# Programming with Threads

Benefits and Risks

A summary of the first two chapters of Göetz, Brian, et al. Java concurrency in practice. Addison-Wesley, 2006.

## How can we perform several computations concurrently?

## Computer Virtualized Hardware Process Thread Thread Process Virtualized Hardware

Computer

Computer

#### Benefits

- Model concurrent tasks
  - Do this but also that
- Exploit multiple processors
  - Shorten execution time
- Handle asynchronous events
  - When waiting, do something else

- Thread-safety
  - Nothing bad should happen
- Liveness
  - Something good should happen
- Performance
  - It should happen quickly

## Thread-safety — Description

"A class is thread-safe if it behaves correctly when accessed from multiple threads, [...] with no additional synchronization [...] on the part of the calling code."

## Thread-safety — Example

```
public class UnsafeSequence {
    private int value;

public int getNext() {
    return value++;
    }
}
```



## Thread-safety — Solution

Three ways to fix safety

- Don't share state need counter
- Make state immutable need increment
- Use synchronization okay

## Thread-safety — Example

```
public class Sequence {
    private int value;
    public synchronized int getNext() {
        return value++;
    }
```

```
value \rightarrow 5 5+1 \rightarrow 6 value = 6
```

```
value \rightarrow 6 6+1 \rightarrow 7
```

#### Liveness – Description

"A liveness failure occurs when an activity gets into a state such that it is permanently unable to make forward progress."

## Liveness – Example

#### **Peadlock**



#### Performance

Not only does synchronization make selected parts of the execution sequential, it also adds overhead when acquiring and releasing the locks.

#### Threads — Summary

#### Benefits

- Model concurrent tasks
- Exploit multiple processors
- Handle asynchronous events

#### Risks

- Safety
- Liveness
- Performance

