Suggested development tactics

• First development against fakecamera API. Is a software simulation of the 
camera. Runs everywhere and is great for testing and most development.

• Then test against proxycamera API. A software library that connects to the 
”real” cameras so that your software does not need to be cross-compiled
for the cameras. Great for checking your GUI and network logic.

• Last compile for the camera using the realcamera API. Produces an 
executable binary that need to uploaded to the camera. WARNING: places
severe constraints on the Java that can be used (no java.util, no generics, 
1.4 compliant only, …)

• A good tactic is to cycle through the above points several times during the 
developments, adding some functionality each time. Try NOT to follow the 
waterfall development model.



Project

• What should be done?
• Each group will write a viewer and a camera software according to 

specification while adhering to proper concurrency practices.

• Proper concurrency:
• No race conditions
• No data corruption (a common mistake is to protect references to an array

but not the array itself, i.e. screen flickers…)
• No deadlocks
• Multi-threaded design according to the course
• Thread synchronization according to the course (monitors suggested)



Resources

• Two new resources to be used in the project; GUI and network

• Look at example code on project homepage for how to use each





Swing

• Some libraries are not safe to use from multiple threads. Examples are 
most gui:s, such as Swing.

• One solution is to have a dedicated thread run all calls on the library. Other 
threads must then communicate their needs to this thread. Swing has such 
a dedicated thread, called EDT (Event Dispatch Thread). It is started 
automatically when Swing is used.

• This can be done using delegation, where Runnable objects are passed 
between threads.

• Callbacks are often used to respond to events in Swing, such as button
presses.

• Since the EDT thread is running Swing, the EDT thread will be calling the 
callbacks. Any lengthy operations and the GUI will become unresponsive.



Code – SwingUtilities

byte[] jpeg = new byte[AxisM3006V.IMAGE_BUFFER_SIZE];
int len = camera.getJPEG(jpeg, 0);
SwingUtilities.invokeAndWait(new Runnable() {

public void run() {
gui.refreshImage(jpeg);

}
});
SwingUtilities.invokeLater(new Runnable() {

public void run() {
gui.refreshImage(jpeg);

}
});













API in short – AxisM3006V class

public static final int TIME_ARRAY_SIZE
public static final int IMAGE_BUFFER_SIZE
public static final int IMAGE_WIDTH
public static final int IMAGE_HEIGHT

public void init();
public void setProxy(String host, int port);
public boolean connect();
public int getJPEG(byte[] target, int offset);
public boolean motionDetected();
public void getTime(byte[] target, int offset);
public void close();
public void destroy();



Code – simple viewer

public class SimpleViewer extends JFrame implements Runnable {
ImageIcon icon;
public SimpleViewer() {

super();
getContentPane().setLayout(new BorderLayout());
icon = new ImageIcon();
JLabel label = new JLabel(icon);
add(label, BorderLayout.CENTER);
this.pack();
this.setSize(640, 480);
this.setVisible(true);

}
public void run() {}
public void refreshImage(byte[] jpeg) {}

}



public void run() {
AxisM3006V cam = new AxisM3006V();
cam.init();
cam.connect();
for (int i=0; i<100; i++) {

byte[] jpeg = new byte[AxisM3006V.IMAGE_BUFFER_SIZE];
cam.getJPEG(jpeg, 0);
SwingUtilities.invokeLater(new Runnable() {

public void run() {
refreshImage(jpeg);

} });
}
cam.close();
cam.destroy();

}



public void refreshImage(byte[] jpeg) {
Image image = getToolkit().createImage(jpeg);
getToolkit().prepareImage(image,-1,-1,null);
icon.setImage(image);
icon.paintIcon(this, this.getGraphics(), 0, 0);

}



getTime – time definition

byte[] array;
long stime = System.currentTimeMillis();
int index = 0;
array[index++] = (byte) ((stime & 0xff00000000000000L)>>56);
array[index++] = (byte) ((stime & 0x00ff000000000000L)>>48);
array[index++] = (byte) ((stime & 0x0000ff0000000000L)>>40);
array[index++] = (byte) ((stime & 0x000000ff00000000L)>>32);
array[index++] = (byte) ((stime & 0x00000000ff000000L)>>24);
array[index++] = (byte) ((stime & 0x0000000000ff0000L)>>16);
array[index++] = (byte) ((stime & 0x000000000000ff00L)>>8);
array[index++] = (byte) ((stime & 0x00000000000000ffL));



Downloading and starting to program



Working together – GIT in the cloud



BitBucket

• You probably want a repository shared among the group members. 
Use for instance BitBucket.org to create one. It allows to create free 
repositories shared with up to five members. Make sure to create a 
private repo for the project.

• GIT commands:
• Create local repository: git clone

• Manage local repository: git status, git add, git commit

• Share local repository: git push

• Download others shared work: git pull

• Rule of thumb: do not edit the same files!





Network programming – socket

ServerClient

Blocking
read

Non-blocking
write

Non-blocking
write

Blocking
read

Non-blocking
connect

Blocking
accept

Read thread

Write thread

Accept / read thread

Write thread

ServerSocket
PORT

Socket



Code – create a socket and write (client side)

Socket s = new Socket(" argus-7.student.lth.se", 6667);
s.setTcpNoDelay(true);
InputStream is = s.getInputStream();
OutputStream os = s.getOutputStream();
byte[] data = new byte[100];
os.write(data, 0, 100);
s.close();



Code – accept a socket and read (server)
ServerSocket ss = new ServerSocket(6667);
Socket s = ss.accept();
s.setTcpNoDelay(true);
InputStream is = s.getInputStream();
OutputStream os = s.getOutputStream();
byte[] data = new byte[100];
int read = 0;
while (read < 100) {

int n = is.read(data, read, 100-read); // Blocking
if (n == -1) throw new IOException();
read += n;

}
os.write(1);
s.close();



Code – header
byte[] buffer; int len;
byte header_hi = (byte)(len / 255);
byte header_lo = (byte)(len % 255);
os.write(header_hi);
os.write(header_lo);
os.write(buffer, 0, len);
byte hi = (byte)is.read(); byte lo = (byte)is.read();
int size = (hi & 0xFF)*255 + (lo & 0xFF);
int read = 0;
while (read != size) {

int n = is.read(buffer, read, size-read);
if (n == -1) throw IOException();
read += n;

}



Socket API
Constructors
public Socket(String host, int port)

throws UnknownHostException, IOException;

Get-methods 
public InputStream getInputStream() throws IOException;
public OutputStream getOutputStream() throws IOException;

Settings
public void setTcpNoDelay(boolean on) throws SocketException; 

Disconnect
public void close() throws IOException;



ServerSocket API

Constructors
public ServerSocket(int port) throws IOException;

Wait for connection (blocking)
public Socket accept() throws IOException;

Disconnect server
public void close() throws IOException;



Further

• See network code samples on the project homepage



Specifications, part A: General

• REQ 1 Camera units are referred to as servers since they serve client 
applications with video images. After being started, a server should 
permit clients to connect and disconnect during operation.

• REQ 2 One camera unit only needs to serve one connected client at a 
time.

• REQ 3 The client software should be able to concurrently handle two 
camera units. Optionally, more units may be handled but, of course, 
with decreased performance.

• REQ 4 The application should be written in 100% pure Java, except for 
available hardware interfaces which are accessed via available classes 
with methods declared as native.



Specifications, part B: Data content and 
transport
• REQ 5 Communication is accomplished via TCP/IP, and optionally UDP/IP 

for the images, using sockets in Java.

• REQ 6 Use JPEG for the compressed images sent over the network. 
(Supporting classes and guidelines provided via web pages.)

• REQ 7 The default image format of the frame-grabber hardware should be 
supported, which means 640 by 480 sized images with 24-bits color depth. 
(You only need to support that size also in the client software.)

• REQ 8 To obtain higher frame rate also for the case of a slow or loaded 
network, images are to be transferred streamed in JPEG format via sockets 
that should remain connected until the operator explicitly disconnects. It 
should be possible to reconnect thereafter.



Specifications, part C: Synchronization

• REQ 9 Display delay for each video picture, and if the delay difference between 
received images are below a certain value which we denote the synchronization 
threshold, say 0.2 s, the images should be shown synchronized. The purpose is 
that two cameras that are mounted and displayed side-by-side to visualize a 
wider scene, should present a wide and consistent view to the operator, for 
instance when a running person passes the two cameras. I.e.:
• Images from the same camera are to be displayed by the client in the same temporal order as 

they were captured at the servers.
• Image streams should be displayed with the same relative delay difference as they where 

captured.
• Use image time stamp (from capture time), assuming clocks are synchronized. (Optional clock 

synch at startup.)

If the difference in image delay between the two cameras is larger than the 
synchronization threshold, the system shall enter asynchronous mode and display 
the images as soon as they arrive.



Req 9 – time window + view at fixed later time

Camera 1

Camera 2

DISPLAY

~0.5s can be adaptive

Time window

~0.2s

NOWLATER

Image with
timestamp



Req 9 – synchronous and asynchronous mode

Synchronous mode Asynchronous mode

View images in time order,
i.e. show images at fixed time delta after capture

View images as quickly as possible,
disregarding timestamp



Specifications, part D: Motion detection

• REQ 10 Provide two modes of operation: Idle and Movie:
• Idle: Images are transmitted at a low xed constant rate, say one image per 5 seconds.
• Movie: Images should be transmitted at the highest possible rate and with shortest 

possible delay, depending on network and display performance.
The hardware supports frame-rates up to the standard (European/PAL) TV frequency of 
25 fps (frames per second).

• REQ 11 In case of any motion in the captured images, the server should 
inform the client and the system should enter mode Movie, and the user 
should be informed clearly about mode and triggering camera.

• REQ 12 Perform motion detection on the server/camera side by using the 
available classes (possibly utilizing hardware support or decoding only 
some of the pixels in each JPEG square), which work by comparing sums of 
pixel color values.



Comment

• Code for motion 
detection is already
available in the 
camera API



Specifications, part E: Modes and debugging

• REQ 13 By default the system starts up in mode Idle for all cameras. When 
Movie is detected for one camera, all other cameras should also enter 
mode Movie. This mode remains until the operator decides to enter mode 
Idle again.

• REQ 14 In addition to the streamed video, a tiny http server should permit 
clients to grab an image using a web browser. There will be an available 
implementation of this feature which should be kept for testing purposes.

• REQ 15 It should be possible via the client (either as part of the GUI or as 
debug options) to enforce synchronous mode as well as asynchronous 
mode. In a similar manner, as when selecting Idle according to item 13, it 
should be possible to enforce both Idle and Movie mode. For normal 
operation, there should be a choice Auto.



Design

• Analyze the problem including its concurrency and timing properties.
• Where will blocking take place?
• What are the shared resources?
• What data ows can you identify?

• When there are mode changes (e.g., Idle to Movie), where is that best 
detected and how is the corresponding state for a pair of cameras
maintained?

• Specify each part in terms of classes, threads, communication, protocols, 
etc.
• Should you use a pull protocol (client requests each image) or a push protocol (server 

pushes images to the client)?
• How should image synchronization work in presence of possible network delays.



Engineering

• Divide the work into subproblems, one part per person or two parts 
for two persons. One way is to split the work in one server and one
client part.

• Pieces of source code could be developed during the design phase, 
but before the full implementation work begins, the teacher should 
carefully review your design proposal.

• How can your programs be tested locally without networking, but 
with threads designed to handle the networking?

• Develop test cases in terms of test stubs and data that support testing 
of one part at a time. Experiences from test and integration should be 
included in your report.



Common concurrency problems
Protecting byte array in monitor. How NOT to do it
byte[] buffer; boolean hasImage;
public synchronized void put(byte[] image) {

while (hasImage) wait();
buffer = image;
hasImage = true;
notifyAll();

}
public synchronized byte[] get() {

while (!hasImage) wait();
hasImage = false;
notifyAll();
return buffer;

}



Protecting byte array in monitor. One way of doing it
byte[] buffer; boolean hasImage;
public synchronized void put(byte[] image) {

while (hasImage) wait();
System.arraycopy(image, 0, buffer, 0, image.length);
hasImage = true;
notifyAll();

}
public synchronized void get(byte[] image) {
while (!hasImage) wait();

System.arraycopy(buffer, 0, image, 0, image.length);
hasImage = false;
notifyAll();

}



Common problems

• Opening and closing connection (socket and/or camera) for each captured 
image. Results in slow performance, and probably the native camera 
application will crash... Keep connection open.

• Using generics in the server implementation. Will not compile to native 
application. Also, using data structures such as linked lists, etc., will be 
problematic for the native application. Keep it simple on the server side 
and import as little as possible.

• Creating transaction threads in the server to handle each connection. Will 
not handle well in the native application...

• Image is flickering when viewed. You are not protecting your byte arrays...
• Camera does not switch immediately from idle to movie mode. Check your

thread periods...



Common problems

• Using multiple sockets for each connection. Logic for tearing down 
and setting up the connection will be complicated... Beware!

• Debugging multithreaded programs using the default Eclipse 
debugger is difficult. A logging class goes a long way towards aiding 
debugging of your software. Preferably, the debug output can be 
turned off for the release version...



Finally…

Good luck!!!


