
Stick a fork in it
An attempt to summarise the Fork-Join framework
through the same titled series of articles by Goetz.

Oh, and another article which mentions almost the same thing, only 4 years later.

!1

Why another framework?

• asynchrony vs. concurrency

• finer-grained parallelism

!2

F-i-n-e-r-g-r-a-i-n-e-d
P-a-r-a-l-l-e-l-i-s-m

• Compute-intensive,

• independent tasks

• A shift in perf. metric: PU utilisation -> user
perception

!3

Divide and conquer

!4

Fork and join

fork fork

fork
fork

fork
fork

joinnio
j

joinnio
jjoinnio

j

!5

Some classes
• ForkJoinTask!

• RecursiveAction!

• RecursiveTask<>!

• compute()!

• ForkJoinPool!

• executor for ForkJoinTask  
set of work thieves

• default constructor adjusts the #threads
according to the #PUs

!6

ParallelArray
• a more declarative way

(of defining operations
on data sets)

• similar to SQL queries

• filtering, application,
mapping, replacement,
summarisation

• transparent
parallelisation

!7

Not included in Java 7. May be in 8

Summary

• Fork-Join framework
• ideal for divide and conquer

• ParallelArray !

• uses fork-join under the hood

• relieves the programmer of parallelisation duties

!8

Exercise

• Implement int BinarySearch(int[] sortedArr, int value)
- returns the first occurrence

• you can use Arrays.sort to sort an integer array filled with random
integers

• Experiment with the “sequential threshold”. How
does it affect the performance?

!9

Double-click to ask a
question

• Double-click to discuss

!10

