
Building Blocks

Yang Xu

Department of Automatic Control

Building blocks

• Synchronized collections

• Concurrent collections

• Blocking queues and the producer-consumer
pattern

• Blocking and interruptible methods

• Synchronizers

• Building an efficient, scalable result cache

Problems with synchronized
collections

• Common compound actions on collections:
iteration, navigation, conditional operations

• Problem: They may not behave as expect.

• Solution: client-side locking

synchronized (list) {
 doSomething;
}

Iterators and
ConcurrentModificationException

• To iterate a Collection by: explicitly Iterater,
for-each loop syntax

• Problem: Fail-fast →
ConcurrentModificationException

• Solution:

1. Locking: starvation, deadlock, hurting
scalability

2. Clone the collection and iterate the copy
instead

Hidden iterators

• Iteraion is indirectly invoked by:

1. string concatenation

2. hashCode

3. equals

4. the containsAll, removeAll, retainAll

5. the constructors that take the collections as
arguments

ConcurrentHashMap

Hashtable synchronizedMap ConcurrentHashMap

throughput low low high

lock yes yes no

size(), isEmpty() exact count exact count approximation

lock the map yes yes no

scalability good good better

Additional atomic Map operations

• Atomic operations specified by the
ConcurrentMap interface

 public interfance ConcurrentMap<K,V> extends <K,V> {

 V putIfAbsent(K key, V value);

 boolean remove(K key, V value);

 boolean replace(K key, V oldValue, V newValue);

 V replace(K key, V newValue);

}

CopyOnWriteArrayList

• Better concurrency without the need to lock
or copy the collection

• When an immutable object is properly
published, no further synchronization is
required.

• Copy-on-write collections (when iteration is
far more common than modification)

Producer-consumer pattern example:
desktop search

• An agent: scans local drives for documents →
indexes them for later searching

• Code is more readable and reusable

• Better throughput

Serial thread confinement

• The blocking queue implementations contain
internal synchronizaiton.

• Serial thread confinement: safe, visible

• Other methods: the atomic remove of
ConcurrentMap, the compareAndSet of
AtomicReference

Deques and work stealing

• Deque implementations: ArrayDeque and
LinkedBlockingDeque

• Deques lend themselves to work stealing
(more scalable)

• Is well suited to problems in which consumers
are also producers

Blocking and interruptible methods

• Blocking methods: to wait for an event that is
beyond its control before it can proceed

• Interrupt methods: to make an effort to stop
blocking early

• Interruption: boolean property, cooperative
mechanism

• Responses to interruption: propagate the
InterruptedException, restore the interrupt

Latches

• Latches: to ensure that certain activities do
not proceed until other one-time activities
complete.

• Implementation: CountDownLatch

• Common uses for latches:

1. Staring gate: to release all the worker threads
at once

2. Ending gate: to wait for the last thread to
finish

FutureTask

• Three states: waiting to run, running,
completed

• Once FutureTask enters the completed state, it
stays in that state forever.

• Future.get depends on the state of the task

• Represents lengthy computation

• Reasons for ExecutionException: checked
exception thrown by the Callable,
RuntimeException, Error

Semaphores

• Counting semaphores: to control the number
of activities that can access a certain resource
or perform a given action at the same time.

• Implementation:

1. acquire() a permit to fetch a resource from a
pool

2. release() the permit after putting a resource
back in the pool

Barriers

• Barriers: block a group of threads until some
event has occured. All the threads must come
together at a barrier point at the same time.

• Implementation:

1. CyclicBarrier

2. Exchanger

Building an efficient, scalable resulet
cache

• Memoizer1: HashMap, long computation time

• Memoizer2: ConcurrentHashMap, better
concurrent behavior, but safty risk

• Memoizer3: FutureTask, perfect

Exercises

1. What are the characteristics of BlockingQueue,
compared with other general queue?

2. What is the role of semaphore synchronizer?

3. Programming (using any method in this chapter)

The program contains three threads. First, these
threads print out a message, and then sleep a
random time. Finally print out the thread end
message and exit.

