
Chapter 8
Applying Thread Pools

Magnus Andersson

Execution policies

• Not all task are suitable for all execution
policies

– Dependent task

– Task exploiting thread confinement

– Response time sensitive tasks

– ThreadLocal tasks

Starvation deadlock

• Simplest example of deadlock:

– Single-threaded executor

– Task A submits a new task B, which A depends on

– Deadlock!

– Easy to extrapolate to a concurrent executor

• Make sure that your pool size is large enough

Sizing the thread pool

• Don’t hard code!

• The black art of thread pool sizing

– Is your program compute intensive?

•

– Does your program use a fair amount of blocking,
I/O, etc?

•

The ThreadPoolExecutor constuctor

public ThreadPoolExecutor(

 int corePoolSize,

 int maximumPoolSize,

 long keepAliveTime,

 TimeUnit unit,

 BlockingQueue<Runnable>

 workQueue,

 ThreadFactory

 threadFactory,

 RejectedExecutionHandler

 handler

) { … }

The ThreadPoolExecutor constuctor

public ThreadPoolExecutor(

 int corePoolSize,

 int maximumPoolSize,

 long keepAliveTime,

 TimeUnit unit,

 BlockingQueue<Runnable>

 workQueue,

 ThreadFactory

 threadFactory,

 RejectedExecutionHandler

 handler

) { … }

of desired threads

Upper bound on # of threads

How long idle threads are kept around

keepAliveTime time unit (?)

The ThreadPoolExecutor constuctor

public ThreadPoolExecutor(

 int corePoolSize,

 int maximumPoolSize,

 long keepAliveTime,

 TimeUnit unit,

 BlockingQueue<Runnable>

 workQueue,

 ThreadFactory

 threadFactory,

 RejectedExecutionHandler

 handler

) { … }

The work queue

Work queue

C
o

res

Threads

Client

The work queue
Unbounded blocking queue

Unbounded blocking queue

C
o

res

Threads

Client

The work queue
Unbounded blocking queue

C
o

res

Threads

Unbounded blocking queue

Client

• Arrival rate > Handling rate

The work queue
Unbounded blocking queue

C
o

res

Threads

Client

Unbounded blocking queue

• ArrayBlockingQueue

• LinkedBlockingQueue

• PriorityBlockingQueue

The work queue
Bounded blocking queue

C
o

res

Threads

Bounded blocking queue

Client

• Direct hand-off to the thread that will handle
the task

The work queue
Synchronous “queue”

Busy threads

Client

Free threads

The ThreadPoolExecutor constuctor

public ThreadPoolExecutor(

 int corePoolSize,

 int maximumPoolSize,

 long keepAliveTime,

 TimeUnit unit,

 BlockingQueue<Runnable>

 workQueue,

 ThreadFactory

 threadFactory,

 RejectedExecutionHandler

 handler

) { … }

Saturation policy
C

o
res

Threads

Bounded blocking queue
Client

What am I
supposed to do

now?

Saturation policy

• Abort
– Throws a RejectedExecutionException

• Discard

– Silently kill submitted task

• Discard-oldest

– Silently kill oldest task

• Caller-runs

– Push work task back to client

• Effectively slows down submission rate since client will be
busy for a while and can’t (shouldn’t) submit new tasks

Blocking execute
The fifth Beatle

• Doesn’t exist

• Blocks caller if the queue is full

• Easily implemented using semaphores

 public void submitTask(final Runnable command) throws InterruptedException {

 semaphore.aquire();

 try {

 exec.execute(new Runnable() {

 public void run() {

 try {

 command.run();

 } finally {

 semaphore.release();

 }

 }

 });

 } catch (RejectedExecutionException e) {

 semaphore.release();

 }

}

The ThreadPoolExecutor constuctor

public ThreadPoolExecutor(

 int corePoolSize,

 int maximumPoolSize,

 long keepAliveTime,

 TimeUnit unit,

 BlockingQueue<Runnable>

 workQueue,

 ThreadFactory

 threadFactory,

 RejectedExecutionHandler

 handler

) { … }

Thread factory

• One method: newThread

• Configure thread pool threads

• Naming, logging, exception handling

public class MyThreadFactory implements ThreadFactory {

 private final String poolName;

 public MyThreadFactory(String poolName) {

 this.poolName = poolName;

 }

 public Thread newThread(Runnable runnable) {

 return new MyAppThread(runnable, poolName);

 }

}

// See MyAppThread listing in book

Post-construction modification

• Possible, but could be dangerous

– Single-threaded executor with increased pool
size?

– Pool size not enough to handle dependent tasks?

• If this is a problem: encapsulate the Executor

Additional ThreadPoolExecutor hooks

• Discriptive names:

– beforeExecute

– afterExecute

– terminated

• Runs at the very end

• Logging, statistics, etc…

• It’s OK to use ThreadLocal between
beforeExecute and afterExecute

Parallelizing algorithms

void processSequentially(List<Element> elements) {

 for (Element e : elements)

 process(e)

}

void processInParallel(Executor exec, List<Elements> elements) {

 for (final Element e : elements) {

 exec.execute(new Runnable() {

 public void run() { process(e); }

 });

 }

}

Parallelizing recursive algorithms

public<T> void sequentialRecursive(List<Node<T>> nodes,

 Collection<T> results)

{

 for (Node<T> n : nodes) {

 results.add(n.compute());

 sequentialRecursive(n.getChildren(), results);

 }

}

public<T> void parallelRecursive(final Executor exec,

 List<Node<T>> nodes, final Collection<T> results)

{

 for (Node<T> n : nodes) {

 exec.execute(new Runnable() {

 public void run() { results.add(n.compute()); }

 });

 parallelRecursive(n.getChildren(), results);

 }

}

Exercise
Ray tracing

Exercise

Primary rays

Image plane

Eye

Scene objects
(only spheres)

Shadow rays

Light source

Pixels

Exercise

• Ray tracing – “embarrassingly parallel”

• Each pixel is its own task
– Setup primary ray

– Test intersection with all scene objects

– Use closest hit as pixel color

– If hit:
• Setup shadow ray

• Test intersection with all scene objects

• Make pixel dark if anything is hit

• All of this is already done

Exercise
• Your task:

1. traceSerial() serially loops over all screen pixels and performs ray tracing.
Create a parallel version in traceParallel() which results in the same output
image. You must configure your own ThreadPoolExecutor using the constructor
(and not the factory), and use it to dispatch your tasks. Tweak it to gain maximum
performance.

You can switch algorithms with the private static final boolean serial
flag at the top of RayTracer.java. No changes to GFX.java should be necessary.

2. Gather statistics using beforeExecute() and afterExecute() on what the
average and the maximum task run times were. Print out the result in terminate().

• Optional:
Separate the shadow rays to separate tasks to be re-inserted in to the work queue. The
maximum thread count and queue size may only be 40 or less each.

Although you’re not likely to see a speedup from this, it is an interesting concurrency
problem to make sure that the output image is still correct (while not starving any
threads to death).

Exercise

• Alternatively:
If you have your own idea of a problem that could be parallelized using thread
pools, you are welcome to do that instead. The same criteria apply – you may not
use the factory-method to create a ThreadPoolExecutor, but must use the
constructor. You must also experiment and tweak the settings to get good overall
performance.

You’ll also need to gather some statistics during the execution. Average and
maximum task running times, for example.

Fin

[BACKUP]
Sizing the thread pool

 = Runtime.getRuntime().availableProcessors()

 = target utilization [0, 1]

 = Wait to compute time ratio

• Example:

– 8 processors targeting 0.5 utilization, with a
profiled wait time of 2 and compute time of 5:

– Threads = 8 * 0.5 * (1 + 2/5) = 5.6

[BACKUP]
Standard ThreadPoolExecutors

• Executor factory:
– newCachedThreadPool

• SynchronousQueue
• corePoolSize = 0. maximumPoolSize = INF. Timeout = 1 min

– newFixedThreadPool
• Unbounded LinkedBlockingQueue
• corePoolSize = maximumPoolSize

– newSingleThreadExecutor
• Unbounded LinkedBlockingQueue
• corePoolSize = maximumPoolSize = 1

– newScheduledThreadExecutor
• DelayQueue
• corePoolSize = maximumPoolSize = 1

[BACKUP]
The ThreadPoolExecutor constuctor

public ThreadPoolExecutor(

 int corePoolSize,

 int maximumPoolSize,

 long keepAliveTime,

 TimeUnit unit,

 BlockingQueue<Runnable> workQueue,

 ThreadFactory threadFactory,

 RejectedExecutionHandler handler)

