
...
Composing read-Safe Objects

.
Jesper Öqvist

.



..

Object State.

All objects with mutable state are potentially non thread
safe.

To guarrantee thread safety a synchronization policy is
needed. The policy documents how objects are protected
from invalid state transitions.

.. 2



..

Confinement.

A good synchronization policy requires some form of
confinement:

Thread confinement

Instance confinement

With proper confinement we do not need to analyze the
whole program for synchronization problems.

.. 3



..

Instance Confinement.

Instance Confinement (or just confinement) means keep all
state to yourself!

.. 4



..

Instance Confinement.

However, we often want to share state. This can be tricky:

class A {
private final B b = new B();
public B getB() {

return b;
}
...

}

The thread-safetyness of A depends on the implementation
of B.

.. 5



..

Instance Confinement.

Even trickier:

class A {
private final B b1 = new B();
private final B b2 = new B();
public B getB() {

return b1;
}
...

}

Is b1 independent?!

.. 6



..

How to share internal state?

Only publish immutable copies of the internal state

OR: Only return mutable independent state

OR: Be absolutely certain the returned object can be
modified at any time

.. 7



..

Composing Objects.

Say we want to create a new atomic operation using a
thread safe class. This can be done using encapsulation:

public class MyList implements List<T> {
private final List<T> list;
public MyList(List<T> list) {

this.list = list;
}
public synchronized void addIfAbsent(T item) {

if (list.contains(item)) {
list.add(item);

}
}
...

}

.. 8



..

Composing Objects.

All methods of the List interface must be implemented.
This is done simply by delegating to the underlying list
object.
All modifications of the list must be synchronized with the
same lock used for the addIfAbsent operation (intrinsic
lock).

.. 9



..

Conclusion.

Use monitors everywhere.

.. 10



..

Exercises.

Implement your own ConcurrentHashMap using
java.util.HashMap. Document your synchronization
policy.

Optionally: Implement an iterator that allows iterating
the values of your map during concurrent modification.

OR: Find a concurrency error in chapter 4 of Goetz.

.. 11


	Object State
	Confinement
	Instance Confinement
	Instance Confinement
	Instance Confinement
	Instance Confinement
	Composing Objects
	Composing Objects
	Conclusion
	Exercises

