Noninvasive concurrency
with Java STM

(Guy Korland, Nir Shavit, and Pascal Felber, 2010)

Patrik Persson, Dec. 5, 2013

Previously on
Software Transactional Memory

STM is about opportunistic concurrency control:
try to commit, detect conflicts, retry transaction if needed

Harris & Fraser, 2003: proposed atomic construct for Java

2013: STM is no longer science fiction

« STM support for C++ ingcc 4.7
(seems primitive though)

e Several approaches for Java being investigated, aiming
for modified VM, compiler, or dedicated frameworks

Korland/Shavit/Felber:
Java with annotations

Annotations
checked at load time

On-the-fly modification of
class files when loaded

Create instrumented
(transaction-aware)
versions of classes

Per-method only

@Atomic(retries=64)
public boolean contains(int v) {
Node node = head;
for (int i = level; i >=0;i——) {
Node next = node.forward[i];
while (next.value < v) {
node = next;
next = node.forward[i];

}
node = node.forward|0];
return (node.value == v);

}
7/ .

On-the-fly modifications
to loaded classes

public class SkipList {

e (Getters & setters private int lovel
iINntroduced N

// Synthetic getter
public int level__Getter$ (Context c) {
c.beforeReadAccess(this, level _ADDRESS__);

° Dup“cate methOdS \ return c.onReadAccess(this, level, level__ADD
(traﬂsaCthﬂ-aware, When é{lﬂgﬁztggﬁf IfoZle_tSetteﬁ(int v, Context c) {

Ca”ed frOm @AtOmlc \ c.onWriteAccess(this, v, level _ADDRESS__);
methods) N

On-the-fly modifications,
cont'd

1 public class SkipList {

/).

// Original method instrumented
public boolean contains(int v) {
Throwable throwable = null;
Context context =
ContextDelegator.getInstance();
boolean commit = true;
boolean result;

for (int i =64;1i > 0; ——1i) {
context. init ();
try {
result = contains(v, context);
} catch(TransactionException ex) {
// Must rollback
commit = false;
} catch(Throwable ex) {
throwable = ex;

// Continued in next column...

23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 }

// Try to commit
if (commit) {
if (context.commit()) {
if (throwable == null)
return result;
/ Rethrow application exception
throw (IOException)throwable;

} else {
context. rollback ();
commit = true;

}
} // Retry loop
throw new TransactionException();

}

// Synthetic duplicate method

public boolean contains(int v, Context c) {

Node node = head__Getter$(c);
}

Adding support for
atomic blocks

public int transferAll (Account|| src, Account dst) {
int total = O;
for (Account acc : src) {
atomic {
int amount = acc.balance();
acc.withdraw(amount);
dst.deposit(amount);
total += amount;

}
}

return total;

}

N summary

A (somewhat) realistic system for STM in Java
e Implementation flaky?

Based on annotations & on-the-fly instrumentation of
classes during loading

Annotations are per-method;
atomic blocks supported using separate,
JastAdd-based source-to-source translation tool

You could actually use this for concurrent programs...

@AtomiIc exercise

Example: AtomicAccount
One set of threads deposits, another set withdraws
(the same amounts)
public class AtomicAccount A

If everything works, final balance is O private static long balance = 0;

Your task public static void deposit(long n) {
balance += n;

1. Run it a few times without synchronization. It 1

hopefully doesn’t work.

| | | public static long getBalance() {
2. Make it work using synchronized. return balance:

}

3. Make it work using @Atomic instead
— not synchronized.

4. Measure performance of synchronized vs.
@Atomic. Experiment with the number of
threads. Be prepared to force-terminate your
program.

The code, with instructions for building and running, is available at
http://fileadmin.cs.lth.se/cs/Education/EDA015F/2013/AtomicAccount.java

