
Akka Java Documentation
Release 2.2.3

1
Thursday, November 28, 13

Terminology, Concepts

Concurrency vs. Parallelism
Asynchronous vs. Synchronous
Non-blocking vs. Blocking
Deadlock vs. Starvation vs. Live-lock
Race Condition

2
Thursday, November 28, 13

Non-blocking Guarantees (Progress Conditions)

3
Thursday, November 28, 13

Non-blocking Guarantees (Progress Conditions)

Wait-freedom

3

public void wait_free_method ()
{ // Every call takes

// finite number of steps
--> Never blocking (No deadlocks)
--> No starvation

}

Thursday, November 28, 13

Non-blocking Guarantees (Progress Conditions)

Wait-freedom

3

public void wait_free_method ()
{ // Every call takes

// finite number of steps
--> Never blocking (No deadlocks)
--> No starvation

}

Lock-freedom
public void lock_free_method ()
{ // Often calls take

// finite number of steps
--> No deadlocks
--> Starvation possible

}

Thursday, November 28, 13

Non-blocking Guarantees (Progress Conditions)

Wait-freedom

3

public void wait_free_method ()
{ // Every call takes

// finite number of steps
--> Never blocking (No deadlocks)
--> No starvation

}

Lock-freedom

Obstruction-freedom

public void lock_free_method ()
{ // Often calls take

// finite number of steps
--> No deadlocks
--> Starvation possible

}

public void obstruction_free_method ()
{ // If at some point in time

// it executes in isolation
// (others become suspended)

}

Thursday, November 28, 13

Supervision and Monitoring

4

Supervisor

Subordinate
Subordinate

Subordinate

delegate tasks

Thursday, November 28, 13

Supervision and Monitoring

4

Supervisor

Subordinate

Subordinate

delegate tasks

Subordinate
Detect failure

notify

Options
1. Resume the subordinate,
keeping its accumulated
internal state

2. Restart the subordinate,
clearing out its accumulated
internal state

3. Terminate the
subordinate permanently

4. Escalate the failure,
thereby failing itself

Thursday, November 28, 13

Top-Level Supervisors

5
system.actorof()

akka.actor.guardian-supervisor-strategy

SupervisorStrategy.stoppingStrategy
ActorSystem’s status “isTerminated” = True

--> Orderly shut-down
--> Logging

Thursday, November 28, 13

Restarting (1)

6

Causes of Actor’s
Failure

Programming error
for the specific

message received
Failure

of some external
resource used during

processing the
message

Corrupt internal state
of actor

Thursday, November 28, 13

Restarting (2)

7

Suspend the actor,
and recursively

suspend all children

Call the preRestart
hook -- Termination

request to all children
and calling postStop

Using context.stop()
wait for all children

which were requested
to terminate

Create new actor
instance

Invoke postRestart
(also calls preStart by

default)

Send restart request
to all children which
were not killed before

Resume the actor

Thursday, November 28, 13

Lifecycle Monitoring (DeathWatch)

Each actor may monitor any other actor
Useful in the cases when supervisors have to
terminate the children

Restarts are not visible outside the affected
supervisors

Transition from Alive to Dead can be only monitored
using Terminated message

ActorContext.watch(targetActorRef)

ActorContext.unwatch(targetActorRef)

8
Thursday, November 28, 13

Message Delivery (1)

9

at-most-once delivery

General Rules

no guaranteed delivery

at-most-once -- cheapest - highest performance,
least implementation overhead

at-least-once -- acknowledgement

exactly-once -- most expensive - worst performance

Thursday, November 28, 13

Message Delivery (2)

10

message ordering per
sender-receiver pair

General Rules

in-order delivery

A1 A2

A2A3

M3, M2, M1

M6, M5, M4

this rule is not transitive

A C
M1

A B
M2

M2

C P
Failure, M
any order

Thursday, November 28, 13

Guaranteed Delivery

11

A way to identify individual
messages to correlate message

with acknowledgement

ACK-RETRY Ptotocol

A retry mechanism which will
resend messages if not
acknowledged in time

A way for the receiver to detect
and discard duplicates

Thursday, November 28, 13

Mailbox with Explicit Acknowledgement

12
Thursday, November 28, 13

Actors, STM and the Java Memory Model

The actor send rule:
The actor subsequent processing rule:

The transactional reference rule:

13
Thursday, November 28, 13

14
Thursday, November 28, 13

