
Atomic variables and non-
blocking synchronization

Yang Xu

Outline

• Disadvantages of locking

• Hardware support for concurrency

• Atomic variable classes

• Non-blocking algorithms

Disadvantages of locking

• A lot of overhead

• Especially, under contention

• Delay

• High-priority thread waits for low-priority thread

• …

Conclusion: Locking is a heavyweight mechanism,
but modern processors offer a finer-grained
technique.

Compare and swap

• Locking – pessimistic

• CAS – optimistic

• “I think V should have the value A;

• If it does, put B there,

• Otherwise don’t change it but tell me I was
wrong.”

A non-blocking counter

CAS support in the JVM:

AtomicXXX in java.util.concurrent.atomic

Atomics as “better volatiles”

A pseudorandom number generator

High contention

Moderate contention

A non-blocking stack

• node = a value + a link
to the next node

• push method:
install a new node on
the top of stack
- succeed
- fail -> try again

A non-blocking linked list

• 2 pointers refer to the
tail node:
- the next pointer of the
current last element
- the tail pointer

• Should be updated
atomically

• compareAndSet

• tail.next is null or
non-null

Atomic field updater

• Use a volatile reference

• Weaker than regular atomic class

The ABA problem

• “Is the value of V still A?”
-> “Has the value of V changed since I last
observed it to be A?”

• Solutions:
- let the garbage collector mange link nodes
- a reference -> a reference + a version
number

Summary

Non-blocking algorithms:

• Better scalability and liveness

• Difficult to design and implement

