Ch. 10 Avoiding Liveness Hazards

JESPER PEDERSEN NOTANDER

Liveness and Safety

A liveness property,
— something good eventually happens.
— e.Qg. program termination.

A safety property,
— something bad never happens.
— e.g. Inconsistent shared states.

Tension between liveness and safety.
Protection = liveness hazards.

Deadlock

Lock Ordering Deadlock Resource Deadlock

——_-

~
N N N
. B
lock try walt
N N N
lock try wait c

‘—-—"

Lock Ordering Deadlock

doLeftRight () { P doRightLeft () { P
{ » JK (B
(1)< ()<
// do something // do something

+h} +h}

Beware nested synchronized blocks.
Always same order - no deadlocks.

Dynamic Lock Ordering Deadlock

transaction(,I%A {
(N) {

M
(ER){
// do the transaction

Hh}

Order unknown, defined by caller

Solution: Impose an Order

transaction(2, B) { transfer (%, Y) 3\
(#h > #B) | ()\{
transfer(2, B); (-) {
} (< #B) { // perform a safe
transfer (B, 2); // transfer
) ‘ }})
)
()<

transfer(2, B);

+}

Deadlock and Cooperating Objects

//class Human
left
// do something

() A

right() {

manipulate(shared);

°
4

// alien

//class Alien
left() {
manipulate(shared);

; // alien

right() {
// do something

Deadlock and Cooperating Objects

N N N
h
h.right alien.right alien.right
N N N
_________________ |n._______ —— -

Solution: Open Calls

//class Human //class Alien
left() { left() {
// do something (this) {
} manipulate(shared);
}
right() { human.left(); // open
(this) { }
manipulate(shared);
} right() {
alien.right(); // open // do something

Resource Deadlocks

Resource Pools Thread-Starvation Deadlock

Thread

Awa@tsf
result :

ESpaWns
! . | Task Queue | :

3 Task v K

Avoiding and Analyzing Deadlocks

Acquiring one lock at a time - no deadlocks.
— Unfeasible - lock ordering must be in the design.
— Or use explicit locks

java.util.concurrent.locks, tryLock(long timeout)

Deadlocks analysis using thread dumps.
— Triggered when sending SIGQUIT to the JVM.
— Deadlock identification, less support with Lock.

Other Liveness Hazards

Starvation
— Denial of access to resources, e.g. CPU time
— Thread priorities causes starvation

Poor responsiveness

— Not as severe as starvation
— Heavy processes competing for CPU time

Livelock

A thread that cannot progress, due to infinite
retries of an action that always fail.
— Common source of failure, error-recovery code.

Or, multiple cooperating threads change state
in a way that makes no further progress
possible.

— Solution: Introduce some randomness

Summary

Synchronization give rise to liveness hazards.

The most common hazard is lock ordering
deadlock.

— It must be handled already at design time.
— Open calls is effective at minimizing this hazard.

Other hazards mentioned are: resource
deadlock, resource starvation, and livelock.

Thank
You

