
Noninvasive concurrency
with Java STM

(Guy Korland, Nir Shavit, and Pascal Felber, 2010)
!
!
!
!
Patrik Persson, Dec. 5, 2013

Previously on 
Software Transactional Memory
• STM is about opportunistic concurrency control:  

try to commit, detect conflicts, retry transaction if needed

• Harris & Fraser, 2003: proposed atomic construct for Java

• 2013: STM is no longer science fiction

• STM support for C++ in gcc 4.7 
(seems primitive though)

• Several approaches for Java being investigated, aiming
for modified VM, compiler, or dedicated frameworks

Korland/Shavit/Felber: 
Java with annotations

• Annotations 
checked at load time

• On-the-fly modification of
class files when loaded

• Create instrumented
(transaction-aware)
versions of classes

• Per-method only

On-the-fly modifications 
to loaded classes

• Getters & setters
introduced

• Duplicate methods
(transaction-aware, when
called from @Atomic
methods)

On-the-fly modifications,
cont’d

Adding support for 
atomic blocks

In summary
• A (somewhat) realistic system for STM in Java

• Implementation flaky?

• Based on annotations & on-the-fly instrumentation of
classes during loading

• Annotations are per-method;  
atomic blocks supported using separate, 
JastAdd-based source-to-source translation tool

• You could actually use this for concurrent programs…

@Atomic exercise
Example: AtomicAccount 
One set of threads deposits, another set withdraws 
(the same amounts)

If everything works, final balance is 0

Your task"

1. Run it a few times without synchronization. It
hopefully doesn’t work.

2. Make it work using synchronized.

3. Make it work using @Atomic instead  
– not synchronized.

4. Measure performance of synchronized vs.
@Atomic. Experiment with the number of
threads. Be prepared to force-terminate your
program.

public class AtomicAccount {
 private static long balance = 0;
!
 public static void deposit(long n) {
 balance += n;
 }
!
 public static long getBalance() {
 return balance;
 }
!
 …
}

The code, with instructions for building and running, is available at 
http://fileadmin.cs.lth.se/cs/Education/EDA015F/2013/AtomicAccount.java

