
Ex: e philosophers dining problem
public Philosopher(String philosopher, !
 Object left, Object right) {!
 this.name = philosopher;!
 this.leftStick = left;!

 this.rightStick = right;!
 !
 this.thread = new Thread() {!

 public void run() {!
 try {!
 synchronized(leftStick) {!
 sleep(1);!

 synchronized(rightStick) {!
 sleep(1);!
 System.out.println(!

 "Philosopher " + name + !
! ": Chew, chew, chew …” + !

 “*burp*!");!
 }}} catch (Exception ignore) {}!

 }};!
}!

1)  Discuss whether the provided
solution to the philosophers
dining problem can be fixed,
using a lock ordering strategy, i.e.
order by hash value or an explicit
id.

2)  Make a solution to the problem,
using explicit locks (java.util.
concurrent.locks).

3)  (Optional) Describe a scenario in
which the lock ordering algorithm
in Listing 10.3 does not prevent a
deadlock, if there is any.

