
Chapter 7
Cancellation and Shutdown

Alfred Theorin, Ph.D. student
Department of Automatic Control

Lund University

Outline

• Cancellation
• Why and when it is needed
• How it is accomplished

• Abnormal thread termination
• JVM shutdown

Cancellation: Why or When?

• User-requested
• Time-limited task
• Application event
• Error
• Shutdown

Cancellation: How?

• No safe way to just stop a thread
• Cooperative mechanism
• Cancellation policy

• How to request cancellation
• What the task does in response

• Interruption: interrupted status in Thread

Interruption is usually the most sensible
way to implement cancellation.

Interruption

public class Thread {
 // Request interruption, set interrupted status
 public void interrupt() { ... }

 // Get interrupted status
 public boolean isInterrupted() { ... }

 // Clear interrupted status
 public static boolean interrupted() { ... }

 ...
}

Interruption Example

public class MyThread extends Thread {
 public void run() {
 while (!isInterrupted()) {
 doWork();
 }
 }
 ...
}

MyThread t = new MyThread();
...
t.interrupt();

Blocking Operations

public class MyThread extends Thread {
 public void run() {
 while (!isInterrupted()) {
 doWork();
 sleepOneHour();
 }
 }
 ...
}

Not responsive to interruption.
Don't do this.

Interruptable Blocking Operations

Many blocking operations are interruptable.
They terminate prematurely on interruption
by clearing the interrupted status and
throwing an InterruptedException

Interruptable Blocking Operations

public class MyThread extends Thread {
 public void run() {
 while (!isInterrupted()) {
 doWork();
 try {
 sleep(3600000);
 } catch (InterruptedException e) {
 interrupt();
 }
 }
 }
 ...
}

General Purpose Code

General purpose code should never swallow
interruption requests.

public void sleepOneHour() {
 try {
 sleep(3600000);
 } catch (InterruptedException e) {
 }
}

Interruption request is lost. Don't do this.

General Purpose Code

public void sleepOneHour()
 throws InterruptedException {
 sleep(3600000);
}

General purpose code should never swallow
interruption requests.

Non-interruptable Blocking

• synchronized: Cannot be interrupted
• Non-interruptable blocking operations

Non-interruptable Blocking Operations

public class SocketThread extends Thread {
 private Socket socket;
 public SocketThread(Socket socket) {
 this.socket = socket;
 }
 public void run() {
 ...
 try {
 int c = socket.getInputStream().read();
 } catch (IOException e) { }
 ...
 }
}

Not responsive to interruption requests. Don't do this.

Encapsulate Interruption

public class SocketThread extends Thread {
 ...
 public void interrupt() {
 try {
 socket.close();
 } catch (IOException ignored) {
 } finally {
 super.interrupt();
 }
 }
}

Abnormal Thread Termination

public interface UncaughtExceptionHandler {
 void uncaughtException(Thread t, Throwable e);
}

Thread.setDefaultUncaughtExceptionHandler(...);

• Uncaught Exceptions in threads
• Default behavior: Print to System.err

JVM Shutdown

Orderly shutdown
• Last nondaemon thread terminates
• Call to System.exit()
• Ctrl-C
• ...

Abrupt shutdown
• Call to Runtime.halt()
• Killed by OS

Shutdown Hooks

• Executed for orderly shutdowns
• Last chance for cancellation and cleanup
• Registered with

Runtime.addShutdownHook(...)
• Executed concurrently

• Only use one if order matters
• Should be fast

Summary

• Cancellation – Interruption
• Interrupted status
• Blocking operations: Interruptable
• Blocking operations: Non-interruptable
• Encapsulate interruption

• Abnormal thread termination
• JVM shutdown

