Explicit Locks

Alma Orucevic-Alagic

2013-11-28



Synchronized

Java incorporates a cross-platform threading model &
memory model intfo language specification.

Thread class
Synchronized & Volatile

Atomicity & Visibility

synchronized (lockObject) {
//update object state

}
So why mess with a good thing?



Synchronized.. continued

Can not Interrupt a Thread while Waiting to Acquire a
Lock

Might Need to Wait Forever to Acquire a Lock

Must Release a Lock within Same Stack Frame where
Acquired

Lock Interface Provides More Extensive Locking
Operations



Package java.util.concurrent.locks

Framework offering greater flexibility for locking and conditions from
built in synchronization and monitors.

Interfaces: Condition, Lock, ReadWriteLock

Classes:

AbstractOwnableSynchronizer
AbstractQueuedLongSynchronizer
AbstractQueuedSynchronizer
LockSupport

ReentrantLock
ReentrantReadWriteLock
ReentrantReadWriteLock.ReadLock
ReentrantReadWriteLock. WriteLock



Lock Interface

Enables Access to Shared Resource by Multiple Threads

Methods:

O void lock(); - Acquires the lock

O void lockinterrupftibly(); - Acquires the lock unless the current
thread is Interrupted.

O Condition newCondition(); - Returns a new Condition that is
bound by this Lock instance.

O boolean fryLock(); - Acquires the lock only if it is free at the time
of invocation.

O boolean fryLock(long time, TimeUnit unit); - Returns true if the
lock was acquired and false if waiting time expired before the
lock wass interrupted.

O void unlock(); - Releases the Lock



Classes Implementing Lock Interface

(1)ReentrantLock, (2)ReentrantReadWriteLock.ReadLock,
(3)ReentrantReadWriteLock.WriteLock

Reentrant Lock
O Same behavior as the implicit monitor lock + some more

O Lock owned by the thread with last successful locking and
before unlocking

class X {
private final ReentrantlLock lock = new ReentrantLock();
/7 ...

public void m() {
lock.lock(); // block until condition holds

try {
// ... method body What happens if an
} finally {

TN o
lock.unlockQ); exception is throwns

}
}
}



Classes Implementing Lock Interface

ReentrantLock... confinued

Supports Fairness Policy — public ReentrantLock(boolean fair)
Supports Interruptible Locks — void lockinterruptibly()
Allows for Condition to be associated with this lock

Provides Additional Methods for:

O Queries:
Number of holds on this lock by the current thread
Whether current thread is waiting to acquire this lock

Whether any threads are waiting for the given condifion
associated with this lock

Whether lock is held by this thread

O Returns a Collection of threads, the number of threads waiting for this
lock (with or without the given Condition)



Classes Implementing Lock Interface

ReentrantLock... confinued

O Factors out the Objects monitor methods (wait, notify, notifyAll)
into distinct objects.

O BoundedBuffer

'class BoundedBuffer { public Object take() throws InterruptedException {
final Lock lock = new ReentrantlLock(); lock.lock();
final Condition notFull = lock.newCondition(); try {

final Condition notEmpty = lock.newCondition(); while (count == 0)

final Object[] items = new Object[100]; notEmpty.await();
int putptr, takeptr, count; Object x = items[takeptr];
if (++takeptr == items.length) takeptr = 9;
public void put(Object x) throws InterruptedException { --count;
1°thl°Ck<>; notFull.signal();
ry ]
while (count == items.length) r?turn X5
notFull.await(); } finally {
items[putptr] = x; lock.unlock();
if (++putptr == items.length) putptr = 9; }
++count; }
notEmpty.signal(); }
} finally {
lock.unlock();
}



Classes Implementing ReadWriteLock Interface

ReenterantReadWriteLock

Supports Multiple Readers, but Only One Writer

Implements ReadWriteLock Interface:
O LockreadlLock()
O Lock writeLock()

Encloses ReadWriteLock.ReadLock &
ReadWriteLock.WriteLock classes that Implement Lock
Interface

Contains Similar Methods as ReentrantLock

Condition Can Only Be Used with the Write Lock

Writer can acquire a read lock, but not vice versa



Deadlock

Transfer money from an account A to an account B

O Using synchronized:

synchronized(fromAccount){ Thread 1: Transfer from A to B
synchronized(toAccount){ '

//Money transfer logic Thread 2: Transfer from B to A

:

}
}
. . while (lexpired){ Expired: currentTime>=stopTime
n USIng |OCked' if (fromAccount.lock.trylLock()){
try {
if(toAccount.lock.trylock()){
try {

//Money transfer logic...
return true;
} finally {
toAccount.lock.unlock();
}

}
}finally {
fromAccount.lock.unlock();

}

if(expired)
return false;
//Sleep a little to reduce chance of live locks

}



Example 2: ReenterantReadWriteLock

Try to Obtain Lock within Given Time Budget:

public boolean updatelLDAPEntry(Account accountInfo, long time)
throws InterruptedException{

if (!lock.trylLock(time, TimeUnit.SECONDS))
return false;

try{
return updatelLDAP(accountInfo);

}

finally{
lock.unlock();
}
}

Interruptible Locks

public boolean updatelLDAPEntry(Account accountInfo)
throws InterruptedException{
lock.lockInterruptibly();
try{
return cancellableUpdatelLDAP(accountInfo);
}

finally{
lock.unlock();
}
}

private boolean cancellableUpdatelLDAP(Account accountInfo)
throws InterruptedException{
//implement cancellable update
return true; //or false



Hand-over-locking

Intrinsic Locks Block Structured
Reducing Lock Granularity can Enhance Scalability

Lock interface Allows for Locks to be Acquired and Released in
Different Scopes & Multiple Locks to be Acquired and Released

)

D

] 1




Performance Considerations

Resources Expended on Lock Management & Scheduling

Java 5.0 (Initial Locks framework released)

Fi 1.Th hput d Lock, I
'gure hroughput for synchr andLock single Figure 2. Tl ghput (normali: for synchronization and Lock, four CPUs

Dual XeonHT (Linux) Single Pro

S
N
—— o
\ o

TTTTTTTTTTTTTT

Java 6 — Intrinsic and Explicit Scale Fairly Equally.

Performance — Moving Target



\
|
|

Fairness

Fair vs. NonFair Locks

Performance cost!

High Load Can Hinder Time of Thread Resuming Time vs.
its Actual Run Time.

Long Wait Times or Mean Time Between Lock Requests.

Dual XeonHT (Linux)

Java 5;:

12

s 08 LN
2 \ —+—SYNC
=

S 06

£ N Lok
=3

s FAIR
£ 04

02




Intrinsic (Synchronized) vs. Explicit

Locks®e

Timed Lock Wait X v
Interruptible Lock Wait X v
Fairness X 4
Non-block structure locking X v
Familiar syntax, used extensively v X
Good idea to mix the two N O

More dangerous X v
Bright Future Awaiting © v X



Far, Far Away,
In the Galaxy of Java 10
the Anticipated Performance of

Intrinsic over Explicit Lock

Will Be:




