Advanced concurrent programming in Java
Shared objects

Mehmet Ali Arslan

21.10.13



Visibility

To see(m) or not to see(m)...

There is more to synchronization than just atomicity or critical
sessions.



Visibility

To see(m) or not to see(m)...

There is more to synchronization than just atomicity or critical
sessions.

Memory visibility... Updates by one thread to a shared objects state
must be visible to the others.

Without proper synchronization, reordering can mess up the view.
@ Stale data: out-of-date value



Visibility

synchronized and visibility

We can use intrinsic locks to ensure correct visibility.



Visibility

synchronized and visibility

We can use intrinsic locks to ensure correct visibility.

Figure 3.1. Visibility Guarantees for Synchronization.
Thread A

Everything

before the

unlock on M... Thread B

unlock M {
'

... Is visible to lock M
everything
after the
lock on M



Visibility

synchronized and visibility

We can use intrinsic locks to ensure correct visibility.

Figure 3.1. Visibility Guarantees for Synchronization.
Thread A

Everything

before the

unlock on M... Thread B

unlock M {
'

... Is visible to lock M
everything
after the
lock on M

...acts like a barrier.



Visibility
volatile

@ Weaker form of synch.
@ To compiler and runtime: "Do not reorder with other memory ops!”

@ "...aread of a volatile variable always returns the most recent write
by any thread.”

@ No locking — lighter than synchronized
@ Does not guarantee atomicity!



Visibility
volatile

@ Weaker form of synch.
@ To compiler and runtime: "Do not reorder with other memory ops!”

@ "...aread of a volatile variable always returns the most recent write
by any thread.”

@ No locking — lighter than synchronized
@ Does not guarantee atomicity!

Use only when:

@ writes don’t depend on the current value or only a single thread
ever updates.

@ the variable does not participate in invariants with other state vars.
@ locking is not required for any other reason



Publication and escape
Definitions

Making an object available out of its current scope is called publishing
it. Examples of publication:

@ public
@ any objects referred to as non-private fields of a published object

@ an object passed to an alien method i.e. a method whose

behavior is not fully specified by the respective object (includes its
overrideable methods as well).



Publication and escape
Definitions

Making an object available out of its current scope is called publishing
it. Examples of publication:

@ public
@ any objects referred to as non-private fields of a published object

@ an object passed to an alien method i.e. a method whose

behavior is not fully specified by the respective object (includes its
overrideable methods as well).

An object that is published when it shouldn’t have been is escaped.



Publication and escape

Escape under construction/Safe construction

An object is in a consistent state only after its constructor returns.
Publication before that is hazardous.



Publication and escape

Escape under construction/Safe construction

An object is in a consistent state only after its constructor returns.
Publication before that is hazardous.
Some examples that would lead this reference to escape:

@ starting a thread in the constructor

@ calling an overrideable instance method in the constructor that is
neither private nor final



Thread confinement

To share or not to share... - No publication

When an object is confined to a thread, safety is guaranteed. Even if
the object itself is not thread-safe. Programmer is responsible to
ensure that the confined objects do not escape from the thread.

@ Ad-hoc - no language feature is used. Often used for
implementing a single-threaded subsystem.

@ Stack - confine objects as local variables

@ ThreadLocal - every thread gets its own value-holding object,
not shared with others.



Immutability
No mutable, no cry

State cannot be changed after construction = immutable
Always thread-safe. No worries about publishing.
Two more conditions for an object to be immutable:

@ all fields are final
@ properly constructed (no escape under construction)



Safe publication
Safe vs. improper publication

@ A publication is safe when the published object is correctly visible
at publication time - regards initialization of the object.

@ Both the reference of the object and the object’s state must be
published at the same time.

@ Even if the object itself is thread-safe, if the reference to it is
published without sufficient synch., this will cause visibility
problems thus, improper publication.

@ JavaMemory Model guarantees initialization safety for immutables.



Safe publication

How to publish a properly constructed object

Properly constructed - no escape in constructor
Some safe publication methods:

@ Init the reference from a static initializer - safety guaranteed by
JVM

@ Store a reference into a volatile field or AtomicReference

@ Store a reference to itin a £inal field of another properly
constructed object

@ Store a reference to it in a field that is guarded by a lock



Safe publication
Sharing objects safely

Safe publication ensures only the visibility of the as-published state —
synch. is necessary for every access to shared mutable objects.

“Rules of engagement”: when publishing an object, document how it
can be accessed-regarding mutability, synch. methods, etc.




Safe publication
Sharing objects safely

Safe publication ensures only the visibility of the as-published state —
synch. is necessary for every access to shared mutable objects.

“Rules of engagement”: when publishing an object, document how it
can be accessed-regarding mutability, synch. methods, etc.

Some common policies for sharing objects:
@ Thread-confined: no thread interaction for the respective object
@ Shared read-only: immutable and effectively immutable objects
@ Shared thread-safe: object itself is responsible
@ Guarded: can be accessed only with a specific lock held



Safe publication

Exercise 1

J/QUESTION 1: Is the class still immutable? If not, why?
F/QUESTION 2: Assuming that we don't want to publish any fields of ThreeStooges,
i is there an escape we should be worried about?
public final class ThreeStooges {
private final Set<String= stooges;

public ThreeStooges() {
stooges = new HashSet<String={);
stooges.add("Moe");
stooges.add("Larry");
stooges.add("Curly")

}

public ThreeStooges(String first, String second, String third, HashSet<String= set){
set.add(first);
set.add(second);
set.add{third);
this.stooges = set;

public boolean isStooge(String name) {
return stooges.contains{name);

}



Safe publication

Exercise 2

S/QUESTION : Is it possible to make this class thread safe
i using the immutable holder class scheme
e used in section 3.4.2 in the book?
public final class HungryThreeStooges {
private final String[] stooges = {"Moe", "Larry", "Curly"}
private int number0fSteaks=10;
private int turn=08;
static HungryThreeStooges instance = new HungryThreeStooges({);
public String feedStooge(){
if (numberOfSteaks<l)
return "Damn stooges ate everything!";
else{
String stooge = stooges[turn ¥ stooges.length];
turn++;
number0fSteaks--;
return stooge;



Safe publication

Thanks for the attention!



	Visibility
	Publication and escape
	Thread confinement
	Immutability
	Safe publication

