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Introduction 

• Fine-grained Synchronization 

• Optimistic Synchronization 

• Lazy Synchronization 

• Non-blocking Synchronization 



Set on top of a Linked list 

public interface Set<T> { 

    boolean add(T x); 

    boolean remove(T x); 

    boolean contains(T x); 

} 



Linked list node 

private class Node { 

 volatile T item; 

 volatile int key; 

 volatile Node next; 

} 
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Sored on key 



Linked list node 
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Concurrent Reasoning 

 

Item A 

Item B 

Item C 

Item 
A 

key next 
Item 

B 
key next 

Item 
C 

key next Head Tail 

Abstract value 

Concrete representation 



Concurrent Reasoning 

• Invariants 

– Properties that hold from creation and onward 

– Always preserved by methods 

• In this case add, remove and contains 
could potentially break invariants 

– Why only these? 

• Private 
– Freedom from interference 

 



Concurrent Reasoning 

contains(T x) 

remove(T x) 

add(T x) 



Concurrent Reasoning 
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Concurrent Reasoning 

• Representation invariant 

– Contract 

– Pre- and Post-conditions that everyone agrees on 

• Concrete representation must make sense for the given 
abstract values 

 

• In this case: 

– Sentinels may not be added or removed 

– Sorted by unique keys 



Concurrent Reasoning 

• Given a concrete representation, which set 
does it represent? 

– Abstraction map 

 

 

 

• In this case: 

– All values reachable from the head 
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• Consistency model 

– Linearizability 

• Single “operation” (atomic, critical section) 

 

 

 

 

– Stricter than sequential consistency 

• Some examples can be found at 

– http://kisalay.com/2011/04/26/linearizability-3/ 
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• Serializable 

– Parallel execution must appear to be executed 
serially 

– May reorganize tasks between threads “out-of-
order” 

• Linearizablity 

– Stricter ordering between method calls on an object 

• Response -> Invocation order must be maintained 

 

• Chapter 3 in the book… 

Concurrent Reasoning 



Concurrent Reasoning 

• Non-blocking properties 

– lock-free (“Some calls finishes after a number of steps”) 

• Non-blocking 

• Allows for concurrent access without corruption 
– Though not without restrictions (read the friendly manual) 

• Even if one thread is suspended, others must be able to 
access uncorrupted data 

• Must retry on failure (unbounded) 

– wait-free (“All calls finishes after a number of steps”) 

• Bounded number of steps 

• Always make progress 



Concurrent Reasoning 
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Exercises 

Blocking Non-Blocking 

All make progress 

Some make 
progress 

Lock-free 

Wait-free 

Deadlock-free 

Starvation-free 

1. Give two examples of scenarios (not the ones from the 
chapter) where you think it would be practical and/or 
performant to use… 
– a) a wait-free method 
– b) a lock-free method 

2. Where it makes sense to do so: 
From the assignments given by the other students this 
lecture – categorize each method implemented to one of 
the four blocking categories. Motivate your conclusions. 
 



Fin 



Concurrent Reasoning 
[BACKUP] 

• Liveness and safety considerations 

– Safety property: “Linearizability” 
• “Linearizability provides the illusion that each operation applied by concurrent 

processes takes effect instantaneously at some point between its invocation and its 
response, implying that the meaning of a concurrent object’s operations can be 
given by pre- and post-conditions.” 

– M. P. Herlihy and J. M. Wing. Linearizability: a correctness 
condition for concurrent objects. TOPLAS, 12:463–492, 1990. 



Concurrent Reasoning 
[BACKUP] 

• Linearizability 

– Wikipedia has a fairly comprehensible explanation 

– http://en.wikipedia.org/wiki/Linearizability 

• Non-blocking properties 

– A good description can be found here: 

– http://www.justsoftwaresolutions.co.uk/threadin
g/non_blocking_lock_free_and_wait_free.html 
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