
Advanced concurrent programming in Java
Shared objects

Mehmet Ali Arslan

21.10.13

1



Visibility

To see(m) or not to see(m)...

There is more to synchronization than just atomicity or critical
sessions.
Memory visibility... Updates by one thread to a shared objects state
must be visible to the others.
Without proper synchronization, reordering can mess up the view.

Stale data: out-of-date value

2



Visibility

To see(m) or not to see(m)...

There is more to synchronization than just atomicity or critical
sessions.
Memory visibility... Updates by one thread to a shared objects state
must be visible to the others.
Without proper synchronization, reordering can mess up the view.

Stale data: out-of-date value

2



Visibility

synchronized and visibility

We can use intrinsic locks to ensure correct visibility.

...acts like a barrier.

3



Visibility

synchronized and visibility

We can use intrinsic locks to ensure correct visibility.

...acts like a barrier.

3



Visibility

synchronized and visibility

We can use intrinsic locks to ensure correct visibility.

...acts like a barrier.
3



Visibility

volatile

Weaker form of synch.
To compiler and runtime: ”Do not reorder with other memory ops!”
”...a read of a volatile variable always returns the most recent write
by any thread.”
No locking → lighter than synchronized

Does not guarantee atomicity!

Use only when:
writes don’t depend on the current value or only a single thread
ever updates.
the variable does not participate in invariants with other state vars.
locking is not required for any other reason

4



Visibility

volatile

Weaker form of synch.
To compiler and runtime: ”Do not reorder with other memory ops!”
”...a read of a volatile variable always returns the most recent write
by any thread.”
No locking → lighter than synchronized

Does not guarantee atomicity!

Use only when:
writes don’t depend on the current value or only a single thread
ever updates.
the variable does not participate in invariants with other state vars.
locking is not required for any other reason

4



Publication and escape

Definitions

Making an object available out of its current scope is called publishing
it. Examples of publication:

public

any objects referred to as non-private fields of a published object
an object passed to an alien method i.e. a method whose
behavior is not fully specified by the respective object (includes its
overrideable methods as well).

An object that is published when it shouldn’t have been is escaped.

5



Publication and escape

Definitions

Making an object available out of its current scope is called publishing
it. Examples of publication:

public

any objects referred to as non-private fields of a published object
an object passed to an alien method i.e. a method whose
behavior is not fully specified by the respective object (includes its
overrideable methods as well).

An object that is published when it shouldn’t have been is escaped.

5



Publication and escape

Escape under construction/Safe construction

An object is in a consistent state only after its constructor returns.
Publication before that is hazardous.
Some examples that would lead this reference to escape:

starting a thread in the constructor
calling an overrideable instance method in the constructor that is
neither private nor final

6



Publication and escape

Escape under construction/Safe construction

An object is in a consistent state only after its constructor returns.
Publication before that is hazardous.
Some examples that would lead this reference to escape:

starting a thread in the constructor
calling an overrideable instance method in the constructor that is
neither private nor final

6



Thread confinement

To share or not to share... - No publication

When an object is confined to a thread, safety is guaranteed. Even if
the object itself is not thread-safe. Programmer is responsible to
ensure that the confined objects do not escape from the thread.

Ad-hoc - no language feature is used. Often used for
implementing a single-threaded subsystem.
Stack - confine objects as local variables
ThreadLocal - every thread gets its own value-holding object,
not shared with others.

7



Immutability

No mutable, no cry

State cannot be changed after construction = immutable
Always thread-safe. No worries about publishing.
Two more conditions for an object to be immutable:

all fields are final

properly constructed (no escape under construction)

8



Safe publication

Safe vs. improper publication

A publication is safe when the published object is correctly visible
at publication time - regards initialization of the object.
Both the reference of the object and the object’s state must be
published at the same time.
Even if the object itself is thread-safe, if the reference to it is
published without sufficient synch., this will cause visibility
problems thus, improper publication.
JavaMemory Model guarantees initialization safety for immutables.

9



Safe publication

How to publish a properly constructed object

Properly constructed - no escape in constructor
Some safe publication methods:

Init the reference from a static initializer - safety guaranteed by
JVM
Store a reference into a volatile field or AtomicReference
Store a reference to it in a final field of another properly
constructed object
Store a reference to it in a field that is guarded by a lock

10



Safe publication

Sharing objects safely

Safe publication ensures only the visibility of the as-published state →
synch. is necessary for every access to shared mutable objects.

“Rules of engagement”: when publishing an object, document how it
can be accessed-regarding mutability, synch. methods, etc.

Some common policies for sharing objects:
Thread-confined: no thread interaction for the respective object
Shared read-only: immutable and effectively immutable objects
Shared thread-safe: object itself is responsible
Guarded: can be accessed only with a specific lock held

11



Safe publication

Sharing objects safely

Safe publication ensures only the visibility of the as-published state →
synch. is necessary for every access to shared mutable objects.

“Rules of engagement”: when publishing an object, document how it
can be accessed-regarding mutability, synch. methods, etc.

Some common policies for sharing objects:
Thread-confined: no thread interaction for the respective object
Shared read-only: immutable and effectively immutable objects
Shared thread-safe: object itself is responsible
Guarded: can be accessed only with a specific lock held

11



Safe publication

Exercise 1

12



Safe publication

Exercise 2

13



Safe publication

Thanks for the attention!

14


	Visibility
	Publication and escape
	Thread confinement
	Immutability
	Safe publication

