
Chapter 9.1-9.3
Linked Lists: The Role of Locking

Magnus Andersson

Introduction

• Fine-grained Synchronization

• Optimistic Synchronization

• Lazy Synchronization

• Non-blocking Synchronization

Set on top of a Linked list

public interface Set<T> {

 boolean add(T x);

 boolean remove(T x);

 boolean contains(T x);

}

Linked list node

private class Node {

 volatile T item;

 volatile int key;

 volatile Node next;

}

item key next item key next item key next Head Tail

Sored on key

Linked list node

item key next item key next item key next Head Tail

item key next item key next item key next Head Tail

item key next

Removing

Adding

Concurrent Reasoning

Item A

Item B

Item C

Item
A

key next
Item

B
key next

Item
C

key next Head Tail

Abstract value

Concrete representation

Concurrent Reasoning

• Invariants

– Properties that hold from creation and onward

– Always preserved by methods

• In this case add, remove and contains
could potentially break invariants

– Why only these?

• Private
– Freedom from interference

Concurrent Reasoning

contains(T x)

remove(T x)

add(T x)

Concurrent Reasoning

contains(T x)

remove(T x)

add(T x)

Contract

Concurrent Reasoning

• Representation invariant

– Contract

– Pre- and Post-conditions that everyone agrees on

• Concrete representation must make sense for the given
abstract values

• In this case:

– Sentinels may not be added or removed

– Sorted by unique keys

Concurrent Reasoning

• Given a concrete representation, which set
does it represent?

– Abstraction map

• In this case:

– All values reachable from the head

Item A

Item B

Item C

Item
A

key next
Item

B
key next

Item
C

key next Head Tail

Abstraction map

• Consistency model

– Linearizability

• Single “operation” (atomic, critical section)

– Stricter than sequential consistency

• Some examples can be found at

– http://kisalay.com/2011/04/26/linearizability-3/

Thread, Method call

Concurrent Reasoning

Invocation Response

Linearization
point

http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/

• Serializable

– Parallel execution must appear to be executed
serially

– May reorganize tasks between threads “out-of-
order”

• Linearizablity

– Stricter ordering between method calls on an object

• Response -> Invocation order must be maintained

• Chapter 3 in the book…

Concurrent Reasoning

Concurrent Reasoning

• Non-blocking properties

– lock-free (“Some calls finishes after a number of steps”)

• Non-blocking

• Allows for concurrent access without corruption
– Though not without restrictions (read the friendly manual)

• Even if one thread is suspended, others must be able to
access uncorrupted data

• Must retry on failure (unbounded)

– wait-free (“All calls finishes after a number of steps”)

• Bounded number of steps

• Always make progress

Concurrent Reasoning

Blocking Non-Blocking

All make
progress

Some make
progress

Lock-free

Wait-free

Deadlock-free

Starvation-free

Exercises

Blocking Non-Blocking

All make progress

Some make
progress

Lock-free

Wait-free

Deadlock-free

Starvation-free

1. Give two examples of scenarios (not the ones from the
chapter) where you think it would be practical and/or
performant to use…
– a) a wait-free method
– b) a lock-free method

2. Where it makes sense to do so:
From the assignments given by the other students this
lecture – categorize each method implemented to one of
the four blocking categories. Motivate your conclusions.

Fin

Concurrent Reasoning
[BACKUP]

• Liveness and safety considerations

– Safety property: “Linearizability”
• “Linearizability provides the illusion that each operation applied by concurrent

processes takes effect instantaneously at some point between its invocation and its
response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions.”

– M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. TOPLAS, 12:463–492, 1990.

Concurrent Reasoning
[BACKUP]

• Linearizability

– Wikipedia has a fairly comprehensible explanation

– http://en.wikipedia.org/wiki/Linearizability

• Non-blocking properties

– A good description can be found here:

– http://www.justsoftwaresolutions.co.uk/threadin
g/non_blocking_lock_free_and_wait_free.html

http://en.wikipedia.org/wiki/Linearizability
http://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html
http://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html
http://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html

