Programming with
Threads

Benefits and Risks

A summary of the first two chapters of
Goetz, Brian, et al. Java concurrency in practice. Addison-VVesley, 2006.

How can we perform several
computations concurrently?

Computer Computer

Virtvalized Hardware

Process

ﬁ Thread| ' Threadi

Processl
—
Virtualized Hardwarei

Computer

Benefits

® Model concurrent tasks
® Do this but also that

® Exploit multiple processors
® Shorten execution time

® Handle asynchronous events

® VWhen waiting, do something else

Risks
® Thread-safety

® Nothing bad should happen
® |iveness

® Something good should happen
® Performance

® |t should happen quickly

NS

Thread-safety — Description

“A class is thread-safe if it behaves correctly when
accessed from multiple threads, [...] with no
additional synchronization |[...] on the part of the
calling code.”

NS

Thread-safety — Example

public class UnsafeSequence {
private int value;

public int getNext() { |Oad
return value++; add

} } N—_— store

A |vale—> 5| ——P| 5+1 -6 «———)h value=6|

B —-——)rvalue—>5 —-——)r 5*1 — 6 *———>ﬁ value = 6 |

NS

Thread-safety — Solution

Three ways to fix safety

- heed counter

® Don’t share state
® Make state immutable — need increwent

® Use synchronization — okay

NS

Thread-safety — Example

public class Sequence {
private int value;

public synchronized 1int getNext() {
return value++;

o R e §

NS

Liveness — Description

“A liveness failure occurs when an activity gets into
a state such that it is permanently unable to make

forward progress.”

NS

Liveness — Example
Peadlock

NS

Performance

Not only does synchronization make selected parts
of the execution sequential, it also adds overhead
when acquiring and releasing the locks.

Threads — Summary

Benefits

® Model concurrent tasks
® Exploit multiple processors
® Handle asynchronous events

Risks

® Safety
® Liveness
® Performance

This slide is intentionally left blank-ish.

