
!"#$% '()#*%)A H-.%)/!A
$atavetens6ap

Solutions to Exercise session 1

Exercises

!" A sequence of calls to 0ava2s System.out needs to be in critical section" Import the
package se.lth.cs.realtime.semaphore, and within your class you declare the
attribute
Semaphore sysoutLock;

which is instantiated and initiali?ed to one @in the constructor of the class) by one of
the following lines:
sysoutLock = new MutexSem(); // Preferred!
sysoutLock = new CountingSem(1); // Works in simple cases.
(sysoutLock = new CountingSem()).give(); // Dito., less readable.

ThenD on each place where print is calledD the statements must be enclosed by take and
give according to
sysoutLock.take();
System.out.print(someStuff);
System.out.print(moreStuff);
//
System.out.println(finalStuff);
sysoutLock.give();

Of courseD all functions using System.out have to follow this conventionF take and
give using the very same semaphore instance" Using a MutexSemD the run-time sys-
tems can check during give that the same thread first has called take"

I" With some additional lines in the getLine methodD we obtain the following:

 String getLine() {
 avail.take(); // Wait for data available.
 mutex.take();
 String ans = buffData; // Get reference to data.
 buffData = null; // Extra care, not really needed here.
 mutex.give();
 free.give();
 return ans;
 }

The semaphore mutex is actually not needed in this case since the other semaphoresD which
provide underflow and overflow protectionD also provide mutual exclusion" NoteD howeverD
this will not be the case in Exercise N"

O" When using semaphores as in Exercise !D a large program will have many related pairs
of takePgive which can be hard to readD and errors may be very hard to find" Handling
the semaphores locally in each class @without exposing them outside the class) is more
structured" It agrees with the principles of obRect oriented programming and the pro-
gram gets easier to read" We are then also free to use some other type of synchroni?a-
tion without changing the calling code"

RealtidsprogrammeringD Tvn !

Critical section.

N" To provide buffering of up to U lines without blocking the callersD we use an array as a
ring bufferD the semaphore free should be initiali?ed to the si?e of the arrayD and the
methods putLine and getLine need to be changed" The buffer may then look according
to the code below" The producer and the consumer remain unchanged"

V" If one swaps the order of the calls Wfree.take(); mutex.take();X to be
Wmutex.take(); free.take();XD then the producer and the consumer will both wait
for each other" When a program hangs in this wayD we call it a deadlock"

class Buffer {
 Semaphore mutex; // For mutual exclusion blocking.
 Semaphore free; // For buffer full blocking.
 Semaphore avail; // For blocking when no data available.
 final int size=8; // The number of buffered strings.
 String[] buffData; // The actual buffer.
 int nextToPut; // Writers index (init. to zero by Java).
 int nextToGet; // Readers index.

 Buffer() {
 buffData = new String[size];
 mutex = new MutexSem(1);
 free = new CountingSem(size);
 avail = new CountingSem();
 }

 void putLine(String input) {
 free.take(); // Wait for buffer empty.
 mutex.take(); // Wait for exclusive access.
 buffData[nextToPut] = new String(input); // Store copy.
 if (++nextToPut >= size) nextToPut = 0; // Next index.
 mutex.give(); // Allow others to access.
 avail.give(); // Allow others to get line.
 }

 String getLine() {
 avail.take();
 mutex.take();
 String ans = buffData[nextToGet]; // Get ref. to data.
 buffData[nextToGet] = null; // Extra care.
 if (++nextToGet >= size) nextToGet = 0; // Next index.
 mutex.give();
 free.give();
 return ans;
 }
}

NoteD howeverD that it is better to explicitly declare each semaphore using the appropriate type
directly" That isD declare a MutexSem or a CountingSemD and use the Semaphore interface only
when an unknown type of semaphore is passed as an argumentD or similar"
