
LUNDS TEKNISKA HÖGSKOLA
Datavetenskap

Exercise session 6 – Deadlock and scheduling : Solutions

1 Scheduling

a) The CPU-load due to the threads A, B, and C is 1/4+2/5+1/8 = 31/40 = 0.775 = 77.5%. This is
above the general limit of 0.69 which ensures that the system can be scheduled. It is, however,
below the specific limit of 0.78 for three periodic threads. Therefore, we know that these
threads will all meet their deadline (which is equal to the period). To determine the actual
response times, we need a more accurate analysis (the same analysis as we would need to tell
if deadlines are met in the case of a CPU-load between 78% and 100%). Drawing the schedule
(also for exercise b and c) gives:

When making such a schedule, we utilize that the worst case is when all threads are
released at the same time. Here we use rate-monotonic scheduling (RMS) which means that
shortest T runs first and so on. An actual schedule (see top three lines in the scheduling figure)
then shows (as we already know) that the system is schedulable., and the worst-case response
time R will be A: 1, B: 3, C: 4.

b) As the ABCD-part of the sheduling figure shows, the system is schedulable even with the
thread D which gets the response time 14 time units.

c) The system ABCE is not possible to schedule because E cannot complete until t=13.2 which
is past the deadline. Hence, not schedulable.

A
B
C
D

ABCD

E

ABCE

fail

ok

10

Realtidsprogrammering, övn 6

2 Scheduling with blocking

a) We obtain the following maximum blocking times:
A: max([M1:b+M2:t], [M1:c]) = [M1:b+M2:t] = 1.0+0.5 = 1.5
B: max([M2:t via A,C], [M1:c]) + [M3:y] = 0.5+2.0 = 2.5
C: [M3:y via B,D] = 2.0

Note that D will never be blocked since it does not share any resources with any lower priority
thread. Further note that even if C does not directly share any resources with any lower prior-
ity thread, it can still be delayed by the time of the y operation; assume D has just entered y
and C is preempted by B which will be blocked by D’s call of y. We obtain a nominal maximum
response time by adding the blocking times to the response time according to exercise 2. But
additionally, higher priority threads might be scheduled to run again (possibly several times)
within the nominal response time. Therefore, we iteratively have to add an appropriate
(according the constructed schedule) number of execution time for additional invocations of
higher priority threads. Hence:

T C R0 L R
A 4 1 1 1.5 1+1.5 = 2.5 :-)
B 5 2 3 2.5 3+2.5+n*CA=5.5+1*1 = 6.5 >5 :-(
C 8 1 4 2 CA+CB+CC+2+nA*CA+nB*CB=1+2+1+2+2+2=10 >8 :-(
D 20 2 14 0 14 :-)

Where R0 denotes the response time without blocking, L denotes the worst case blocking time,
and R denotes the worst-case response time we are trying to compute. Note that since the
response time of thread B (in the first iteration) gets longer than the period of thread A, A will
run a second time before B can complete its execution. Also note that when A executes the sec-
ond time, it cannot be blocked by C since B is running, and it does not matter if A should be
blocked by B since that is the thread we analyze. The maximum response time for B is 6.5
which is above the limit 5.0. Thus, we cannot ensure that the deadline is met.

Also C will not meet its deadline; the indirect blocking of 2 and the execution times will
cause A to be invoked twice and B once in addition to their initial cycles. This gives the
response time 10 which is too long.

b) After the rewriting of D and M3, the worst-case blocking time L for B will decrease to
0.5 + 0.5 = 1.0. The response time will then be 3.0+1.0=4.0 which means that B will meet its
deadline. It is, however, quite sensitive since any additional computing time of A or B would
cause A to be run once more before B completes and the response time would be slightly more
than the deadline of 5. So even if the deadline in is met, having no margins means that we are
very sensitive to errors in the estimated execution times. Anyway, B is formally OK, but what
about C which did not meet its deadline either? With M3 rewritten we obtain the maximum
blocking time of 0.5 (M3:yk indirect via B,D). This gives the response time RC =
CA+CB+CC+LC+n*CA+m*CB = 1+2+1+0.5+1*1+1*2 = 7.5 < 8. Since D as the lowest priority
thread will never be blocked waiting for resources, all deadlines are met.

c) To decrease the maximum blocking time for A one could merge the monitors M1 and M2,
either by rewriting them or by using the priority ceiling or immediate inheritance protocols.
That gives the response time 2 exactly. Another alternative is to rewrite M1 and B in such a
way that the blocking time of 1.0 gets smaller. It is not clear from the facts given if that can be
done in this application.

