
Explicit Locks

 Alma Orucevic-Alagic

 2013-11-28

Synchronized

¤  Java incorporates a cross-platform threading model &
memory model into language specification.

¤  Thread class

¤  Synchronized & Volatile

¤  Atomicity & Visibility

¤  So why mess with a good thing?

Synchronized.. continued

¤  Can not Interrupt a Thread while Waiting to Acquire a
Lock

¤  Might Need to Wait Forever to Acquire a Lock

¤  Must Release a Lock within Same Stack Frame where
Acquired

¤  Lock Interface Provides More Extensive Locking
Operations

Package java.util.concurrent.locks

¤  Framework offering greater flexibility for locking and conditions from
built in synchronization and monitors.

¤  Interfaces: Condition, Lock, ReadWriteLock

¤  Classes:
¤  AbstractOwnableSynchronizer
¤  AbstractQueuedLongSynchronizer
¤  AbstractQueuedSynchronizer
¤  LockSupport
¤  ReentrantLock
¤  ReentrantReadWriteLock
¤  ReentrantReadWriteLock.ReadLock
¤  ReentrantReadWriteLock.WriteLock

Lock Interface

¤  Enables Access to Shared Resource by Multiple Threads

¤  Methods:
¤  void lock(); - Acquires the lock
¤  void lockInterruptibly(); - Acquires the lock unless the current

thread is Interrupted.
¤  Condition newCondition(); - Returns a new Condition that is

bound by this Lock instance.
¤  boolean tryLock(); - Acquires the lock only if it is free at the time

of invocation.
¤  boolean tryLock(long time, TimeUnit unit); - Returns true if the

lock was acquired and false if waiting time expired before the
lock was interrupted.

¤  void unlock(); - Releases the Lock

Classes Implementing Lock Interface

¤  (1)ReentrantLock, (2)ReentrantReadWriteLock.ReadLock,
(3)ReentrantReadWriteLock.WriteLock

¤  Reentrant Lock
¤  Same behavior as the implicit monitor lock + some more

¤  Lock owned by the thread with last successful locking and
before unlocking

What happens if an
exception is thrown?

 Classes Implementing Lock Interface
ReentrantLock… continued

¤  Supports Fairness Policy – public ReentrantLock(boolean fair)

¤  Supports Interruptible Locks – void lockInterruptibly()

¤  Allows for Condition to be associated with this lock

¤  Provides Additional Methods for:
¤  Queries:

¤  Number of holds on this lock by the current thread
¤  Whether current thread is waiting to acquire this lock
¤  Whether any threads are waiting for the given condition

associated with this lock
¤  Whether lock is held by this thread

¤  Returns a Collection of threads, the number of threads waiting for this
lock (with or without the given Condition)

 Classes Implementing Lock Interface
ReentrantLock… continued

¤  Factors out the Objects monitor methods (wait, notify, notifyAll)
into distinct objects.

¤  BoundedBuffer x x x x

 Classes Implementing ReadWriteLock Interface
ReenterantReadWriteLock

¤  Supports Multiple Readers, but Only One Writer

¤  Implements ReadWriteLock Interface:
¤  Lock readLock()
¤  Lock writeLock()

¤  Encloses ReadWriteLock.ReadLock &
ReadWriteLock.WriteLock classes that Implement Lock
Interface

¤  Contains Similar Methods as ReentrantLock

¤  Condition Can Only Be Used with the Write Lock

¤  Writer can acquire a read lock, but not vice versa

Example 1: Avoid Lock Ordering
 Deadlock

¤  Transfer money from an account A to an account B
¤  Using synchronized:

¤  Using locked:

Thread 1: Transfer from A to B
Thread 2: Transfer from B to A

Expired: currentTime>=stopTime

Example 2: ReenterantReadWriteLock

¤  Try to Obtain Lock within Given Time Budget:

¤  Interruptible Locks

Hand-over-locking

¤  Intrinsic Locks Block Structured

¤  Reducing Lock Granularity can Enhance Scalability

¤  Lock interface Allows for Locks to be Acquired and Released in
Different Scopes & Multiple Locks to be Acquired and Released

A DC

B

Performance Considerations

¤  Resources Expended on Lock Management & Scheduling

¤  Java 5.0 (Initial Locks framework released)

¤  Java 6 – Intrinsic and Explicit Scale Fairly Equally.

¤  Performance – Moving Target

Fairness

¤  Fair vs. NonFair Locks

¤  Performance cost!

¤  High Load Can Hinder Time of Thread Resuming Time vs.
its Actual Run Time.

¤  Long Wait Times or Mean Time Between Lock Requests.

¤  Java 5:

Intrinsic (Synchronized) vs. Explicit
Locks?

Feature Intrinsic Explicit

Timed Lock Wait ✗ ✔

Interruptible Lock Wait ✗ ✔

Fairness ✗ ✔

Non-block structure locking ✗ ✔

Familiar syntax, used extensively ✔ ✗

Good idea to mix the two N O

More dangerous ✗ ✔

Bright Future Awaiting J ✔ ✗

Far, Far Away,
In the Galaxy of Java 10

the Anticipated Performance of
Intrinsic over Explicit Lock

Will Be:

According to Brian Goetz et al., Java Concurrency in Practice

