
Language Support for
Lightweight Transactions

(Tim Harris & Keir Fraser, OOPSLA’03)
!
!
!
!

Patrik Persson, Nov. 14, 2013

Java monitors are tricky!

public synchronized int get() {
 int result;
 while (items == 0) wait();
 items --;
 result = buffer[items];
 notifyAll();
 return result;
}

Back to the drawing board
• Conditional critical

regions 
(Tony Hoare, 1972)

• Atomic execution wrt.
other atomic sections
accessing the same
data

• Where did the lock go?

public int get() {
 atomic (items != 0) {
 items --;
 return buffer[items];
 }
}

Software Transactional
Memory (STM)

• Transactional memory: 
a memory model that checks ordering of memory accesses

• Optimistic access with recovery strategies,  
rather than conservative locking

• Limited support in modern CPUs, e.g., Load-link & Store-
conditional (MIPS, ARMv6, …)

• Software transactional memory: 
software-based approaches with similar semantics

• Still relies on some CPU support, e.g., Compare-and-Swap

Tracking versions in memory

Deadlock, be gone!

 synchronized(a) {
 synchronized(b) {
 ...
 }
 }

 synchronized(b) {
 synchronized(a) {
 ...
 }
 }

atomic {

!
!
!
!
}

atomic {

!
!
!
!
}

Summary
• Declarative monitor-like concept,  

based on transactional memory

• They call it non-blocking, but it’s really non-locking:
blocking is possible (and intended) for boolean
conditions

• Claim to avoid deadlock & priority inversion

• Fair performance,  
scales better than locking wrt. contention

Language Support for
Lightweight Transactions

Exercises

STM exercises (1/2)
Consider the class Fifo.
Assume multiple producers,
multiple consumers.

1. There is (at least one)
concurrency-related bug
here. How can it be
detected during testing?

2. Rewrite the Fifo class
using atomic. How does
this solution address the
bug above?

class Fifo {
 public Fifo(int sz) { vals = new int[this.sz = sz]; }

 public synchronized int get()
 throws InterruptedException
 {
 if (r == w) wait();
 int result = vals[r];
 r = (r + 1) % sz;
 notifyAll();
 return result;
 }
!
 public synchronized void put(int val)
 throws InterruptedException
 {
 if (r == ((w + 1) % sz)) wait();
 vals[w] = val;
 w = (w + 1) % sz;
 notifyAll();
 }

 private final int[] vals;
 private final int sz;
 private int r = 0;
 private int w = 0; // empty when r == w
}

STM exercises (2/2)
Now consider the class
NumberSequence. The method
someHeavyComputation() is
computationally intensive, and
may have side effects.

3. This is thread-safe, but
inefficient. Why?

4. If atomic is used, how might
performance be affected?
Explain the significance of
transactions (STM) here.

class NumberSequence {
 …
 public synchronized void computeNext() {
 nbrs[pos++] = someHeavyComputation();
 }
 …
 public synchronized int size() {
 return pos;
 }
 …
 private int pos;
 private int nbrs[];
}

