Task Execution

A summary of the chapter 5 of Goéetz, Brian, et al. Java Concurrency in Practice.
Addison-Wesley, 2006.

Motivation and Concepts

e Motivation:

— Divide application into discrete units of work (tasks) in order to:
* Simplify program execution
* Facilitate error recovery (transaction boundaries)
* Stimulate setup which promotes work parallelization

* Concepts:

— Task Boundary

— Independent Activity
* NO state, result, or side effects DEPENDANCIES on other tasks.

— Processing capacity

Single vs. Multithreaded

Single Thread

class SingleThreadwebServer {

public static void main(String[] args) throws IOException { °
ServerSocket socket = new ServerSocket (80); Poor Performance
while (true) { * Low Throughput
Socket connection = socket.accept(); .
handleRequest (connection); e Bad RESpOﬂSIVeneSS
} : * GUI EDT exception

L1sTING 6.1. Sequential web server.

Multi Thread

class ThreadPerTaskWebServer {
public static void main(String[] args) throws IOException { e QGreater Responsiveness

ServerSocket socket = new ServerSocket(80); .

while (true) { * Higher Throughput

final Socket connection = socket.accept(); _
Runnable task = new Runnable() { * Thread Safe COde

public void runQ { requirement
handleRequest (connection);

}
};
new Thread(task).start(Q;

L1sTING 6.2. Web server that starts a new thread for each request.

The Dark Side of Multithreading

 Thread Lifecycle Overhead

* Resource Consumption
 Stability

* Point of Diminishing Returns

Performance

Threads

The Executor Framework

<<interface>>

Executor Executors

T

<<interface>>
ExecutorService

4

AbstractExecutorService

Motivation: T
— Abstract thread management from S / \
. . . . ScheduledExecutorService ThreadPoolExecutor ForkJoinPool
application (life cycle, usage, scheduling...) v—
Classes: - /

ScheduledThreadPoolExecutor

Executors: Utility Class/Factory

ExecutorService: Methods to handle life cycle
ScheduledExecutorService: Methods related to scheduling

Thread Pools: Worker threads request a new task from queue,execute,
wait/get next from queue

* Executors class: Factory method to create thread pools:
— Executors.newFixedThreadPool(int nThreads)
— Executors.newCachedThreadPool(ThreadFactory threadFactory)
— Executors.newSingleThreadExecutor()
— Executors.newScheduledThreadPool(int corePoolSize, ThreadFactory threadFactory)

Create customized thread pools (ThreadPoolExecutor,
ScheduledThreadPoolExecutor, ForkloinPool)

24

Executor: Interface with a method “void execute(Runnable command),”

The Executor Framework ...continued

class TaskExecutionWebServer {
private static final int NTHREADS = 100;
private static final Executor exec
= Executors.newFixedThreadPool (NTHREADS) ;

public static void main(String[] args) throws IOException {
ServerSocket socket = new ServerSocket(80);
while (true) {
final Socket connection = socket.accept();
Runnable task = new Runnable() {
public void run() {
handleRequest (connection);
}
};

exec.execute(task);

* Task Execution Policy: “"What , where, when, and how”

* Thread Pools: Reuse threads, avoid create/tear down costs,
eliminate latency..

* ScheduledThreadPoolExecutor: Manages Execution of Deferred and
Periodic Tasks.

* Executor Lifecycle: ExecutorService (also supplies submit method for
Callable and Future objects)

* ExecutorService States: Running, Shutting Down, Terminated

Web Server with Shutdown Support

class LifecyclewebServer {
private final ExecutorService exec = ...;

pubTlic void start() throws IOException {
ServerSocket socket = new ServerSocket (80);
while (!exec.isShutdown()) {

try {
final Socket conn = socket.accept();

exec.execute(new Runnable() {
pubTlic void run() { handleRequest(conn); }
b
} catch (RejectedExecutionException e) {
if (lexec.isShutdown())
log("task submission rejected", e);

}

public void stop() { exec.shutdown(); }

void handleRequest(Socket connection) {
Request req = readRequest(connection);
if (isShutdownRequest (req))
stop(Q);
else
dispatchRequest(req);

Exploitable Parallelism

* Task defined as Runnable
* Task boundary not always obvious!

* Define independent, homogeneous, parallel exploit capable
tasks.

public class SingleThreadRenderer {
void renderPage (CharSequence source) {

renderText(source);

List<ImageData> imageData = new ArraylList<ImageData>();

for (Imagelnfo imagelnfo : scanForImagelnfo(source))
imageData.add(imagelnfo.downloadImage());

for (ImageData data : imageData)
renderImage(data);

}
 Result-bearing tasks: Callable and Future

ExecutionService: Future, Callable

public class FutureRenderer {
private final ExecutorService executor = ...;

void renderPage (CharSequence source) {
final List<Imagelnfo> imagelnfos = scanForImagelnfo(source);
Callable<List<ImageData>> task =
new Callable<List<ImageData>>() {
public List<ImageData> call() {
List<ImageData> result
= new ArraylList<ImageData>();
for (ImageInfo imagelnfo : imagelnfos)
result.add(imageInfo.downloadImage());
return result;

1

Future<List<ImageData>> future = executor.submit(task);
renderText(source);

try {
List<ImageData> imageData = future.get();
for (ImageData data : imageData)

renderImage(data);

} catch (InterruptedException e) {
// Re-assert the thread’s interrupted status
Thread.currentThread() .interrupt();
// We don’t need the result, so cancel the task too
future.cancel (true);

} catch (ExecutionException e) {
throw launderThrowable(e.getCause());

}

CompletionService

Intent: Decouple production of new asynchronous tasks
from the consumption of results by completed tasks.

Motivation: Retain results of Callable tasks as they come

available —

e Option 1: V Future.get(long timeout, TimeUnit unit) throws
InterruptedException, ExecutionException, TimeoutException)

Waits if necessary for at most the given time for the computation to complete,
and then retrieves its result, if available.

e Option 2: Use ComplitionService to decouple. Producers submit tasks for
execution, consumers take completed tasks and process their results in order
they complete.

Example: Manage asynchrous |10 (decouple reads from
actions on reads)

CompletionService Example

public class Renderer {
private final ExecutorService executor;

Renderer(ExecutorService executor) { this.executor = executor; }

void renderPage (CharSequence source) {
final List<Imagelnfo> info = scanForImagelnfo(source);
CompletionService<ImageData> completionService =
new ExecutorCompletionService<ImageData>(executor);
for (final Imagelnfo imagelnfo : info)
completionService.submit(new Callable<ImageData>() {
public ImageData call() {
return imagelnfo.downloadImage();

}
;i
renderText(source);
try {

for (int t = 0, n = info.sizeQQ; t < n; t++) {
Future<ImageData> f = completionService.take(Q);
ImageData imageData = f.get();
renderImage (imageData) ;
}
} catch (InterruptedException e) {
Thread.currentThread() .interrupt();
} catch (ExecutionException e) {
throw launderThrowable(e.getCause());
}

Timed Tasks

* How long should/can be waited on a task to complete?

 What is time budget?

* Use V Future.get(long timeout, TimeUnit unit) throws
InterruptedException, ExecutionException,

TimeoutException)

* Returns when results are done or throws
TimeoutException — act upon the Exception.

Page renderPageWithAd() throws InterruptedException {
long endNanos = System.nanoTime() + TIME_BUDGET,;
Future<Ad> f = exec.submit(new FetchAdTask());
// Render the page while waiting for the ad
Page page = renderPageBody();

Ad ad;

try {
// Only wait for the remaining time budget
Tong timelLeft = endNanos - System.nanoTime();
ad = f.get(timeLeft, NANOSECONDS);

} catch (ExecutionException e) {
ad = DEFAULT_AD;

} catch (TimeoutException e) {
ad = DEFAULT_AD;
f.cancel(true);

}

page.setAd(ad);

return page;

Task boundary: One bid

* Executes the given tasks, returning a list of
Futures holding their status and results when
all complete.

* <T> List<Future<T>>
invokeAll(Collection<? extends
Callable<T>> tasks)

* Executes the given tasks, returning a list of
Futures holding their status and results when
all complete or the timeout expires,
whichever happens first.

* <T> List<Future<T>>

invokeAll(Collection<? extends
Callable<T>> tasks, long timeout,
TimeUnit unit)

1)

2)

Exercises

Describe an execution setup where CompletionService would
be preferred over ExecutorService. Motivate your answer.

Use Executors to implement execution of tasks that list files in
the first level directories under root based on the first letter of
directory name (a-z, A - 7).

Results of the file listings’ process by other set of tasks
responsible for sorting the results of each listing (e.g. all files
under directory whose name starts with letter A) and print out
names of the first and the last file in the sorted list.

The file listing tasks should be processed/sorted upon
completion by its corresponding Future without having to use
Future.done() or timed method on Future.get to check if task has
completed.

