
Akka
Building Distributed Systems for
Concurrent, Fault-tolerant and Scalable Java Applications

1
1Thursday, November 21, 13

Problems with Multithreaded Programming

Shared Objects

Thread 2Thread 1

Shared Mutable Objects

Solution:
Synchronized Access
(guarded by locks)

2
2Thursday, November 21, 13

Problems with Multithreaded Programming

Shared Objects

Thread 2Thread 1

Shared Mutable Objects

Solution:
Synchronized Access
(guarded by locks)

2

Change in one part of the system
may break it in another part.

2Thursday, November 21, 13

Problems with Multithreaded Programming

Shared Objects

Thread 2Thread 1

Shared Mutable Objects

Solution:
Synchronized Access
(guarded by locks)

1. Operations may occur serially -> poor performance
2. Locks
-- do not compose -> hard to design applications
-- do not scale well -> block the execution
-- hard to get in right order and error recovery is complicated

2

Change in one part of the system
may break it in another part.

2Thursday, November 21, 13

Problems with Multithreaded Programming

3

Shared block 1

Thread 2Thread 1

Deadlocks

Thread 1 has obtained the lock to synchronized block 1
and

Thread 2 has obtained the lock to synchronized block 2

Shared block 2

Synchronized

3Thursday, November 21, 13

Problems with Multithreaded Programming

4

Scalability

Managing multiple threads in a single JVM Challenging

Scaling the application across multiple JVMs?

4Thursday, November 21, 13

Problems with Multithreaded Programming

4

Scalability

Managing multiple threads in a single JVM Challenging

Scaling the application across multiple JVMs?

Shared state stored in database
and

Relying on database to manage the concurrent access

4Thursday, November 21, 13

Akka: A Solution for Concurrency,
Fault-tolerance and Scalability

5

Open source toolkit and runtime
that runs on JVM

May use Scala or Java
 to call libraries and features

Written in Scala

High level abstraction for concurrency:
Actors combined with software transaction memory
(SMT) to implement atomic message-passing

5Thursday, November 21, 13

Actors in Akka

6

Actors
(lightweight processes)

Simple and high-level
abstraction for concurrency

and parallelism

Asynchronous, non-
blocking, and high-

performance event-driven
programming

Provide Support

Implement share nothing
architecture and encapsulate

state and behavior

state change is local

6Thursday, November 21, 13

“Let it Crash” Model for Fault-tolerance

7

standard java application

try {

} catch (ExceptionType name) {

} catch (ExceptionType name) {

}

critically important
state is guarded by
try/catch blocks

7Thursday, November 21, 13

“Let it Crash” Model for Fault-tolerance

7

standard java application

try {

} catch (ExceptionType name) {

} catch (ExceptionType name) {

}

critically important
state is guarded by
try/catch blocks

Akka

actor P
actor C

supervisor of actor C

supervisor hierarchy

7Thursday, November 21, 13

“Let it Crash” Model for Fault-tolerance

7

standard java application

try {

} catch (ExceptionType name) {

} catch (ExceptionType name) {

}

critically important
state is guarded by
try/catch blocks

Akka

actor P
actor C

supervisor of actor C

supervisor hierarchy

Crash
Notify

7Thursday, November 21, 13

The Actor Model

8
8Thursday, November 21, 13

The Actor Model

8

ActorSystem ActorRef

MessageDispatcher

Mailbox ActorMessage Queue

Creates

Dispatch

Runs

Publishes Message

InvokesRetrieves
Message

8Thursday, November 21, 13

Some More Advantages

9

-- can maintain a thread pool having
limited number of threads.
-- can be configured with one-to-one
mapping of threads to actors.

MessageDispatcher

Load balancing

9Thursday, November 21, 13

Some More Advantages

9

-- can maintain a thread pool having
limited number of threads.
-- can be configured with one-to-one
mapping of threads to actors.

MessageDispatcher

Load balancing

ActorRef

Horizontal scalability

Local ActorRef

Remote ActorRef

9Thursday, November 21, 13

Actor Hierarchies

10

system hierarchy

Actor hierarchy

ActorSystem.Actors

user hierarchy

root actor: Guardian

top-level actors

child actors

10Thursday, November 21, 13

Example: Computing Prime Numbers

Create a master actor
Create a round-robin router to distribute
work across multiple worker actors
Communicate between worker actors
and the master actor
Communicate between the master actor
and a listner

11
11Thursday, November 21, 13

12
12Thursday, November 21, 13

13
13Thursday, November 21, 13

14
14Thursday, November 21, 13

15
15Thursday, November 21, 13

15
15Thursday, November 21, 13

16
16Thursday, November 21, 13

17
17Thursday, November 21, 13

Exercise

Find GCD for a given set of numbers by
creating 2 worker_actors and dividing
the load among them equally.
Report the time for computation taken by
each worker_actor.
Use Akka release 2.2.1

18
18Thursday, November 21, 13

19
19Thursday, November 21, 13

