Chapter 9.1-9.3
Linked Lists: The Role of Locking

Introduction

Fine-grained Synchronization
Optimistic Synchronization
Lazy Synchronization
Non-blocking Synchronization

Set on top of a Linked list

public interface Set<T> {
boolean add(T x);
boolean remove (T x);

boolean contains (T x);

Linked list node

private class Node ({
volatile T item;
volatile int key;
volatile Node next;

Sored on key

item key next item key next item key next

Linked list node

item key next item | key | next item key next

Removing

item key next

item key next item key next item key next

Adding

Concurrent Reasoning

{ Abstract value J

~—

[Concrete representation

ltem ltem ltem :
Head key next key next key next Tail

Concurrent Reasoning

* |[nvariants
— Properties that hold from creation and onward
— Always preserved by methods

* |In this case add, remove and contains
could potentially break invariants
— Why only these?

* Private

— Freedom from interference

Concurrent Reasoning

add (T x)

contains (T x)

remove (T x)

Concurrent Reasoning

add (T x)

contains (T x)

remove (T x)

Concurrent Reasoning

* Representation invariant
— Contract
— Pre- and Post-conditions that everyone agrees on

* Concrete representation must make sense for the given
abstract values

* |n this case:
— Sentinels may not be added or removed
— Sorted by unique keys

Concurrent Reasoning

* Given a concrete representation, which set
does it represent?

— Abstraction map

* |n this case:
— All values reachable from the head

Concurrent Reasoning

* Consistency model
— Linearizability
 Single “operation” (atomic, critical section)

Linearization
point

Thread, Method call }

— Stricter than sequential consistency

 Some examples can be found at
— http://kisalay.com/2011/04/26/linearizability-3/

http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/
http://kisalay.com/2011/04/26/linearizability-3/

Concurrent Reasoning

* Serializable

— Parallel execution must appear to be executed
serially

— May reorganize tasks between threads “out-of-
order”

* Linearizablity
— Stricter ordering between method calls on an object

e Response -> Invocation order must be maintained

* Chapter 3 in the book...

Concurrent Reasoning

* Non-blocking properties

— lock-free (“Some calls finishes after a number of steps”)
* Non-blocking
* Allows for concurrent access without corruption

— Though not without restrictions (read the friendly manual)

* Even if one thread is suspended, others must be able to
access uncorrupted data

* Must retry on failure (unbounded)

— wait-free (“All calls finishes after a number of steps”)
* Bounded number of steps
* Always make progress

Concurrent Reasoning

Non-Blocking Blocking
alinaie Wait-free Starvation-free
progress

Some make

P Lock-free Deadlock-free

Exercises

1. Give two examples of scenarios (not the ones from the
chapter) where you think it would be practical and/or
performant to use...

— a) a wait-free method
— b) alock-free method
2. Where it makes sense to do so:

From the assignments given by the other students this
lecture — categorize each method implemented to one of
the four blocking categories. Motivate your conclusions.

Non-Blocking Blocking

All make progress Wait-free Starvation-free

Some make
progress

Lock-free Deadlock-free

Tin

Concurrent Reasoning
[BACKUP]

* Liveness and safety considerations
— Safety property: “Linearizability”

e “Linearizability provides the illusion that each operation applied by concurrent
processes takes effect instantaneously at some point between its invocation and its
response, implying that the meaning of a concurrent object’s operations can be
given by pre- and post-conditions.”

— M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. TOPLAS, 12:463-492, 1990.

Concurrent Reasoning
[BACKUP]

* Linearizability
— Wikipedia has a fairly comprehensible explanation
— http://en.wikipedia.org/wiki/Linearizability

* Non-blocking properties
— A good description can be found here:

— http://www.justsoftwaresolutions.co.uk/threadin
g/non blocking lock free and wait free.html

http://en.wikipedia.org/wiki/Linearizability
http://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html
http://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html
http://www.justsoftwaresolutions.co.uk/threading/non_blocking_lock_free_and_wait_free.html

