| anguage Support for
Lightweignt Transactions

(Tim Harris & Keir Fraser, OOPSLA'03)

Patrik Persson, Nov. 14, 2013

Java monitors are tricky!

public synchronized int get() {
int result;
while (items == 0) wait();
1tems ——;
result = buffer[items]:
notifyAll();
return result:;

}

Back to the drawing board

 Conditional critical
regions

(Tony Hoare, 1972) public int get() A

| | atomic (items !'= 0) {
e Atomic execution wrt. items —-;
other atomic sections return buffer[items] ’
accessing the same ;

gata !

 Where did the lock go?

Software Transactional
Memory (STM)

* [ransactional memory:
a memory model that checks ordering of memory accesses

* Optimistic access with recovery strategies,
rather than conservative locking

* Limited support in modern CPUs, e.g., Load-link & Store-
conditional (MIPS, ARMve, ...)

e Software transactional memory:
software-based approaches with similar semantics

» Still relies on some CPU support, e.g., Compare-and-swap

Tracking versions in memory

Application Ownership Transaction
heap records descriptors
I I
at / " >| version 15
az 100 t1
\1'2 >T Status: ACTIVE
a3 200 / a2: (100,7) —> (300,8)
| | al: (7,15) - (7,15)
I l
| | 3 2
a4 500 > >| Status: ASLEEP

a4 506,12 - (500,12

a5 | 600 M _— a5 (600,13) —> (600,13

\4

Deadlock, be gone!

atomic { atomic {
synchronized(a) { synchronized(b) {
synchronized(b) A synchronized(a) {
I3 I3
I3 I3

} }

summary

Declarative monitor-like concept,
based on transactional memory

They call it non-blocking, but it's really non-locking:
blocking is possible (and intended) for boolean
conditions

Claim to avoid deadlock & priority inversion

Fair performance,
scales better than locking wrt. contention

| anguage Support for
Lightweignt Transactions

EXerclises

STM exercises (1/2)

class Fifo {

Consider the class Fifo.
Assume multiple producers,
multiple consumers.

1. There is (at least one)
concurrency-related bug
here. How can it be
detected during testing?

2. Rewrite the Fifo class
using atomic. How does
this solution address the
bug above?

public Fifo(int sz) { vals =

public synchronized int get()

{

}

throws InterruptedException

if (r == w) wait();
int result = vals[r];
r=(r+ 1) % sz;
notifyAll();

return result;

public synchronized void put(int val)

{

}

private
private
private
private

throws InterruptedException

if (r == ((w+ 1) % sz))
vals([w] = val;
w=(w+1) %
notifyAll();

wait();

SZ,

final int[] vals;
final int sz;

int r = 0;

int w = 0;

// empty when

new int[this.sz =

r==w

szl; }

STM exercises (2/2)

Now consider the class
NumberSequence. The method
someHeavyComputation() is class NumberSequence <

computationally intensive, and
P y ’ public synchronized void computeNext() A{

may have side effects. nbrs[pos++] = someHeavyComputation();
}
3. This is thread-safe, but “p;ublic synchronized int size() {
inefficient. Why? y return pos;
o . Brivate int pos;
4. It atomic is used, how might private int nbrs[];
performance be affected? ;

Explain the significance of
transactions (STM) here.

